While the work covers the whole field of crystallography, there is little use of mathematics. The author's aim is not to give rigorous proofs of physical laws but to demonstrate the consequences of these laws in everyday life.

Many university teachers would do well to incorporate in their courses some of the examples given by Guinier. He reminds us in a very elegant manner that the study of physics is not confined to the laboratory but extends to the universe. It can provide explanations both for the blue colour of the sky and for the physical properties of plastics.

The author's style is so clear that it is a pleasure to recommend this book not only to science teachers (the effort for English-speakers will be repaid) but also to teachers of French in English-speaking schools. At a single blow it would improve the standard of French and increase the quality of the science intake in universities.

G. S. D. King


This is the first of a series intended for science teachers in secondary schools in order to keep them informed of current developments in science. After a short discussion of atomic structure and chemical bonds, the author classifies matter in two states: the disordered (the perfect gas) and the ordered (the perfect crystal). A major part of the book is concerned with the field between these two extremes from liquids via colloids, liquid crystals, polymers, crystalline aggregates with their preferred orientations, to real crystals with their defects.


This book is the second in a series which aims to publish the proceedings of the Rare Earth Research conferences, held in North America every 18 months or so. This conference was held two years ago in North Dakota, and it is the 14th, the first having been staged in 1960. Some of the proceedings of previous conferences were published as hard-cover books but the process was interrupted; it was a pity that so much