Wang, Gabe, Calvert & Taylor, 1976; Larson & Gabe, 1978). The space group was determined from precession photographs (hkl: h + k + l = 2n; hkl: 2h + l = 4n) and intensity statistics to be $I4_3d$. The systematic absences were also measured to check the possibility that the crystal had lower symmetry due to ordering (Carter, 1972). In addition, the La$_3$Sb$_3$ data were refined in $I2_3$ to result not significantly different from $I4_3d$. Details for each crystal are given in Table 1. Two complete unique sets, each containing hkl and hkl, were measured and averaged. All calculations were carried out on the laboratory computer using the NRC-PDP-8 system of programs (Larson & Gabe, 1978). The structure was refined using the observed reflections with allowance for anomalous dispersion and isotropic extinction (Larson, 1969). For Eu$_4$As$_3$, extinction was negligible and not refined. Refinement was by anisotropic full-matrix least squares with starting coordinates from Hulliger & Vogt (1970).*

For both structures the final difference maps contained no significant details. (A refinement with variable As occupancy did not give significantly different results.) A microprobe analysis (Owens, 1978) of the Eu–As crystal gave Eu$_{4.012}$As$_{2.993}$. The stoichiometric formula was therefore accepted for our crystal.

For comparison, La$_3$Sb$_3$, known to be stoichiometric (Gambino, 1967), was also studied.

Discussion

The Th$_3$P$_4$ structure (Meisel, 1939) has been described in detail elsewhere (Heim & Bärnighausen, 1978, and references therein). The anti version of this structure is observed for pnictides of the rare earths, Ln$_4$X$_3$ (Hohnke & Parthé, 1966; Bodnar & Steinfink, 1966; Gambino, 1967; Hulliger & Ott, 1977), but to date no diffractometer single-crystal study is known to us. Structural details are of interest in discussing the superconductivity of Ln$_3$X$_4$ compounds which are an order of magnitude different from the analogous Ln$_3$Y$_4$ (Y = S, Se, Te) compounds with the normal Th$_3$P$_4$ structure. The interatomic distances are given in the Abstract and the average Ln–X values, viz Eu–As = 3.19 Å and La–Sb = 3.34 Å, are equivalent to those expected for Ln$^{3+}$ metallic phases. Each Ln atom is connected to three other Ln atoms (Maas, 1970), forming two distinct enantiomorphic sets of three-connected ten-membered rings (Heim & Bärnighausen, 1978) in which the bonding is comparable to that for the Ln$^{3+}$ metal. For La these are the face-centred cubic and double hexagonal close-packed forms of the element (3.75 and 3.77 Å respectively) and for Eu$^{3+}$ the 12-coordination value is 3.60 Å. Similar geometrically distinguishable Ln sublattices are observed in other lanthanon pnictides, even anion-rich ones, e.g., the high- and low-temperature forms of LaAs$_3$, and in NdAs$_3$ (Wang, Heyding, Gabe, Calvert & Taylor, 1978). The lattice parameter and stoichiometry found for La$_3$Sb$_3$ are in excellent agreement with those of Hulliger & Ott (1977), 9.648 Å and La$_3$Sb$_3$, and consistent with those of Hohnke & Parthé (1966), 9.648 Å, and Gambino (1967), 9.63 Å. For Eu$_4$As$_3$, both lattice parameter and stoichiometry differ from those given by Hulliger & Vogt (1970) and we conclude that our single crystal is stoichiometric Eu$_4$As$_3$.

We are very grateful to Mr D. R. Owens of the Mineralogy Section, Physical Sciences Laboratory, CANMET, for the microprobe analyses.

References

Department of Energy, Mines & Resources, Ottawa.

National Research Council of Canada.

International Union of Crystallography

Donation

On behalf of the International Union of Crystallography the Executive Committee wishes to record its gratitude to the Rigaku Corporation, Tokyo, Japan, for a generous donation to the General Fund of the Union.