References


Sc₅T₄Si₁₀ (T = Co, Rh, Ir) and Y₅T₄Ge₁₀ (T = Os, Ir) with a New Tetragonal Structure Type

BY H. F. BRAUN* AND K. YVON

Laboratoire de Cristallographie aux Rayons X, Université de Genève, 24 quai Ernest Ansermet, CH-1211 Genève 4, Switzerland

AND R. M. BRAUN

Institut für Analytische und Anorganische Chemie, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-6300 Giessen, Federal Republic of Germany

(Received 16 May 1980; accepted 2 June 1980)

Abstract. Sc₅Co₄Si₁₀, P4/mmbm, Z = 2, a = 12.01 (1), c = 3.936 (5) Å, Dc = 4.34 (1) Mg m⁻³, μ(Mo Kα) = 9.7 mm⁻¹. Final R = 0.04 for 419 reflections. Isostructural compounds are Sc₅Rh₄Si₉₀ [a = 12.325 (6), c = 4.032 (3) Å], Sc₅Ir₄Si₉₀ [a = 12.316 (5), c = 4.076 (3) Å], Y₅Os₄Ge₁₀ [a = 13.006 (8), c = 4.297 (5) Å] and Y₅Ir₄Ge₁₀ [a = 12.927 (5), c = 4.308 (5) Å].

Introduction. During a search for superconductivity in rare-earth–transition-metal silicides, a series of tetragonal compounds of formula R₅T₄X₁₀ (R = Sc, Y, T = Co, Rh, Ir, Os, X = Si, Ge) was found (Braun, 1979). Most of them are good superconductors with critical temperatures up to 8.6 K (Braun & Segre, 1980). Their composition was determined by microprobe analysis of a sample belonging to the Sc–Rh–Si system (Braun, Burri & Rinderer, 1979). In the analogous Co system, Kotur, Bodak & Gladyshevskii

*Permanent address: Institute for Pure and Applied Physical Sciences, University of California at San Diego, La Jolla, CA 92093, USA.

(1977) reported a tetragonal phase of approximate composition Sc₅Co₄Si₁₀. To our knowledge, the structure has not been determined. In view of the space group indicated (P4/mmbm) and the similarity of the lattice parameters (a = 11.99, c = 3.96 Å) their Sc₅Co₄Si₁₀ and our Sc₅Co₄Si₁₀ are likely to be identical.

Prior to the present study, single crystals of Sc₅Ir₄Si₁₀ were examined by Weissenberg and precession photographs. The Laue class 4/mmm and the systematic absences (0kl: k = 2n + 1) led to the possible space groups P4/mmbm and the similarity of the lattice parameters (a = 11.99, c = 3.96 Å) their Sc₅Co₄Si₁₀ and our Sc₅Co₄Si₁₀ are likely to be identical.

Prior to the present study, single crystals of Sc₅Ir₄Si₁₀ were examined by Weissenberg and precession photographs. The Laue class 4/mmm and the systematic absences (0kl: k = 2n + 1) led to the possible space groups P4/mmbm or P4/mgb. A model was obtained by direct methods, but despite corrections for isotropic absorption and extinction, anisotropic refinement in non-centrosymmetric P4/mgb yielded only an unsatisfactory R = 0.18. Thus, it became desirable to collect a new set of data, preferably for a compound in which Ir was replaced by a lighter transition metal. A sample of Sc₅Co₄Si₁₀ was prepared by arc-melting and subsequently cooled slowly (6 K h⁻¹) from 1700 to 1100 K. A single crystal, isolated from the crushed sample, was mounted on a four-circle diffractometer (Philips PW 1100, Mo Kα, graphite monochromator). Integrated intensities were collected.

© 1980 International Union of Crystallography
in the \(\theta-2\theta\) scan mode up to a limit of \(\sin \theta/\lambda = 0.71 \text{Å}^{-1}\). Of 425 unique reflections, 419 had \(I > 3\sigma(I)\). The positional parameters of Sc$_4$Ir$_4$Si$_{10}$ with \(z\) fixed to 0 or \(\frac{1}{2}\), were taken as starting values for a full-matrix least-squares refinement (34 parameters) in \(P4/mbm\) with CRYLSQ of XRAY (Stewart, 1976). Spherical absorption corrections and an isotropic correction for secondary extinction were applied and the weighting scheme for the final cycles was \(w = 1/\sigma^2(F)\). The final \(R = \sum |F_o| - |F_c|/\sum |F_o| = 0.04\). The atomic parameters are given in Table 1, and selected bond lengths in Table 2.

Discussion. A projection of the Sc$_4$Co$_4$Si$_{10}$ structure along \(c\) is shown in Fig. 1. The Co and Si atoms form planar nets of pentagons and hexagons which are stacked parallel to the basal plane and connected along \(c\) via Co–Si–Co zigzag chains. The pentagon–hexagon layers are separated by layers of Sc. All Co–Si and Si–Si distances are conspicuously short and indicative of strong covalent interactions (Table 2). Networks of Si and transition-metal atoms also occur in many other ternary rare-earth–transition-metal silicides, e.g. ThCr$_2$Si$_2$, CeNiSi$_2$, CeRe$_4$Si$_2$ and LaRe$_2$Si$_2$ (Pecharskii, Bodak & Gladyshevskii, 1977).

A different way to describe the structure is by the stacking of building blocks. As shown in Fig. 2, there are two types of blocks, both familiar from binary or ternary silicides. One is a trigonal prism formed by six Sc atoms which is centered by Si. The edges of the rectangular faces are longer than those of the trigonal faces, such that the prism can be classified as stretched (1:08 = \(h/l\) > 1; Le Roy, Moreau, Paccard & Parthé, 1977). Si-centered prisms of this type are typical of many transition-metal and rare-earth silicides. In the present compound, they are stacked in \(c\) columns along \(c\), as, for example, in ScSi which belongs to the CrB structure type. However, in contrast to the latter compound, the columns are not connected to give \(c\) sheets, but are broken up into columns of double...
prisms, similar to those formed by U in U$_3$Si$_2$ (Zachariasen, 1948). The Si–Si distances within the double prisms are practically the same in Sc$_5$Co$_4$Si$_{10}$ and U$_3$Si$_2$ (d$_{Si-Si}$ = 2.30 Å). They are shorter than in ScSi (2.43 Å; Schob & Parthé, 1965) and even shorter than in elemental silicon (2.35 Å).

The other structural unit is a Co-centered tetragonal antiprism CoSc$_4$Si$_5$ (shaded in Fig. 2). It consists of four Sc atoms forming a rectangular face of the Sc double prism and four Si atoms having a nearly square-planar configuration. A fifth Si atom, i.e. that at the center of the Sc prism, completes these antiprisms to give CoSc$_4$Si$_5$ units. TR$_4$Si$_i$ building blocks (T = transition metal, R = rare earth, Sc, Y, U) having this geometry are common structural elements in several ternary rare-earth-transition-metal silicides, e.g. CeNiSi$_2$ (Bodak & Gladyshevskii, 1970), U$_2$Co$_3$Si$_4$ (Aksel’rud, Yarmolyuk & Gladyshevskii, 1977), ScNiSi$_3$ (Kotur, Bodak, Mys’kiv & Gladyshevskii, 1977), LaRe$_i$Si$_2$ (Pecharskii, Bodak & Gladyshevskii, 1977) and ScNi$_2$Si$_3$ (Kotur, Bodak & Gladyshevskii, 1978). In the present compound, the CoSc$_4$Si$_5$ units are stacked in $\alpha$ columns parallel to $c$, sharing triangular faces. This arrangement leaves open channels which are occupied by the remaining Sc atoms. The Si environment of the latter represents a distorted cuboctahedron.

The existence of superconducting phases in the Sc-Co, Rh, Ir–Si systems has been pointed out previously (Braun & Segre, 1980). The elements Co and Rh are not superconducting, and Ir only at 0.1 K, whereas Sc (Wittig, Probst, Schmidt & Gschneidner, 1979) and Si (Wittig, 1966) become superconducting only under pressure. Among the binary phases, only CoSi$_2$ ($T_c$ = 1.2 K; CaF$_2$-type; Matthias & Hulm, 1953) and Ir$_2$Sc ($T_c$ < 2.5 K; see Roberts, 1976) are known to be superconductors above 1 K. In fact, Sc$_5$Co$_4$Si$_{10}$ has one of the highest transition temperatures known for Co compounds ($T_c$ = 4.9 K; Braun & Segre, 1980). Thus, the magnetic character of the Co atom in this phase either is lost or does not interfere significantly with the BCS pairing. This behavior is quite unusual, especially in view of the rather even distribution of the transition-metal atoms in the structure. The absence of Co–Co contacts is in contrast to most ternary superconductors known today, where the transition metal forms clusters (Vandenbergh & Matthias, 1977).

The authors thank R. Hoppe and B. T. Matthias for their encouragement, support, and the provision of experimental facilities.

This research was supported in part by the Swiss National Science Foundation under project No. 2.246-0.79. One of us (HFB) was supported by NSF (USA) under grant No. DMR77-08469.

References


