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Abstract

To provide a foundation for further theoretical and
software development of the application of graph sets to
patterns of hydrogen bonding and other intermolecular
interactions a number of mathematical concepts and
tools are de®ned, developed and demonstrated.
Following a review of the basic de®nitions and uses of
graph sets, the directional properties of hydrogen bonds
are now included in the treatment. The concepts of a
constructor graph and covalent distance matrix have
been developed to aid in the generation of a qualitative
descriptor for the straightforward, consistent and
ultimately automatic (with appropriate software) de®ni-
tion of patterns. An additional mathematical tool, the
arrowed T-labeling, has been developed to deal with
situations in which pattern-forming moieties are located
on crystallographic special positions. To demonstrate the
utility and various features of these concepts they are
applied in detail to two particular structures, poly-
morphic iminodiacetic acid [N-(carboxymethyl)glycine]
and trans-tetraamminedinitrocobalt(III) acetate. To
facilitate the application and use of graph sets many of
these developments have already been incorporated
into the software of the Cambridge Structural Database,
as described in the accompanying paper.

1. Introduction

Since Etter introduced graph-set notation for the char-
acterization and analysis of hydrogen-bond patterns
(Etter, 1990; Etter et al., 1990), the method has enjoyed
increasing use (Bernstein et al., 1995, and references
therein). The recent use of the notation in the trade
literature (Anon, 1997) indicates that it is becoming part
of the language of structural chemists, in a manner
similar to the way that the notation for reaction
mechanisms (SN2;E1 etc.) is part of the language of
organic chemists. This mode of thinking is very much in
keeping with the philosophical underpinning of Etter's
notions about hydrogen-bonding patterns.

Although there certainly was a fundamental mathe-
matical basis for the graph-set notation (Etter rests on
Harary, 1967; Merri®eld & Simmons, 1989), most of the
notions were based on chemical intuition and chemical
experience. While there have been improvements
(Bernstein et al., 1995) and many still remain to be made,
the fact that those original notions still form the basis of
the approach is a tribute to Peggy Etter's insight and her
deep understanding of hydrogen bonding.

The increased use of the graph-set tools in the
chemical community for describing hydrogen-bonding
patterns coupled with our desire to incorporate the
assignment of graph sets into structural databases
(Motherwell et al., 1999) and extend the use beyond
taxonomy to correlation, analysis and prediction has led
us to attempt to put the method on a ®rmer mathema-
tical foundation. Such a foundation also serves as a
springboard for creating the software for these extended
uses. We have recently made some progress in estab-
lishing that mathematical foundation (Bernstein et al.,
1997), and the software developments and potential uses
are described in the following paper (Motherwell et al.,
1999).

The purpose of this paper is to present these mathe-
matical concepts in `layman crystallographer's terms', to
help lower some of the barriers that exist between
chemists and mathematicians. We will ®rst put the
current situation into context by reviewing brie¯y the
graph-set notation, and its application to a polymorphic
system, iminodiacetic acid (Boman et al., 1974; Bern-
stein, 1979), which we treated with the original Etter
notions (Bernstein et al., 1990, 1995). We will then
introduce and employ the mathematical concepts in the
context of the iminodiacetic acid structures and the
existing notation. Some of the mathematical formalism,
which of course can be developed independent of any
speci®c example, will be presented in x5; the remainder
will appear in an appropriate mathematical publication.
The ultimate intention here, as stated in the title, is to
outline and to present the mathematical concepts
underlying the graph-set methods so that they can be
understood by the working structural chemist. On the
one hand, the same individual can pursue the mathe-
matical de®nitions, on the other hand, when these are
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employed in implementing the concepts in the appro-
priate software the idea is that the mathematical
underpinnings will be transparent to the user, if he or
she so chooses.

2. Brief review of graph-set notations

2.1. The polymorphic system of iminodiacetic acid

Iminodiacetic acid, C4H7NO4 (Fig. 1), is known to be
at least trimorphic (Boman et al., 1974; Bernstein, 1979).
The three known polymorphs are denoted as IMDA1,
IMDA2 and IMDA3.

In IMDA1 and IMDA3 there is one molecule in the
asymmetric unit, while in IMDA2 there are two mole-
cules in the asymmetric unit. Each molecule has three
strong hydrogen-bond donors and four potential
hydrogen-bond acceptors. In fact, each molecule acts as
a donor for three hydrogen bonds and as an acceptor for
three. The labeling and crystallographic symmetry
elements that generate these hydrogen bonds are
summarized in Table 1 and correspondingly labeled in
Fig. 2.

2.2. Graph-set notation and examples

As developed by Etter and coworkers, the graph-set
description of hydrogen-bond patterns involves the
assignment of a pattern designator or a combination of
pattern designators to each pattern (Etter, 1990; Etter et
al., 1990). Four designators were de®ned: rings (R),
chains (C), intramolecular hydrogen-bonding patterns,
termed selfs (S), and other ®nite patterns, termed
discretes (D). The designator also includes a subscript d
to denote the number of hydrogen-bond donored H
atoms in the pattern, and a superscript a to denote the
number of hydrogen-bond acceptors in the pattern. The
smallest number of bonds required to de®ne the pattern
(termed the degree by Etter) is included in parentheses
to complete the de®nition of the pattern.² As special
situations not considered by Etter have arisen some
modi®cations to this notation have been made (Bern-
stein et al., 1995, 1997). We now intend to term this
designator the quantitative descriptor of the hydrogen-
bond pattern. Examples of the use of these quantitative
descriptors are given in Fig. 2.

The graph-set notation is particularly useful for
comparing, for instance, the hydrogen-bonding patterns
of different crystal structures (polymorphic structures),
a family of similar molecules or molecules containing a
hydrogen-bonding functional group or a number of
similar hydrogen-bonding functional groups. To facil-
itate this comparison we have suggested using a common
labeling for all hydrogen-bond donors and acceptors.
These are labeled a, b, c etc. in Table 1. These then form
the rows and columns in a matrix-type table which is

Fig. 1. The iminodiacetic acid molecule, zwitterionic form. The
numbers, designated only for the non-H atoms and H atoms that
participate in hydrogen bonding, are consistent for the three
polymorphs.

Table 1. Summary of the hydrogen bonds in the three polymorphs of IMDA

The acceptor molecule refers to the molecule containing the acceptor atom.

Designation Hydrogen bond Location of acceptor molecule Description of symmetry

IMDA1: space group P21=c, Z � 4
a O1ÐH1� � �O3 x� 1; y� 1

2 ; zÿ 1
2

ÿ �
c-glide and translation

b NÐH2� � �O3 xÿ 1; yÿ 1
2 ; z� 1

2

ÿ �
21-screw

c NÐH3� � �O4 �x; y; z� Inversion

IMDA2: space group Pbc21, Z � 8
a O1ÐH1� � � O3 x� 2; yÿ 1

2 ; z
ÿ �

b-glide and translation
a0 O10ÐH10� � �O30 x0 � 1; y0 � 1

2 ; z0
ÿ �

b-glide and translation
b NÐH3� � �O4 �xÿ 1; y; z� Translation
b0 N0ÐH30� � �O40 �x0 � 1; y0; z0� Translation
c NÐH2� � �O40 �x0 � 1; y0; z0� Res. 1 � � � res. 2 connection
c0 N0ÐH20� � �O4 �xÿ 1; y; z� Res. 2 � � � res. 1 connection

IMDA3: space group P21=n, Z � 4
a O1ÐH1� � �O3 x� 1

2 ; yÿ 1
2 ; z� 3

2

ÿ �
21-screw

b NÐH2� � �O4 �xÿ 1; y; z� Translation
d NÐH3� � �O2 x� 1

2 ; y� 1
2 ; z� 1

2

ÿ �
n-glide

² In Etter's original de®nition the number of atoms constituted the
degree of the pattern. In the interest of mathematical rigor we now
believe that the number of bonds is a preferred de®nition of this
parameter. When d � a � 1 these are considered as the default values
and are generally not speci®cally noted.
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used to summarize the patterns. The diagonal elements
of this table contain the quantitative descriptors for the
patterns containing only one type of hydrogen bond.
These were designated motifs by Etter and in combi-
nation constitute the ®rst or primary level hydrogen-
bonding pattern. Pairwise combinations of the indivi-
dual patterns are given in the off-diagonal entries to this
matrix; they constitute the second or binary level of
hydrogen bonding (Bernstein et al., 1995). The appro-
priate matrices for the three forms of IMDA are given in
Table 2.²

Examination of the three matrices in Table 2 readily
permits a comparison of the hydrogen-bonding patterns
in the three structures. The motifs of a and b are iden-
tical in IMDA1 and IMDA3 [C(8) and C(5), respec-
tively]. It is also seen that the chemically equivalent
hydrogen bonds in IMDA2 form the same patterns.
IMDA1 and IMDA3 differ in the motifs for c (IMDA1)
and d (IMDA3), the former creating an R2

2�10� ring
while the latter is a C(5) chain. In IMDA2 c and c0 are
simple discrete patterns at the ®rst level, but at the
second level the R2

2�10� pattern appears (for the c, c0

matrix element). A simple and easily recognized
distinction in the hydrogen-bonding patterns between
IMDA1 and IMDA2 may be found in the a, b matrix
element R2

4�14� for the former, while at the fourth level

{b, c0, b0, c} there is a characteristic pattern C2
2�9� for the

latter (see Fig. 2).

3. The G-array and the constructor graph of a crystal

3.1. Encoding a crystal structure as a G-array

With these examples of IMDA as a background for
the chemical crystallographic aspects of the use of graph
sets we now wish to describe the development of a
mathematical model for the graph-set analysis.

The traditional model for representing a chemical
molecule is the structural formula; in mathematical
terms, this is an undirected graph consisting of points
and lines connecting some of these points. Each atom is
represented within this graph by a point, usually termed
a vertex, and each covalent bond between two atoms is
represented by a line between the respective vertices,
usually termed an edge. To arrive at a graphical model
for a crystal we start with a set of isolated undirected
graphs ± one for each molecule in the crystal ± and add a
second type of edge ± those which correspond to
hydrogen bonds. The additional edges are drawn as lines
between the donored hydrogen and the acceptor atom
of a hydrogen bond. In this way, a crystal can be thought
of as a (huge) connected undirected graph with two
different types of edges.

Edges representing covalent bonds we henceforth will
refer to as covalent edges, while edges representing an
interaction H� � �A between a hydrogen and an acceptor
atom of a hydrogen bond will be termed hydrogen edges
or H-edges for short. Information concerning the types
of atoms and types of bonds is included in the graph by
means of (the chemist's traditional atomic) labels which
distinguish vertices representing hydrogen and other
atoms, and by additional edge labels which also allow
the distinction between covalent and H-edges. In graph-
set analysis the resulting labeled graph is termed the
array of the crystal structure (Etter et al., 1990).

The labels in the array have to be chosen such that
they express the existing crystallographic equivalences
according to the space group G of the crystal. Equal
labels of vertices indicate that the corresponding atoms
are crystallographically equivalent, and analogously,
equal labels of covalent or H-edges indicate that the
corresponding bonds are equivalent. The labels for H-
edges thereby take over the role of the designators used
for hydrogen bonds in x2.

An ideal crystal structure consists of an in®nite
number of molecules. Accordingly, the array of an ideal
crystal structure is an in®nite graph. Now inevitably the
question arises as to how we can label and handle an
in®nite graph. There is, as yet, no general answer to this
question. However, in our case the in®nite graph is a
periodic array. Therefore, we need only to identify the
smallest possible part of that array whose repetition can
then be described by the translations of the unit cell and
the other symmetry operations of the space group.

Table 2. Quantitative graph-set descriptors for the ®rst
and second levels for the three IMDA polymorphs

L a b c

IMDA1
a C(8)
b R2

4�14� C(5)
c C2

2�9� C2
2�6� R2

2�10�

L a b d

IMDA 3
a C(8)
b C2

2�9� C(5)
d R4

4�18� C2
2�10� C(5)

L a a0 b b0 c c0

IMDA2
a C(8)
a - C(8)
b C2

2�9� - C(5)
b0 - C2

2�9� - C(5)
c D3

3�12� D3
3�12� D3

3�9� D2
3�7� D

c0 D3
3�12� D3

3�12� D2
3�7� D3

3�9� R2
2�10� D

² In the original publication (Etter et al., 1990) the two molecules in
the asymmetric unit for IMDA2 were not considered separately. This
treatment is somewhat lacking crystallographic rigor and the approach
was modi®ed in a subsequent publication (Bernstein et al., 1995). Table
2 now contains the entries according to the modi®ed treatment. The
added rigor usually results in the need to de®ne more patterns and the
relevant chemical or crystallographic information appears at higher
levels of the graph set, but none of this information is lost.
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We denote the space group of a crystal by G. Since no
representation of the array of a crystal can be given
without the knowledge of G we propose to term this a
G-array, rather than just an array.

Fig. 3 illustrates the arrays of the three IMDA forms.
For IMDA1 and IMDA3 the part shown corresponds to
the single molecule of an asymmetric unit. For IMDA2
the two molecules in an asymmetric unit are given. H

atoms which are not involved in H-edges are omitted for
clarity. For the same reason, labels of covalent edges,
which are irrelevant in our context, are not indicated.

3.2. The constructor graph

For identifying hydrogen-bond patterns in the ®rst
place it is not the inner structure of molecules which is of

Fig. 2. Representative examples of hydrogen-bond patterns and the associated graph sets found in the three polymorphs of iminodiacetic acid,
speci®ed as IMDA1, IMDA2 and IMDA3, respectively. The ®gures have been generated with the version of PLUTO (Allen & Kennard, 1993)
in the October 1998 release of the CSD, described in the accompanying paper (Motherwell et al., 1999). The labeling of the hydrogen bonds
speci®ed in {} is consistent with that in Tables 1 and 2. Each pattern may be identi®ed by the colors of its hydrogen bonds, given in
square brackets. (a) IMDA1: {a}: C(8) [red], {b}: C(5) [green], {c}: R2

2�10� [blue]; (b) IMDA1: {a, b}: R2
4�14� [red, green]; (c� IMDA2: fag:

C(8) [red], {a0}: C(8) [light blue], {b}: C(5) [green], {b0}: C(5) [yellow], {c}: D [dark blue], {c0}: D [lilac], {b; c0 b0; cg: R2
4�8� [green, lilac, yellow,

dark blue]; (d) IMDA3: {a}: C(8) [red], {b}: C(5) [green], {d}: C(5) [blue]; {a, b}: C2
2�9� [red, green].
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interest, but rather how these molecules are connected
via hydrogen bonds to each other. Furthermore, when
visualizing hydrogen-bond patterns, large or complex
molecules tend to detract from the clarity of the picture
and hinder one's ability to de®ne and visualize the
hydrogen-bonding patterns. For this reason, we now go a
step further (already suggested e.g. in Etter, 1990) and
create from the G-array a graph where the vertices are
whole molecules rather than individual atoms. Such a
reduction will of course result in a loss of chemical
information (all covalent edges in a molecule disappear
and are hidden into a black box, the vertex of the
molecule); however, as we shall see, this apparent
drawback can be overcome in a convenient way.

Consider any H-edge of the G-array. If this H-edge
connects two different molecules, then one of them
contains the vertex representing the donored H atom
(and hence the donor atom). Let us term this the donor
molecule. The other molecule contains the vertex which
represents the acceptor atom. Call this the acceptor
molecule. After reducing molecules of the G-array to
single vertices we will indicate for H-edges which
molecules are their donor and acceptor molecules by
assigning an orientation to them. It is a matter of taste
which one of the two possible orientations we choose.
We decided to choose the orientation from the donor to

the acceptor molecule. In the case of an intramolecular
H-edge the donor molecule is the same as the acceptor
molecule. In this case the corresponding H-edge
becomes a loop attached to its molecule. Here an
orientation is super¯uous, even meaningless.

The structure which results from the two operations
mentioned above (reduction of molecules to single
vertices and orienting H-edges) is termed the
constructor graph of the G-array. It has

the molecules as vertices,
the set of directed hydrogen edges as edges and
the same H-edge labels as the G-array.

Let us reconsider the graph-set representatives shown
in Fig. 2. By the reduction process just described above
they are reduced to the pictures shown in Fig. 4.
Hydrogen edges are drawn as continuous arrows from
donor to acceptor molecules. Note that a full or empty
circle now represents an entire molecule from which
hydrogen bonds emanate (arrows leaving signifying that
the hydrogen-bond donor is on that molecule) or at
which hydrogen bonds enter (arrows entering signifying
that the hydrogen-bond acceptor is on that molecule).
Note the difference from Fig. 3, where empty and full
circles distinguish between non-G-equivalent molecules.

The constructor graph may have multiple edges as
well as loops. This is, however, not the case with the
three forms of IMDA. Fig. 5 shows representative parts
of the constructor graphs of the three IMDA poly-
morphs.

As can be seen from Fig. 4, graph-set representatives
appear in the constructor graph as simple subgraphs
such as paths (Figs. 4 a, d and e) or cycles (Figs. 4b, c and
f). Any cycle or path in the constructor-graph indicates a
ring or a chain, respectively, and therefore can be
considered as a candidate for a graph-set representative
in constructor-graph representation and vice versa. A
more detailed description of the correspondence
between graph-set representatives, and paths and cycles
in the constructor graph will be given in x5. Another

Fig. 3. Molecules and hydrogen bonds of the three IMDA polymorphs
as part of their arrays. Small circles represent H atoms, large circles
non-H atoms. In IMDA2, vertices representing atoms belonging to
crystallographically non-equivalent molecules are additionally
distinguished by full or empty circles. Covalent edges are drawn
as full lines, H-edges as dotted lines with a label indicating the
respective hydrogen-bond type corresponding to Table 1. H atoms
not participating in hydrogen bonds are omitted.

Fig. 4. Some of the graph-set representatives of IMDA portrayed using
the constructor-graph representation. IMDA1: (a) {a}: C(8); (b) {a,
b}: R2

4�14�; (c) {c}: R2
2�10�. IMDA2: (d) {c}: D; (e) {a; cg: D3

3�12�,
IMDA3: (f) {a,d}: R4

4�18�.
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question is how we can obtain the descriptors of graph
sets from their representatives in the constructor graph.
This question will be treated in x4 in the context of our
example with the three IMDA polymorphs.

4. Qualitative descriptors for graph sets in the three
IMDA polymorphs

4.1. Qualitative descriptors

In the G-array of a crystal graph sets are detected in
the form of ®nite open (chain period, discrete) or closed
(ring, self) paths. A ®nite path is a subgraph of the array,
the vertices and edges of which can be arranged as an
alternating sequence

v0; e1; v1; e2; . . . ; vnÿ1; en; vn;

where the vis are vertices and the eis are edges
connecting viÿ1 and vi. In this paper we have to deal with
so-called simple paths only, i.e. we always assume that all
vi vertices are different, except in a closed path, of
course, where the last vertex vn equals the ®rst vertex v0.
For instance, the chain in Fig. 2(a) we have denoted until
now as C(8) has a period which is given by the path

O3ÐC4ÐC3ÐNÐC1ÐC2ÐO1ÐH1 � � �a O3�:

Here � � � denotes an H-edge, Ð a covalent edge and we
have used the atom labels of Fig. 1 to denote vertices;
O3� is the acceptor atom at the beginning of the next (8-
atom) period. The H-edge has the label a, whereas the
labels of the covalent edges, not relevant in this context,

are not shown. Now starting at the H atom and moving
along this path we encounter exactly one H-edge, which
we cross in the direction from the donored H atom to
the acceptor atom. This is also the direction which is
assigned to this H-edge in the constructor graph. We
characterize this situation by the symbol

!
a . Let us

combine this with the symbol C for a chain to give C(
!
a ).

This is what we propose to term the qualitative
descriptor of the chain under consideration. Its useful-
ness will be shown below.

There is also a chain with qualitative descriptor C(
!
b )

in IMDA1, namely the chain with the period

O3ÐC4ÐC3ÐNÐH2 � � �b
O3�:

The three different chains of IMDA3 noted in Table 2
have qualitative descriptors C(

!
a ), C(

!
b ) and C(

!
d ).

There are four chains of IMDA2 with qualitative
descriptors C(

!
a ),C(

!
a0 ),C(

!
b ) and C(

!
b0 ), respectively.

Let us turn to second-level chains; such chains are
also listed in Table 2. From Fig. 5 we can immediately
see that IMDA1 contains a chain with qualitative
descriptor C(

!
a
 
c ) [C2

2�9� in Table 2]. In this descriptor
the symbol c appears. We use it to note the fact that
moving along a period of the chain we encounter (after
having passed the ®rst H-edge with label a in its direc-
tion) an H-edge with label c, which we have to pass
against its direction, i.e. from acceptor to donored
H-atom.

From Fig. 5 we also see that IMDA1 contains a chain
with qualitative descriptor C(

!
a
 
b
 
a
!
b ). (Start at the

leftmost molecule on the top and move down vertically
from vertex to vertex, turn right, go down again and turn
right once more. Repeating this movement periodically
will lead us along a chain.) In this descriptor the symbols 
b and

 
a appear. They indicate the fact that moving

along a period of the chain we encounter (after having
passed an H-edge with label a in its direction) an H-edge
with label b and then one with label a, which we have to
pass against their direction. The last H-edge on this
period is labeled b again and is passed in its direction.
This chain is not listed in Table 2.

Rings and discretes will be treated in a similar
manner. In IMDA1 there appears, for instance, the ring

j j
H1�1� � � �a O3�2� Ðb H1�3� � � �a O3�4� � � �b

H2�2�ÐH1�1�

[Fig. 2b, R2
4�14�; upper indices in brackets distinguish the

four molecules involved, ÐÐÐ indicates a shortest
path between H atoms in a molecule]. The corre-
sponding qualitative descriptor is R(

!
a
 
b
!
a
 
b ).

The sequence of atoms in a ring can be started at any
atom in the ring. If we start at the atom O3�2� then the
®rst H-edge we encounter moving along the ring is one
labeled b and we pass it against its direction. Thus,
R(
 
b
!
a
 
b
!
a ) is also a qualitative descriptor of the

same ring. Further, if we choose to move along the ring

Fig. 5. The crystal structures of the three polymorphs of IMDA using
constructor-graph representations. Not all labels are indicated.
Parallel and equally directed arrows have equal labels.
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in the opposite direction, then the order in which the H-
edges are met is reversed and also the direction in which
we pass them is inverted. Thus, R(

!
b
 
a
!
b
 
a ) and

R(
 
a
!
b
 
a
!
b ) are two more qualitative descriptors of

the same ring. It turns out that for the purpose of these
descriptors it does not matter which one we choose.
They are all equivalent. The same observation is also
valid for qualitative descriptors of chains introduced
above and for those of discretes which we consider next.

In IMDA2 the ®rst-level discretes H2� � �O30 and
H20� � �O3 and, among others, the second-level discrete

H2 � � �c O40� � � �b0
H30ÐN0ÐC30ÐC40ÐO40 � � �c H2�

appear, to which we can assign the qualitative descrip-
tors D(

!
c ), D(

!
c0 ) and D(

!
c
 
b0
 
c ), respectively. The

existence of discretes with such qualitative descriptors
follows directly from the constructor graph in Fig. 5.

To provide still more examples for qualitative
descriptors we add here Table 3, in which all qualitative
descriptors for the graph sets listed in Table 2 are given.
Each entry in this table corresponds to the quantitative
descriptor in Table 2, which is in the same position of the
corresponding array.

We invite the reader to convince himself/herself that
the existence of all the graph sets for which the quali-
tative descriptors are given in Table 3 can be conve-
niently checked using the constructor graph
representations of the three IMDA polymorphs in Fig. 5.

4.2. Covalent distance tables of IMDA

The idea is to search the constructor graph, which
gives a clear picture of the hydrogen-bond pattern of a
crystal structure, for representatives of graph sets, to
establish their qualitative descriptors and to derive from

them the corresponding quantitative ones. This is
possible, and in fact convenient, as we intend to show in
this subsection.

Let us start with an example and consider the ring
R(
!
a
 
b
!
a
 
b ) of IMDA1. In order to ®nd the quanti-

tative descriptor Ra
d�n�, we have to determine the

number of edges n, the number of acceptors a and the
number of donored H atoms d, which participate in
forming the ring.

We deal ®rst with the number of edges n on the ring.
The number of H-edges is evident: it is simply equal to
the number of arrowed letters appearing in the quali-
tative descriptor. But how many covalent edges are
between two consecutive H-edges, for example, how
many are between

!
a and

 
b ? These covalent edges

belong to a single molecule of IMDA1. There is exactly
one directed H-edge with label a and exactly one
directed H-edge with label b entering this molecule.
Therefore, the combination

!
a
 
b uniquely determines

two atoms in this molecule: the acceptor atoms of these
two H-edges (see Fig. 3). The number of covalent edges
we are looking for equals the covalent distance, i.e. the
length of a shortest path between these two atoms. A
similar observation is true for the next combination 
b
!
a . The number of covalent edges between these two

H-edges equals the covalent distance between the
donored H-atom of the ®rst and the donored H-atom of
the second H-edge. The covalent distances for these and
other combinations may be found by simple counting in
Fig. 3.

The four individual tables in Table 4 contain the
covalent distances of all combinations of two directed
H-edges which may appear in a qualitative descriptor of
a graph set in any of the three IMDA polymorphs. To
®nd the entry in a table which tells us the covalent

Table 3. Qualitative graph-set descriptors for the ®rst and second levels for the three IMDA polymorphs

L a b c

IMDA1
a C(

!
a )

b {R}(
!
a
 
b
!
a
 
b ) C(

!
b )

c C(
!
a
 
c ) C(

!
b
 
c ) R(

!
c
!
c)

L a b d

IMDA3
a C�!a �
b C�!a  b � C�!b �
d R�!a !d !a !d � C�!b !d � C�!d�

L a a0 b b0 c c0

IMDA2
a C�!a �
a0 ± C�!a0 �
b C�!a  b� ± C�!b0 �
b0 ± C�!a0 b0 � ± C�!b0 �
c D� c !a !c � D�!c !a0 c � D� c !b0!c � D�!c !b0 c � D�!c �
c0 D�!c0 !a  c0 � D� c0 !a0!c0 � D�!c0 !b  c0 � D� c0 !b0 !c0 � R�!c !c0 � D�!c0 �
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distance between
!
a and

 
b , for example, we have to

look at row
!
a and column

 
b . For IMDA1 we ®nd there

the entry 0, which indicates that there is no covalent
edge on a shortest path between these two H-edges on
the ring; they have the same acceptor atom. The entry in
row
 
b and column

!
a , however, is 5. Therefore, since in

the ring R(
!
a
 
b
!
a
 
b ) there are four covalent distances,

from
!
a to

 
b , from

 
b to
!
a , again from

!
a to

 
b and

back again from
 
b to

!
a (from the last to the ®rst H-

edge), and since there are four H-edges, we obtain the
result n � 0� 5� 0� 5� 4 � 14 by referring to
Table 4.

Next consider the number of acceptor atoms a. Since
every H-edge ends in an acceptor molecule, there can be
as many acceptors as there are H-edges. However, as we
could observe above, it may happen that two consecu-
tive H-edges in a ring (or in any other graph set) share a
single acceptor atom. Each occurrence of such a sharing
reduces the number of acceptors by one (compared with
the maximum number possible). Hence, the number of
acceptors a equals the number of H-edges minus the

number of pairs of H-edges which share a single
acceptor.

Sharing of acceptors can also be detected using Table
4. This occurs when the label arrows are head-to-head
(such as ! ) and the entry in the covalent distance
table which corresponds to the two arrowed labels is
zero. For instance, this happens in the trivial cases

!
a
 
a ,!

b
 
b , and so on, which are of no relevance here.

However, it also happens to
!
a
 
b ,
!
b
 
a (IMDA1),!

b
 
c0 ,
 
c
 
b (IMDA2, residue 1), and

!
b0
 
c and

!
b
 
b0

(IMDA2, residue 2).
In our example R(

!
a
 
b
!
a
 
b ), there are two occur-

rences of
!
a
 
b and therefore we obtain a � 4ÿ 2 � 2:

Finally, consider the number of donored H-atoms d.
This number equals the number of H-edges minus the
number of pairs of consecutive H-edges which share a
single donored H-atom. A donored H-atom is shared by
two H-edges when the label arrows are tail-to-tail (such
as  !) and the entry in the covalent distance table
which corresponds to the two arrowed labels is zero.
This happens, for instance, in the case with

 
a
!
a ,
 
b
!
b ,

and so on. In the ring R(
!
a
 
b
!
a
 
b ), no such case

occurs. Hence, here we obtain d � 4.
In this manner we can determine the quantitative

descriptor R2
4�14� for the ring R(

!
a
 
b
!
a
 
b ), as obtained

earlier by the relatively simple, but often confusing,
method of picking and counting.

The consideration of some more examples will
demonstrate additional features of this process. In a
®rst-level chain such as C(

!
a ) in IMDA1 or IMDA3 we

have only one distance to look up, namely the covalent
distance between an H-edge with the label

!
a and one

with the same label in the next molecule of the chain. In
both polymorphs this distance is 7. Hence,
n � 7� 1 � 8. No sharing of acceptors or donored H-
atoms occurs. Hence, in both cases d � a � 1, giving the
quantitative descriptor C(8).

Next consider the chain C(
!
b
!
d ) in IMDA3.

Consulting the corresponding covalent distance table in
Table 3 we ®nd twice the distances 4 (corresponding to!
b
!
d and

!
d
!
b ). Hence, n � 4� 4� 2 � 10. No sharing

of acceptors or donored H-atom occurs. Therefore,
a � d � 2 and we obtain the quantitative descriptor
C2

2�10�.
Consider the discrete D(

 
c
!
a
!
c ) in IMDA2. In a

discrete with three H-edges we have only two covalent
distances, here according to

 
c
!
a and

!
a
!
c , which are 5

and 4. This gives n � 5� 4� 3 � 12. No sharing of
acceptors or donored H-atoms occurs. Therefore,
a � d � 3 and the quantitative descriptor is D3

3�12�:
As a ®nal example, consider the discrete D�!c0!b c0 )

in IMDA2. The covalent distances according to
!
c0
!
b and!

b
 
c0 are 4 and 0. This yields n � 4� 0� 3 � 7. The

H-edges with labels
!
b and

!
c0 share the acceptor atom,

therefore, a � 3ÿ 1 � 2. No sharing of donored
H-atoms occurs, so d � 3. Thus, we obtain the quanti-
tative descriptor D2

3�7�.

Table 4. Covalent distance tables of the three IMDA
polymorphs

The entry cd indicates covalent distance.

cd
!
a

 
a

!
b

 
b

!
c

 
c

IMDA1 
a 0 7 5 7 5 7!
a 7 0 4 0 4 2 
b 5 4 0 4 2 4!
b 7 0 4 0 4 2 
c 5 4 2 4 0 4!
c 7 2 4 2 4 0

cd
!
a

 
a

!
b

 
b

 
c0 !

c

IMDA2, residue 1 
a 0 7 5 7 7 5
a! 7 0 4 2 2 4
b
 

5 4 0 4 4 2!
b 7 2 4 0 0 4!
c0 7 2 4 0 0 4 
c 5 4 2 4 4 0

cd
!
a0

 
a0

!
b0

 
b0  

c
!
c0

IMDA2, residue 2 
a0 0 7 5 7 7 5
a0
!

7 0 4 2 2 4 
b0 5 4 0 4 4 2!
b0 7 2 4 0 0 4!
c 7 2 4 0 0 4 
c0 5 4 2 4 4 0

cd
!
a

 
a

!
b

 
b

!
d

!
d

IMDA3 
a 0 7 5 7 5 3!
a 7 0 4 2 4 6 
b 5 4 0 4 2 4!
b 7 2 4 0 4 6 
d 5 4 2 4 0 4!
d 3 6 4 6 4 0
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The examples treated here demonstrate that the
constructor graph is a very convenient tool in graph-set
analysis. With the three IMDA polymorphs, graph sets in
constructor graph representation are easily detected and
their qualitative descriptors can readily be transformed
into their quantitative descriptors using the covalent
distance tables. The question arises: Is this always true?
Can we proceed in this way also with other crystal
structures? The answer is: Yes, if the crystal structure is
such that there are no crystallographically equivalent H-
edges emanating from the same donor molecule or
entering the same acceptor molecule. Crystal-
lographically equivalent H-edges can occur when a
molecule lies in a special position, i.e. on a crystal-
lographic symmetry element.

A crystal structure with the property formulated in
the above answer allows us to establish well de®ned
covalent distance tables in advance, i.e. before we start
the true graph-set analysis. Further, with such a crystal
structure the sequence of arrowed labels in a qualitative
descriptor de®nes uniquely a sequence of molecules and
hydrogen bonds, when the ®rst individual molecule is
®xed (Bernstein et al., 1997). If the crystal structure does
not possess this property, then one or even both of these
consequences may be wrong. In such cases we may use
the constructor graph only after this tool has undergone
some appropriate re®nement. This re®nement can be
achieved in a rather elegant way, as described in a
slightly more mathematical discussion of this subject in
the next section.

5. Some simple but useful mathematical considerations

5.1. G-equivalence

In x3 we discussed the G-array of a crystal structure. It
is an undirected graph with vertex labels and edge labels.
In essence the vertex labels denote the crystallographic
equivalence of atoms; the edge labels do the same for
covalent and hydrogen bonds. Hence, we may also speak
of equivalent vertices and equivalent edges. We will
term two vertices equivalent if the atoms for which they
stand are crystallographically equivalent.² Analogously,
we will term two covalent edges or two H-edges
equivalent if the bonds they denote or specify are
crystallographically equivalent.

Having the G-array in hand, the equivalence or non-
equivalence of vertices or edges can be veri®ed by
looking at their labels. However, in dealing with graph
sets we may wish to be able to determine the equiva-
lence or non-equivalence of larger parts of the graph
which consist of several vertices and several edges (as
for instance subgraphs representing molecules). We will
say that two different parts of the G-array are equivalent

if and only if there is a symmetry operation g in the
space group G which maps one part onto the other. For
those readers who prefer a rigorous de®nition we
reformulate this idea in a somewhat more formal
manner. In the context of graph sets it suf®ces to restrict
ourselves to the consideration of open or closed paths.
No other parts of the G-array (except, of course, single
vertices, edges and subgraphs representing molecules)
will be involved in our considerations.

Consider a path P of length n in the G-array, given by
an alternating sequence

v0; e1; v1; e2; . . . ; vnÿ1; en; vn

as in x4.1, with vertices vi and edges ei. Denote the vertex
onto which a vertex vi is mapped under the symmetry
operation g by v

g
i :³ Analoguously, denote the edge onto

which an edge ei is mapped under g by e
g
i : Then a path P

of the G-array is termed G-equivalent to P if and only if
there is a symmetry operation g in G such that P is given
by

v
g
0; e

g
1; v

g
1; e

g
2; . . . ; v

g
nÿ1; eg

n; vg
n;

i.e. if P is mapped by g onto P.
From now on we deliberately use the notation G-

equivalent in order to stress the fact that this equiva-
lence is caused by the space group G. In the sequel this
notation will be used generally, in particular also in the
above-considered case of single vertices and single edges
which are paths of length 0 and 1, respectively. Hence,
for vertices and edges equivalent means G-equivalent.

Our de®nition of G-equivalence also applies to graph
sets. Rings and selfs are closed paths, periods of chains
and discretes are open paths. Hence, for any repre-
sentative of a graph set, say a chain C, a ring R, a
discrete D or a self S, there is a whole in®nite set of G-
equivalent representatives (which motivates the use of
the term graph set). In terms of logic, a chain (a ring, a
discrete or a self) is an abstract notion meaning the set
of all representatives, each representative being a
possible realisation of this abstract notion.

5.2. T-equivalence

There are crystal structures in which several G-
equivalent H-edges emanate from the same donor
molecule and/or enter the same acceptor molecule.

We consider a structure with molecules in a special
position, ACNACO [trans-tetraamminedinitro-
cobalt(III) acetate; Cagnon et al., 1978]. ACNACO
crystallizes in space group Cmcm (No. 63). The cation
and anion each lie on a crystallographic special position
with site symmetry m2m. ACNACO consists of crystal-

² In terms of the G-array this means that one of the vertices is mapped
onto the other by an operation g of G.

³ The reader may think of vi as given, for instance, by the triple
�xi; yi; zi� of atomic coordinates of the atom which is represented by vi.
Hence, for example, if g is a c-glide re¯ection plus translation along the
a-axis (as in the ®rst row of Table 1, Section 2.1), then v

g
i is the vertex

representing the atom with atomic coordinates xi � 1; yi � 1
2 ; zi ÿ 1

2

ÿ �
:
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lographically equivalent layers which are isolated from
each other, i.e. neither covalent edges nor H-edges exist
between different layers. Therefore, each graph-set
representative of ACNACO is situated completely
within a single layer.

As already mentioned at the end of x4, more than one
G-equivalent H-edge entering or emanating from a
molecule creates an ambiguous situation. For instance,
let us enter the cation in Fig. 6 from the right-most atom
O1B� via an H-edge with the label a and leave this
molecule via an H-edge with the label b. There are eight
different possibilities to do this, involving the shortest
covalent paths of length 2 or 4. Therefore, the pair

 
a
!
b ,

when appearing in the arrowed label sequence of some
qualitative descriptor, does not give us unique infor-
mation for describing a graph set, and similar situations
are met with other combinations of arrowed letters. For
example, in Fig. 6 we ®nd the chains with periods

H2B� � � �a O1BÐC1ÐO1 � � �a H2ÐN1ÐCoÐN1BÐH2B

and

H2B� � � �a O1BC1ÐO1 � � �a H2NÐN1NÐ

CoÐN1LÐH2L:

Both have a period with directed label sequence
!
a
 
a .

The ®rst is mapped onto itself only by (multiples of) a
translation along the direction

!
a � �1; 0; 0� (not to be

confused with the arrowed label
!
a ), the second only by

(multiples of) a glide re¯ection perpendicular to direc-
tion
!
c � �0; 0; 1� with translation part �1; 0; 0�. They

are crystallographically not equivalent, i.e. not
G-equivalent. However, indicating the G-labels in the
respective qualitative descriptor they would become the
same. Furthermore, there is also a ring

j j
H2 � � �a O1 � � �a H2NÐCoÐN1ÐH2

with the same label sequence
!
a
 
a , which is obviously

not crystallographically equivalent to a period of any
chain.

In such situations, in order to work with the
constructor graph a method must be found to eliminate
these ambiguities.

One way to meet this requirement is to re®ne the H-
edge labels appearing in the G-array with an additional
index. Instead of using a and b, we shall use different
labels a1, a2, . . ., and b1, b2, . . ., for the H-edges incident
with a molecule. This provides the required distinction.
However, this label re®nement has to be performed
consistently at different, but G-equivalent, molecules.
Otherwise, we are not able to retrieve a graph-set
representation from its qualitative descriptor. Such a
process requires a guiding principle for performing this
label re®nement. We shall ®rst discuss such a principle in
a general way, and then return to the speci®c example of
ACNACO.

Our approach to a re®nement of the labeling follows
the treatment in Bernstein et al. (1997). It is based on the
subgroup T of the space group G, which consists of all
translations of the crystal structure. This subgroup is
used in order to add the notion of T-equivalence, or
translational equivalence, as it is often called in crys-
tallography, to the earlier de®ned notion of G-equiva-
lence. Two parts of the G-array of a crystal structure are
termed translationally equivalent, or T-equivalent for
short, if and only if there is some translation t 2 T,
which maps one part onto the other. In particular, two
paths P and P, where P is described by the sequence
v0; e1; v1; e2; . . . ; vnÿ1; en; vn; are T-equivalent if and
only if there is a translation t 2 T such that P is given by

vt
0; et

1; vt
1; et

2; . . . ; vt
nÿ1; et

n; vt
n;

Fig. 6. The cation and anion of the
crystal structure of ACNACO
shown as part of the G-array;
empirical formulae are
[Co(NO2)2(NH3)4]+ and
[C2H3O2]ÿ. Atom labeling is
consistent with that in the CSD
entry for ACNACO. H-edges are
indicated by broken lines, starred
atom labels such as O1*, H1* etc.
indicate that the corresponding
atoms belong to another molecule,
not necessarily all to the same.
Atoms not involved in a graph set
are not labeled. H-atoms are
indicated by empty circles, non-H
atoms by full circles.
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i.e. if P is mapped onto P by a translation t.²
In our context, T-equivalence has no a priori crys-

tallographic relevance. It is an auxiliary notion which
turns out to be very convenient in graph-set analysis, as
we intend to show in this section. A ®rst motivation for
the use of this notion comes from the following

Fact. No two H-edges emanating from the same donor
molecule or entering the same acceptor molecule are
T-equivalent.

This is clear by the following consideration. Since a
translation (except the identity) never belongs to a
special position, it does not ®x a molecule. Therefore, no
two H-edges emanating from or entering the same
molecule can be such that one is mapped onto the other
by a proper translation.

We now propose to use the following rule for labeling
the G-array and the constructor graph of a crystal
structure

Re®ne the labels of the H-edges in the G-array in such a
way that H-edges are T-equivalent if and only if they
have the same re®ned label. Use the resulting labeling
also for the edges of the constructor graph.

To have a compact working term, a labeling of this type
will be termed T-labeling.

Returning now from general considerations to the
example of ACNACO we have prepared in Fig. 7 a
T-labeling of some part of its G-array. The space group
of ACNACO is Cmcm. Since each graph-set repre-
sentative is situated entirely within a single layer, for
graph-set analysis it is suf®cient to restrict our consid-
erations to one layer. All layers of ACNACO are
translationally equivalent. They are parallel to the xz
plane. Any layer is transformed into the consecutive one
by the C-face centering translation along vector
1
2

!
a �!b

� �
� 1

2 ;
1
2 ; 0

ÿ �
. The layer group of an ACNACO

layer is Pm�n�m (Weber #46; see Weber, 1929, or Grell et
al., 1988). The direction perpendicular to the layer plane
± here the y-direction ± is in parentheses. The layer
group which we need here can be derived from the space
group Pmmn (IT #59), taking into account a coordinate
transformation �x; y; z�7!�z; x; y�:³

The crystal class (i.e. the corresponding point group)
of Pm�n�m is mmm, which consists of eight elements.
Hence, each class of G-equivalent objects is decom-
posed into eight T-equivalence classes for each type a
and b of hydrogen bonds. In the T-labeling for
ACNACO (Fig. 8) we use the labels a1, . . ., a8 and b1,

. . ., b8 to refer to these eight classes. G-equivalent but
not T-equivalent H-edges will have the same letter, but
different numbers. The numbering used here corre-
sponds to the numbering of symmetry operations of
Pmmn, origin choice 2 (IT #59, p. 282), after the coor-
dinate transformation �x; y; z�7!�z; x; y�.

Each element g 2 G maps classes of T-equivalent
objects (vertices, H-edges, molecules etc.) onto classes of

Table 5. Symmetry operations of the group G within a
unit cell of a layer of ACNACO and the corresponding
permutations of the classes of translational equivalent

positions

Layer group Pm�n�m, origin choice 2.

No. of position
Symmetry operation
x; y; z7!

Induced permutation
on the classes of
translationally
equivalent positions

1 x; y; z Identity
2 x + 1

2, y, z + 1
2 (12)(34)(56)(78)

3 x + 1
2, y, z (13)(24)(57)(68)

4 x, y, z + 1
2 (14)(23)(58)(67)

5 x, y, z (15)(26)(37)(48)
6 x + 1

2, y, z + 1
2 (16)(25)(38)(47)

7 x + 1
2, y, z (17)(28)(35)(46)

8 x, y, z + 1
2 (18)(27)(36)(45)

Fig. 7. Part of the G-array for ACNACO showing T-labels and
symmetry elements. The shaded area indicates a unit cell with
respect to Pm(n)m, origin at 1Å at 21n21 at ÿ1

4, 0, ÿ1
4 from m2m.

Atoms which are not relevant for graph sets are not drawn.

² T-equivalence is ®ner than G-equivalence in the sense that two paths
(vertices, edges, molecules) which are T-equivalent, are also G-
equivalent, but not necessarily vice versa. Or in more formal terms:
each T-equivalence class of objects is fully contained in some G-
equivalence class of the same objects.
³ The difference between space group Pmmn and layer group Pm�n�m
is that the translation group of the ®rst is three-dimensional, while the
translation group of the latter is two-dimensional.
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T-equivalent objects. Thus, the group G permutes the
eight indices 1; . . . ; 8 as shown in Table 5.

Consider an arbitrary path P in the G-array and the
corresponding path in the constructor graph. Let us
assume that its arrowed label sequence is, for instance,
say a1
!

a7
 

a1
!

a7
 

. Then, according to Table 5, there is a
path which is G-equivalent to P and has an arrowed
label sequence that we obtain from this sequence by
exchanging numbers according to one of the permuta-
tions in the third column in Table 5. Thus,

a1
!

a7
 

a1
!

a7
 
; a4
!

a6
 

a4
!

a6
 
; a3
!

a5
 

a3
!

a5
 
; a8
!

a2
 

a8
!

a2
 

etc:

all belong to G-equivalent paths.

5.3. Graph sets of ACNACO

We are now able to remove the ambiguities
mentioned in the previous subsections.

Since now (after the label re®nement) all H-edges
emanating from a molecule and all H-edges entering a
molecule have different labels, we are able to establish
the covalent distance tables of the two non-equivalent
molcules of ACNACO. The result is shown in Table 6.

There are eight molecules ± four cations and four
anions ± in a unit cell of Cmcm. There are four classes of
translationally non-equivalent molecules and there are
only two classes of crystallographically non-equivalent
molecules. In principle, it is suf®cient to have two
covalent distance tables (one for the cation and one for
the anion) and to generate the remaining two tables
applying e.g. permutation �13��24��57��68� to the labels
(which is induced by the twofold screw rotation
�x; y; z�7! (x� 1

2 ; y; z, # 3 in Table 5).
Let us look now for the ®rst-level graph sets of

ACNACO.

Fig. 8. The constructor graph of ACNACO. Cations are represented by
full circles, anions by empty circles. The unit cell and origin are
chosen in accordance with Fig. 7.

Table 6. Covalent distance tables for ACNACO

Cation [Co(NO2)2(NH3)4]+} at special position (1
4 ; y; 1

4)

cd a1
!

a2
!

a7
!

a8
!

b1
!

b2
!

b7
!

b8
!

a1
 

0 4 4 4 2 4 4 4
a2
 

4 0 4 4 4 2 4 4
a7
 

4 4 0 4 4 4 2 4
a8
 

4 4 4 0 4 4 4 2
b1
 

2 4 4 4 0 4 4 4
b2
 

4 2 4 4 4 0 4 4
b7
 

4 4 2 4 4 4 0 4
b8
 

4 4 4 2 4 4 4 0

Anion [C2H3O2]ÿ at special position (3
4 ; y; 1

4)

cd a1
 

a2
 

a7
 

a8
 

b3
 

b4
 

b5
 

b6
 

a1
!

0 2 2 0 2 0 0 2
a2
!

2 0 0 2 0 2 2 0
a7
!

2 0 0 2 0 2 2 0
a8
!

0 2 2 0 2 0 0 2
b3
!

2 0 0 2 0 2 2 0
b4
!

0 2 2 0 2 0 0 2
b5
!

0 2 2 0 2 0 0 2
b6
!

2 0 0 2 0 2 2 0

Cation [Co(NO2)2(NH3)4]+ at special position (3
4 ; y; 3

4)

cd a3
!

a4
!

a5
!

a6
!

b3
!

b4
!

b5
!

b6
!

a3
 

0 4 4 4 2 4 4 4
a4
 

4 0 4 4 4 2 4 4
a5
 

4 4 0 4 4 4 2 4
a6
 

4 4 4 0 4 4 4 2
b3
 

2 4 4 4 0 4 4 4
b4
 

4 2 4 4 4 0 4 4
b5
 

4 4 2 4 4 4 0 4
b6
 

4 4 4 2 4 4 4 0

Anion [C2H3O2]ÿ at special position (1
4 ; y; 3

4).

cd a3
 

a4
 

a5
 

a6
 

b1
 

b2
 

b7
 

b8
 

a3
!

0 2 2 0 2 0 0 2
a4
!

2 0 0 2 0 2 2 0
a7
!

2 0 0 2 0 2 2 0
a6
!

0 2 2 0 2 0 0 2
b1
!

2 0 0 2 0 2 2 0
b2
!

0 2 2 0 2 0 0 2
b7
!

0 2 2 0 2 0 0 2
b8
!

2 0 0 2 0 2 2 0

² Note that for this property of G it is essential that T is a normal
subgroup, i.e. that gtgÿ1 is again a translation, for all t from T and all g
from G.
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Since there are no intramolecular hydrogen bonds,
there are no selfs. There are also no discretes in the
crystal structure of ACNACO, since each molecule in
the G-array is incident with eight H-edges, four with
G-label a and four with with G-label b.

Let us use the constructor graph for ®nding chains
and rings. To ®nd all existing motifs (®rst-level graph
sets) we have to restrict the search to objects with
qualitative descriptors which either contain only
symbols a1, a2, . . ., a8 or only symbols b1, b2, . . ., b8.

In the constructor graph in Fig. 8 we recognize the
rings

R�a1
!

a8
 �; R�a2

!
a7
 �; R�a3

!
a6
 �; R�a4

!
a5
 �;

which are all G-equivalent. Using the covalent distance
tables we ®nd

n � 0� 4� 2 � 6; d � 2; a � 2ÿ 1 � 1:

Hence the quantitative descriptor is R1
2�6�.

Similarly, we ®nd the G-equivalent rings

R�b1
!

b7
 �; R�b2

!
b8
 �; R�b3

!
b5
 �; R�b4

!
b6
 �;

and their quantitative descriptor R2
2�8�.

In the constructor graph we also ®nd the chains

C�a1
!

a7
 �; C�a1

!
a7
 ja8
!

a2
 �:

Both have G-period a1
!

a7
 

. In the second chain, this is
indicated by inserting j after the G-period. For the ®rst
chain the G-period and T-period coincide; for the
second chain they do not. Again using the covalent
distance tables we ®nd for both chains the quantitative
descriptor C2

2�8�. Further, there are the chains

C�b1
!

b8
 �; C�b1

!
b8
 jb7
!

b2
 �

with equal G-periods b1
!

b8
 

and, therefore, equal quan-
titative descriptors C1

2�6�. Again, j indicates the end of
the G-period. The net result is that there are two non-G-
equivalent chains of the same type with the same
quantitative, but different qualitative descriptor.

For an example of a second-level graph set consider
once more the constructor graph in Fig. 8. This contains
the ring R(a1

!
b5
 

a4
!

b1
 

). G-equivalent rings are

R�a2
!

b6
 

a6
!

b2
 �;R�a3

!
b7
 

a7
!

b3
 �;R�a4

!
b8
 

a8
!

b4
 � etc:

For its quantitative descriptor we ®nd R2
4�8�.

The graph sets found so far are listed in Table 7.

5.4. Remarks

(a) The sequence of arrowed T-labels of a path in the
constructor graph describes this path uniquely up to T-
equivalence of its H-edges. Therefore, we can use this
sequence as a descriptor of this path and speak, for
instance, of the path b1

!
a3
 

a5
!

b8
 

, the path a3
!

b1
 

a1
!

, and so
on. Implicitly, a sequence of arrowed T-labels also
determines a path in the G-array uniquely up to T-
equivalence and up to the choice of shortest paths
through molecules.² However, different sequences of
arrowed T-labels can belong to G-equivalent paths, as
we have observed several times in the last subsection. To
keep G-equivalence recognizable the T-labeled
constructor graph is not suf®cient. In addition, we need
the information on how T-labels change under the
symmetry operations g, which are not translations. For
this reason we have prepared Table 5, which shows for
the crystal structure of ACNACO how elements of the
space group G permute the orbits of the translation
group. A similar table would be required in other cases.
This problem does not arise when all molecules are in a
general position and, therefore, G-equivalence is suf®-
cient to distinguish all H-edges incident with a molecule,
in which case there is no need for a label re®nement.

(b) Each in®nite periodic path in the constructor
graph corresponds to a in®nite periodic path in the G-
array (and vice versa) and, hence, determines a chain.
The period of this chain under the group G may be
shorter than its period under the group T. This was the
case, for instance, with the chain C�a1

!
a7
 ja8
!

a2
 � found in

ACNACO. The true period with respect to G has to be
found on the basis of the information on how T-labels
change under operations g 2 G (Table 5). Differences
between G-periods and T-periods, as seen in the crystal
structure of ACNACO, are not observed in the crystal
structures of the IMDA polymorphs. The reason for this
phenomenon is that in ACNACO we are dealing with
molecules (cation and anion) with non-trivial and even
high molecular symmetry and crystallographic site
symmetry: m�2�m ± group of four elements.

(c) Rings in the constructor graph correspond to rings
in the G-array (and vice versa). Discretes can be
observed in the constructor graph as well. Selfs in the G-
array correspond to loops in the constructor graph.
However, for selfs we do not need either the constructor
graph or the G-array.

6. Concluding remarks

Although they incorporated the fundamental philo-
sophy and concepts of graph theory, Etter's original
applications to hydrogen-bonding patterns and subse-

Table 7. Some of the ®rst- and second-level graph sets of
ACNACO

L a b

a R1
2�6�, C2

2�8�
b R2

4�8� R2
2�8�, C1

2�6�

² Note that the shortest paths through molecules between atoms
belonging to H-edges need not be unique. For graph-set analysis this is
not relevant: graph sets are distinguished only by equivalence or non-
equivalence of their sets of H-edges.



J. GRELL, J. BERNSTEIN AND G. TINHOFER 1043

quent developments relied more on chemical and
structural concepts than on mathematical principles. In
this paper we have presented some basic mathematical
concepts for assigning and treating graph sets to patterns
of hydrogen bonds. For the most part the original de®-
nitions and notions are entirely consistent with these
mathematical principles. The development of the
mathematical tools required the de®nition of some
additional concepts, among them the ideas of

a quantitative descriptor to describe the graph set,
a G-array to describe the interplay between the

crystallographic space group and the hydrogen-bond
patterns,

directed hydrogen edges to specify the directional
properties of hydrogen bonds,

the constructor graph to obtain a general view over
the existing hydrogen-bond patterns and thus to help
summarize numerically the number and directionality of
the bonds (edges) involved in a pattern,

a qualitative descriptor to summarize the types and
directionality of combinations of hydrogen-bond
patterns,

the covalent distance tables to derive quantitative
descriptors from qualitative ones and

the arrowed T-labeling to handle molecules lying on
crystallographic symmetry elements.

These mathematical tools may be readily incorpo-
rated into software algorithms for detecting, presenting
and analysing hydrogen-bond patterns, as has been
described by Motherwell et al. (1999) in the accom-
panying paper and demonstrated both here brie¯y and
there in more detail.

In this paper the mathematical terms and de®nitions
have been couched very much in crystallographic
language, in order to facilitate crystallographers' famil-
iarity and the eventual use of these ideas. The tools are
there, but for the `casual user' they can remain trans-
parent, as they are for users of the CSD software
(Motherwell et al., 1999). While the initial treatment has
been for hydrogen-bonded systems, the mathematical
basis is suf®ciently broad and the tools are suf®ciently
versatile that virtually any other pattern-forming inter-
action may be treated with the same formalism. There
are still many chemical crystallographic and mathema-
tical questions and challenges in de®ning and inter-
preting hydrogen-bond patterns using graph theory.
Among these are the proper treatment of ladders and
branched chains, the de®nition of homodromic and
heterodromic patterns, the detailed treatment of struc-
tures in which molecules lie on crystallographic
symmetry elements, which means in positions with non-

trivial site symmetry, prioritizing `degenerate' patterns
(e.g. those with the same degree or number of edges) etc.
We hope that the foundations laid here will serve in
meeting those challenges and answering those questions.
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