research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Supramolecular structures of 1-phenylethylammonium tartrates

aSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland, bCCLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, England, cLash Miller Chemical Laboratories, University of Toronto, Toronto, Ontario, Canada M5S 3H6, and dDepartment of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 5 October 2004; accepted 15 November 2004)

The structures of six 1-phenylethylammonium tartrates have been determined and in each of them a distinctive hydrogen-bonded anion substructure can be identified. (S)-1-Phenyl­ethylammonium (R,R)-hydrogen tartrate [(I), P21, Z′ = 1] contains anion sheets built from a single type of [R_4^4(22)] ring with cations pendent, via three N—H⋯O hydrogen bonds, from just one face of the sheet. (S)-1-Phenylethylammonium rac-hydrogen tartrate [(II), P21, Z′ = 2] and its enantiomorph (R)-1-phenylethylammonium rac-hydrogen tartrate [(III), P21, Z′= 2] contain anion sheets built from four types of ring, [R_2^2(10)], [R_2^2(12)], [R^4_2(14)] and [R_4^4(20)], and there are cations pendent from both faces of the sheet. The anion substructure in bis[(S)-1-phenylethylammonium] (R,R)-tartrate [(IV), P21, Z′ = 1] consists of simple C(5) chains, which are linked into sheets by the cations, while in bis(rac-1-phenylethylammonium) (R,R)-tartrate [(V), P21, Z′ = 2] there are anion sheets containing two distinct types of [R_4^4(22)] ring, with equal numbers of (R) and (S) cations pendent from each face of the anion sheet. Bis[(R)-1-phenylethylammonium] rac-tartrate methanol hemisolvate [(VI), P1, Z′ = 4, with 14 independent components in the asymmetric unit] contains anion sheets built from two types of [R_2^2(12)] ring and two types of [R_6^6(32)] ring; half of the cations and half of the methanol molecules are pendent from each face of the sheet.

1. Introduction

We have recently reported the supramolecular structures of the tartrate salts formed by a range of simple achiral diamines (Farrell et al., 2002a[Farrell, D. M. M., Ferguson, G., Lough, A. J. & Glidewell, C. (2002a). Acta Cryst. B58, 272-288.]) and one of the aims of that study was the comparison of cognate pairs of salts formed by the same amine, on the one hand with racemic tartaric acid and on the other with enantiopure (2R,3R)-tartaric acid. In those cases where the racemic and enantiopure acids formed pairs of salts with a common stoichiometry, the overall supramolecular structures of the two salts were very similar, despite their generally different space groups. Moreover, the salts formed by the (2R,3R) acid closely mimic centrosymmetry in a number of cases, a phenomenon also noted in the analogous salts formed by (S)-malic acid with a comparable range of achiral diamines (Farrell et al., 2002b[Farrell, D. M. M., Ferguson, G., Lough, A. J. & Glidewell, C. (2002b). Acta Cryst. B58, 530-544.]). Another feature of interest in the tartrate structures was the very wide range of anion substructures observed, including a variety of chains of fused rings and a variety of sheet substructures, as well as three-dimensional frameworks of anions encapsulating large voids which enclose the cations.

In view of this variety of anion substructures, but more particularly in view of the common mimicry of centrosymmetry, we have now extended this study to encompass systems in which the amine component is also chiral and for this purpose we have selected 1-phenylethylamine, PhCH(CH3)NH2, which is readily available in both enantiopure forms, (R) and (S), as well as in the racemic form. Using the various stereochemical forms of this amine in combination with the various forms of tartaric acid, we have now prepared a range of 1:1 and 2:1 salts (I)–(VI)[link], whose supramolecular structures we discuss here. The structure of (I) has previously been determined using ambient-temperature data (Molins et al., 1989[Molins, E., Miravitlles, C., López-Calahorra, F., Castells, J. & Raventós, J. (1989). Acta Cryst. C45, 104-106.]), but no analysis or discussion of the supramolecular aggregation was reported.

[Scheme 1]

2. Experimental

2.1. Synthesis

Samples of racemic 1-phenylethylamine and enantiopure (R)- and (S)-1-phenylethylamine, and of racemic tartaric acid and enantiopure (R,R)-tartaric acid were purchased from Aldrich, and all were used as received. For the preparation of the phenylethylammonium tartrate salts, stoichiometric quantities of the appropriate amine and acid were separately dissolved in methanol. These solutions were then mixed and the mixtures were set aside to crystallize, providing analytically pure samples within a few days. Analyses: found for (I): C 53.1, H 6.7, N 5.1%; for (II): C 53.4, H 6.4, N 5.1%; for (III): C 52.7, H 6.4, N 5.0%: C12H17NO6 requires C 53.1, H 6.3, N 5.2%: found for (IV): C 60.8, H 7.1, N 6.9%; for (V): C 60.3, H 7.2, N 7.0%; C20H28N2O6 requires C 61.2, H 7.2, N 7.1%: for (VI): C 60.1, H 7.4, N 6.8; C41H60N4O13 requires C 60.3, H 7.4, N 6.9%. For all except (V), satisfactory crystals suitable for single-crystal X-ray diffraction were selected directly from the prepared samples. For (V) the crystals were consistently of poor quality, despite a number of preparations under different conditions, and no useful data were obtained using a conventional laboratory radiation source; however, by use of synchrotron radiation a satisfactory dataset was obtained.

2.2. Data collection, structure solution and refinement

Diffraction data for (I)–(VI) were collected at 150 (1) K using Nonius Kappa-CCD diffractometers with, for (I)–(IV) and (VI), graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) and, for (V), synchrotron radiation (λ = 0.69000 Å). Other details of cell data, data collection and refinement are summarized in Table 1[link], together with details of the software employed (Farrugia, 1999[Farrugia, L. (1999). J. Appl. Cryst. 32, 837-838.]; Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]; Nonius, 1997[Nonius (1997). Kappa-CCD Server Software, Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307-326.]; Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]; Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]). For (I)–(V) the systematic absences permitted P21 and P21/m as possible space groups: in each case P21 was selected and confirmed by the structure analysis. Crystals of (VI) are triclinic and the space group P1 was selected, and confirmed by the structure analysis. The structures were solved by direct methods and refined with all data on F2. A weighting scheme based upon P = [Fo2 + 2Fc2]/3 was employed in order to reduce statistical bias (Wilson, 1976[Wilson, A. J. C. (1976). Acta Cryst. A32, 994-996.]). All H atoms were located from difference maps and all were fully ordered. All H atoms were treated as riding atoms with distances C—H 0.95 (aromatic), 0.98 (methyl) or 1.00 (aliphatic CH), N—H 0.91 and O—H 0.84 Å.

Table 1
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C8H12N·C4H5O6 C8H12N·C4H5O6 C8H12N·C4H5O6
Mr 271.27 271.27 271.27
Cell setting, space group Monoclinic, P21 Monoclinic, P21 Monoclinic, P21
a, b, c (Å) 6.3425 (2), 13.9448 (3), 7.5021 (3) 7.3025 (2), 22.8901 (11), 8.1193 (3) 7.2952 (2), 22.8935 (11), 8.1100 (3)
α, β, γ (°) 107.6599 (14) 96.599 (2) 96.603 (2)
V3) 632.25 (4) 1348.19 (9) 1345.49 (9)
Z, Z 2, 1 4, 2 4, 2
Dx (Mg m−3) 1.425 1.336 1.339
Radiation type Mo Kα Mo Kα Mo Kα
No. of reflections for cell parameters 1497 3191 9403
θ range (°) 2.9–27.5 2.7–27.7 2.7–27.5
μ (mm−1) 0.12 0.11 0.11
Temperature (K) 150 (1) 150 (1) 150 (1)
Crystal form, colour Block, colourless Needle, colourless Block, colourless
Crystal size (mm) 0.30 × 0.25 × 0.22 0.28 × 0.16 × 0.14 0.36 × 0.26 × 0.20
       
Data collection
Diffractometer Kappa-CCD Kappa-CCD Kappa-CCD
Data collection method φ scans, and ω scans with κ offsets φ scans, and ω scans with κ offsets φ scans, and ω scans with κ offsets
Absorption correction Multi-scan Multi-scan Multi-scan
Tmin 0.923 0.584 0.869
Tmax 0.983 0.998 0.991
No. of measured, independent and observed reflections 5067, 1497, 1386 15 852, 3191, 2734 9403, 3160, 2446
Criterion for observed reflections I > 2σ(I) I > 2σ(I) I > 2σ(I)
Rint 0.042 0.129 0.061
θmax (°) 27.5 27.7 27.5
Range of h, k, l −8 → h → 7 −9 → h → 9 −9 → h → 9
  −17 → k → 18 −29 → k → 29 −27 → k → 29
  −9 → l → 9 −8 → l → 10 −9 → l → 10
       
Refinement
Refinement on F2 F2 F2
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.077, 1.09 0.047, 0.130, 1.06 0.040, 0.091, 1.04
No. of reflections 1497 3191 3160
No. of parameters 177 354 354
H-atom treatment Constrained to parent site Constrained to parent site Constrained to parent site
Weighting scheme w = 1/[σ2(Fo2) + (0.0419P)2 + 0.0759P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0713P)2 + 0.0775P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.0771P], where P = (Fo2 + 2Fc2)/3
(Δ/σ)max <0.0001 <0.0001 0.001
Δρmax, Δρmin (e Å−3) 0.16, −0.20 0.34, −0.24 0.18, −0.21
Extinction method None SHELXL SHELXL
Extinction coefficient 0.039 (6) 0.020 (3)
  (IV) (V) (VI)
Crystal data
Chemical formula 2C8H12N·C4H4O6 2C8H12N·C4H4O6 4C8H12N·2C4H4O6·CH4O
Mr 392.44 392.44 816.93
Cell setting, space group Monoclinic, P21 Monoclinic, P21 Triclinic, P1
a, b, c (Å) 5.5620 (2), 16.0630 (3), 11.8260 (4) 8.3381 (14), 22.738 (4), 10.8190 (18) 9.0822 (3), 15.7819 (5), 15.9040 (5)
α, β, γ (°) 90.00, 103.2810 (12), 90.00 90.00, 90.120 (3), 90.00 108.7460 (15), 96.858 (2), 90.0600 (18)
V (Å3) 1028.31 (5) 2051.2 (6) 2141.33 (12)
Z, Z 2, 1 4, 2 2, 2
Dx (Mg m−3) 1.267 1.271 1.267
Radiation type Mo Kα Synchrotron Mo Kα
No. of reflections for cell parameters 2434 5818 9771
θ range (°) 3.1–27.5 1.7–29.4 2.6–27.6
μ (mm−1) 0.09 0.09 0.09
Temperature (K) 150 (1) 150 (1) 150 (1)
Crystal form, colour Plate, colourless Plate, colourless Plate, colourless
Crystal size (mm) 0.36 × 0.26 × 0.10 0.30 × 0.22 × 0.06 0.20 × 0.16 × 0.08
       
Data collection
Diffractometer Kappa-CCD Kappa-CCD Kappa-CCD
Data collection method φ scans, and ω scans with κ offsets φ scans, and ω scans with κ offsets φ scans, and ω scans with κ offsets
Absorption correction Multi-scan Multi-scan Multi-scan
Tmin 0.877 0.972 0.975
Tmax 0.995 0.994 0.993
No. of measured, independent and observed reflections 8194, 2434, 2187 18 641, 5818, 5504 28 530, 9771, 6899
Criterion for observed reflections I > 2σ(I) I > 2σ(I) I > 2σ(I)
Rint 0.050 0.034 0.094
θmax (°) 27.5 29.4 27.6
Range of h, k, l −7 → h → 7 −11 → h → 11 −11 → h → 11
  −20 → k → 19 −30 → k → 30 −20 → k → 17
  −14 → l → 15 −15 → l → 14 −19 → l → 20
       
Refinement
Refinement on F2 F2 F2
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.05 0.054, 0.151, 1.16 0.051, 0.132, 1.04
No. of reflections 2434 5818 9771
No. of parameters 260 517 1074
H-atom treatment Constrained to parent site Constrained to parent site Constrained to parent site
Weighting scheme w = 1/[σ2(Fo2) + (0.0574P)2 + 0.0872P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0842P)2 + 0.5384P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.066P)2], where P = (Fo2 + 2Fc2)/3
(Δ/σ)max <0.0001 0.001 0.001
Δρmax, Δρmin (e Å−3) 0.22, −0.24 0.59, −0.33 0.44, −0.40
Extinction method SHELXL None SHELXL
Extinction coefficient 0.036 (7) 0.0191 (18)
Computer programs used: Kappa-CCD server software (Nonius, 1997[Nonius (1997). Kappa-CCD Server Software, Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]), DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307-326.]), SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]), SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]), PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]), PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supramolecular analyses were made and the diagrams were prepared with the aid of PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]). Details of hydrogen-bond dimensions are given in Table 2[link].1 Figs. 1–16[link][link][link][link][link][link][link][link][link][link][link][link][link][link][link][link] show the ionic components, with the atom-labelling schemes, and aspects of the supramolecular structures.

Table 2
Hydrogen-bond parameters (Å, °)

  D—H⋯A H⋯A DA D—H⋯A
(A) Intra-anion hydrogen bonds
(I) O5—H5⋯O2 2.11 2.616 (2) 119
  O6—H6⋯O3 2.17 2.652 (2) 116
(III) O15—H15⋯O12 2.13 2.605 (2) 116
  O25—H25⋯O22 2.11 2.604 (2) 117
(IV) O5—H5⋯O6 2.46 2.860 (2) 110
  O6—H6⋯O3 2.11 2.603 (2) 117
(V) None      
(VI) O15—H15⋯O12 2.37 2.661 (4) 101
  O25—H25⋯O22 2.38 2.675 (4) 101
  O45—H45⋯O42 2.38 2.677 (4) 101
         
(B) Inter-anion hydrogen bonds
(I) O3—H3⋯O1i 1.65 2.486 (2) 174
  O5—H5⋯O4ii 2.18 2.797 (2) 130
(III) O14—H14⋯O11iii 1.73 2.568 (2) 176
  O15—H15⋯O22iv 2.22 2.944 (3) 144
  O16—H16⋯O21 1.92 2.750 (3) 170
  O24—H24⋯O21ii 1.74 2.575 (2) 177
  O25—H25⋯O12i 2.35 3.019 (3) 136
  O26—H26⋯O11 1.94 2.773 (3) 169
(IV) O5—H5⋯O1iii 2.07 2.882 (2) 161
(V) O15—H15⋯O22iii 1.91 2.743 (3) 169
  O16—H16⋯O23iv 1.87 2.690 (3) 164
  O25—H25⋯O11 1.86 2.681 (3) 167
  O26—H26⋯O13v 1.91 2.743 (3) 169
(VI) O16—H16⋯O21 1.90 2.722 (4) 167
  O26—H26⋯O11 1.89 2.712 (4) 168
  O36—H36⋯O41 1.91 2.741 (4) 171
  O46—H46⋯O31 1.88 2.711 (4) 171
  O15—H15⋯O34ii 1.84 2.628 (4) 156
  O25—H25⋯O44vi 1.82 2.584 (4) 150
  O35—H35⋯O14 1.83 2.617 (4) 156
  O45—H45⋯O24vii 1.82 2.585 (4) 150
         
(C) Cation–anion hydrogen bonds
(I) N1—H1A⋯O1 2.00 2.901 (2) 172
  N1—H1B⋯O5viii 2.02 2.867 (2) 154
  N1—H1C⋯O2iii 1.93 2.842 (2) 177
(III) N3—H3A⋯O26iv 2.11 2.945 (3) 152
  N3—H3A⋯O23iv 2.35 2.893 (3) 118
  N3—H3B⋯O15ii 1.96 2.847 (3) 165
  N3—H3C⋯O12 1.85 2.747 (3) 167
  N4—H4A⋯O16i 2.15 2.956 (3) 147
  N4—H4A⋯O13i 2.25 2.916 (3) 129
  N4—H4B⋯O25iii 1.93 2.824 (3) 169
  N4—H4C⋯O22 1.87 2.752 (3) 162
(IV) N1—H1A⋯O2ix 1.88 2.759 (2) 161
  N1—H1B⋯O4 1.93 2.823 (2) 167
  N1—H1C⋯O1x 1.89 2.745 (2) 155
  N2—H2A⋯O2 1.84 2.746 (2) 172
  N2—H2B⋯O2x 1.91 2.774 (2) 158
  N2—H2C⋯O3ii 1.85 2.720 (2) 159
(V) N3—H3A⋯O12 1.90 2.801 (3) 171
  N3—H3B⋯O22 1.82 2.718 (4) 168
  N3—H3C⋯O14ii 1.89 2.777 (3) 165
  N4—H4A⋯O23viii 1.85 2.738 (3) 165
  N4—H4B⋯O12iii 1.92 2.825 (3) 170
  N4—H4C⋯O14 1.98 2.798 (3) 149
  N5—H5A⋯O21viii 1.89 2.774 (3) 164
  N5—H5B⋯O24iv 1.89 2.798 (3) 173
  N5—H5C⋯O13 1.83 2.716 (3) 164
  N6—H6A⋯O24 1.95 2.847 (3) 171
  N6—H6B⋯O21iii 1.96 2.803 (3) 154
  N6—H6C⋯O11 1.86 2.747 (3) 164
(VI) N5—H5A⋯O23vii 1.98 2.885 (4) 171
  N5—H5B⋯O22xi 1.99 2.882 (4) 168
  N5—H5C⋯O46 2.00 2.902 (4) 173
  N6—H6A⋯O45 2.10 2.973 (4) 161
  N6—H6B⋯O22xi 1.96 2.858 (4) 169
  N6—H6C⋯O11vii 1.89 2.768 (4) 160
  N7—H7A⋯O43iii 2.01 2.898 (4) 167
  N7—H7B⋯O42 1.95 2.859 (4) 173
  N7—H7C⋯O26vii 2.00 2.906 (4) 178
  N8—H8A⋯O33ii 1.93 2.822 (4) 168
  N8—H8B⋯O16 2.03 2.912 (4) 163
  N8—H8C⋯O32 1.96 2.869 (4) 175
  N9—H9A⋯O41ii 1.93 2.832 (4) 169
  N9—H9B⋯O32 2.00 2.891 (4) 167
  N9—H9C⋯O15 1.92 2.825 (4) 174
  N10—H10A⋯O36 2.04 2.920 (4) 162
  N10—H10B⋯O12iii 1.95 2.852 (4) 173
  N10—H10C⋯O13 1.93 2.819 (4) 165
  N11—H11A⋯O42xii 1.96 2.863 (4) 171
  N11—H11B⋯O31vi 1.91 2.781 (4) 160
  N11—H11C⋯O25 2.03 2.918 (4) 163
  N12—H12A⋯O21 1.93 2.832 (4) 170
  N12—H12B⋯O12iii 2.00 2.906 (4) 172
  N12—H12C⋯O35 1.94 2.844 (4) 177
         
(D) Cation–cation hydrogen bonds
(III) C36—H36⋯Cgix 2.87 3.775 (3) 160
         
(E) Solvent–anion hydrogen bonds
(VI) O1—H1⋯O23 1.90 2.730 (5) 170
  O2—H2⋯O43 1.97 2.791 (5) 164
Symmetry codes: (i) x, y, -1 +z; (ii) -1 + x, y, z; (iii) 1 + x, y, z; (iv) x, y, 1 + z; (v) -1 + x, y, -1 + z; (vi) x, -1 + y, z; (vii) 1 + x, 1 + y, z; (viii) 1 + x, y, 1 + z; (ix) [1 - x, -{1\over 2}+ y, 1 - z]; (x) [-x, -{1\over 2}+ y, 1 - z]; (xi) x, 1 + y, z; (xii) -1 + x, -1 + y, z.
†Cg represents the ring centroid of the ring C41–C46.
[Figure 1]
Figure 1
The independent components of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The independent components of (III) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The independent components of (IV) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
The independent components of (V) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5]
Figure 5
The independent components of (VI) showing the atom-labelling scheme: (a) the four independent anions and the two methanol molecules; (b)–(i) the eight independent cations. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 6]
Figure 6
Part of the crystal structure of (I) showing the formation of a (010) sheet of anions with cations pendent from it. For the sake of clarity, the H atoms bonded to the C atoms are omitted, as are the phenyl and methyl groups in the cation. The atoms marked with an asterisk (*), a hash (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions (x, y, -1 + z), (-1 + x, y, z), (1 + x, y, z) and (1 + x, y, 1 + z), respectively.
[Figure 7]
Figure 7
Part of the crystal structure of (III), showing the formation by the anions of a (010) sheet containing four different types of ring. For the sake of clarity, the H atoms bonded to the C atoms are omitted, as are the intra-anion O—H⋯O hydrogen bonds. The atoms marked with an asterisk (*), a hash (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions (x, y, 1 + z), (x, y, -1 + z), (1 + x, y, z) and (-1 + x, y, z), respectively.
[Figure 8]
Figure 8
Part of the crystal structure of (IV) showing the formation of the C(5) anion chains parallel to [100] and their linking into (001) sheets by the cations. For the sake of clarity, the H atoms bonded to the C atoms are omitted, as are the methyl and phenyl groups in the cations and the intra-anion O—H⋯O hydrogen bonds. The atoms marked with an asterisk (*), a hash (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions (-1 + x, y, z), (1 + x, y, z), ([-x, -{1\over 2}+ y, 1 - z]) and ([1 - x, -{1\over 2}+ y, 1 - z]), respectively.
[Figure 9]
Figure 9
Part of the crystal structure of (V) showing the formation of a (010) anion sheet built from two types of [R_4^4(22)] ring. For the sake of clarity, the H atoms bonded to C atoms are omitted. The atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions (x, y, 1 + z), (1 + x, y, z) and (-1 + x, y, -1 + z), respectively.
[Figure 10]
Figure 10
Part of the crystal structure of (VI) showing the formation of a (001) anion sheet built from two types of [R_2^2(12)] ring and two types of [R_6^6(32)] ring. For the sake of clarity the H atoms bonded to C atoms are omitted, as are the methyl and phenyl groups in the cations and the intra-anion O—H⋯O hydrogen bonds. The atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions (-1 + x, y, z), (x, -1 + y, z) and (1 + x, 1 + y, z), respectively.
[Figure 11]
Figure 11
Stereoview of part of the crystal structure of (I) showing the cations pendent from a single face of the anion sheet. For the sake of clarity, the H atoms bonded to the C atoms have been omitted.
[Figure 12]
Figure 12
Projection of part of the crystal structure of (III) showing the tripartite (010) layers with cations linked to both faces of the anion sheet. For the sake of clarity, the H atoms bonded to the C atoms have been omitted.
[Figure 13]
Figure 13
Projection of part of the crystal structure of (V) showing one of the tripartite (010) layers with cations linked to both faces of the anion sheet. For the sake of clarity, the H atoms bonded to C atoms have been omitted.
[Figure 14]
Figure 14
Stereoview of part of the crystal structure of (VI) showing the tripartite sheets and the pendent methanol molecules. For the sake of clarity, the H atoms bonded to C atoms have been omitted.
[Figure 15]
Figure 15
Projection of part of the crystal structure of (IV) showing the cations linked to both faces of the anion sheet, and the action of the 21 screw axes in causing alternation of the cations between the two faces. For the sake of clarity, the H atoms bonded to C atoms have been omitted.
[Figure 16]
Figure 16
Stereoview of part of the crystal structure of (III) showing the [010] chain built from C—H⋯π(arene) hydrogen bonds which links the (010) sheets. For the sake of clarity the H atoms not involved in the motif shown have been omitted.

3. Results and discussion

3.1. Crystallization characteristics

Crystallization from methanol solutions of equimolar mixtures of 1-phenylethylamine and tartaric acid gives, regardless of whether the compounds are enantiopure or racemic mixtures, salts of the composition [PhCH(CH3)NH3]+·[HOCOCH(OH)CH(OH)COO], in which complete transfer of a single H atom from the acid component to the basic components has occurred.

When enantiopure (S)-amine was cocrystallized with enantiopure (R,R)-acid, the salt (I) was produced in which the asymmetric unit (Fig. 1[link]) consists of just one cation and one anion. The identical salt was identified as the sole crystalline product from the cocrystallization of the racemic amine and the enantiopure (R,R)-acid, so that complete enantioselectivity in crystallization is apparent with no (R) configuration cations present in the crystalline salt. It is of interest to note in this context that no crystalline product of consistent composition could be obtained from cocrystallizations of enantiopure (R)-amine with enantiopure (R,R)-acid: this observation is entirely consistent with the behaviour reported by Molins et al. (1989[Molins, E., Miravitlles, C., López-Calahorra, F., Castells, J. & Raventós, J. (1989). Acta Cryst. C45, 104-106.]), who were also unable to obtain any crystalline product from this combination of amine and acid.

On the other hand, when the enantiopure (S)-amine was cocrystallized with racemic tartaric acid, the product (II) was found to have an asymmetric unit containing two cations, both of (S) configuration, and two anions, one each of (R,R) and (S,S) configuration. The enantiomorphous compound (III) was obtained from enantiopure (R)-amine and the racemic acid. Hence, although the enantiopure acid exerts selectivity on the racemic amine in the formation of (I), the enantiopure amine has not exerted any selectivity in the formation of (II) and (III). The refinement for (III) is rather better than that for (II) and hence we discuss only (III) (Fig. 2[link]) hereafter.

When the initial crystallization mixtures contained a 2:1 molar ratio of amine to acid, the resulting salts all had the composition [{PhCH(CH3)NH3}+]2·[OOCCH(OH)CH(OH)­COO]2−, again regardless of whether enantiopure or racemic components were employed. Cocrystallization of such a 2:1 mixture containing enantiopure (S)-amine and enantiopure (R,R)-acid yielded a product (IV) containing two cations and one anion in the asymmetric unit (Fig. 3[link]). In contrast to the behaviour of the 1:1 mixture producing (I), a 2:1 mixture of racemic amine and enantiopure (R,R)-acid gave a product (V) in which the asymmetric unit (Fig. 4[link]) consists of four cations, two each of (R) and (S) configurations, and two anions, so that no enantioselectivity is apparent here.

Each of the salts (I)–(V) crystallizes in the space group P21. However, the salt (VI) produced from a 2:1 mixture of enantiopure (R)-amine and racemic tartaric acid crystallizes in the space group P1 and its asymmetric unit (Fig. 5[link]) contains eight cations and four anions, of which two each have (R,R) and (S,S) configurations, together with two methanol molecules. A product (VII) of identical composition was isolated from a 2:1 mixture of the enantiopure (S)-amine and racemic tartaric acid, but no crystals suitable for single-crystal X-ray diffraction have yet been obtained.

3.2. Structure solutions

Although in each of (I)–(VI) the Flack parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) was wholly inconclusive (Flack & Bernardinelli, 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]) because of the very low anomalous dispersion characteristic of the light elements C, N and O, nonetheless, in every case the initial structure solution, obtained using System-S in PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]), corresponded to the correct enantiomorph of the enantiopure component present.

Struck by this rather unexpected result, we have now reviewed our initial structure solutions for some recently completed series of light-atom structures containing enantiopure components of previously known configuration, namely series containing malate and tartrate anions (Farrell et al., 2002a[Farrell, D. M. M., Ferguson, G., Lough, A. J. & Glidewell, C. (2002a). Acta Cryst. B58, 272-288.],b[Farrell, D. M. M., Ferguson, G., Lough, A. J. & Glidewell, C. (2002b). Acta Cryst. B58, 530-544.]; Bowes et al., 2003b[Bowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003b). Acta Cryst. C59, o329-o331.]; Turkington et al., 2004[Turkington, D. E., Ferguson, G., Lough, A. J. & Glidewell, C. (2004). Acta Cryst. C60, o617-o622.]). In a total of 17 structures, including those reported here, each having a chiral space group containing an enantiopure component of previously known configuration, the initial structure solution using System-S gave the correct enantiomorph in every case, without exception.

3.3. Intra-anion hydrogen bonds

The intra-anion hydrogen bonding (Table 2[link]), in principle the simplest aspect of the hydrogen bonding, nonetheless shows several variants, several of which are not readily predictable. In the independent anion of (III), and in three of the four independent anions in (VI), there is a single intra-anion hydrogen bond and in every case the acceptor is a carboxylate O atom. In the fourth anion in (VI), no such bond occurs nor is there any such bond in either of the anions in (V). In (I) and (IV), on the other hand, both hydroxyl groups in the anion form intra-anion hydrogen bonds; in (I) both acceptors are carboxyl O atoms, while for (III) the acceptor in one interaction is a carboxylate O, as usual, while in the other it is the second hydroxyl O. For none of these hydrogen bonds does the O—H⋯O angle exceed 120°, so that the interaction energies may well be fairly small: however, the entropic cost of these interactions is almost negligible and they may well have a significant influence on the overall anion conformations.

3.4. Anion substructures

In the supramolecular structures of each of (I)–(VI) there is a clearly identifiable substructure built from only the anions. It is convenient to approach the overall analysis of the supramolecular structures firstly in terms of these anion substructures and then to consider how the cations, and in (VI) only the methanol molecules, are linked to the anion substructure.

3.4.1. Compound (I)

The anions in (I) form a two-dimensional substructure which is generated wholly by translation. Carboxyl O3 in the anion at (x, y, z) acts as a donor to carboxylate O1 in the anion at (x, y, -1 + z) in a very short hydrogen bond, so generating a C(7) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain running parallel to the [001] direction. The hydroxyl O5, as well as acting as a hydrogen-bond donor to O2 within the anion, also acts as a donor to carbonyl O4 in the anion at (-1 + x, y, z), in a planar three-centre O—H⋯(O)2 system, so generating a C(6) chain parallel to [100]. The combination of the [100] and [001] chains generates a (010) sheet in the form of a (4,4) net (Batten & Robson, 1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]) built from a single type of [R_4^4(22)] ring (Fig. 6[link]). The reference anion sheet lies in the domain 0.27 < y < 0.47 and a second such sheet, related to the first by the action of the 21 screw axis, lies in the domain 0.77 < y < 0.97.

3.4.2. Compound (III)

The two independent anions in (III) form a two-dimensional substructure which is generated wholly by translation. Within the asymmetric unit (Fig. 2[link]), hydroxyl atoms O16 and O26 act as hydrogen-bond donors, respectively, to carboxylate atoms O21 and O11, and these [R_2^2(12)] dimers are linked by two further pairs of O—H⋯O hydrogen bonds into chains of edge-fused rings running along the [100] and [001] directions. Carboxyl atoms O14 and O24 in the anion pair at (x, y, z) act as donors, respectively, to carboxylate atoms O11 at (1 + x, y, z) and O21 at (-1 + x, y, z), thereby generating by translation a chain of edge-fused, alternating [R_2^2(12)] and [R^4_2(14)] rings, in which the carboxylate atoms O11 and O21 both act as double acceptors of O—H⋯O hydrogen bonds. In addition, the two hydroxyl atoms O15 and O25 at (x, y, z) act as donors, respectively, to carboxylate atoms O22 at (x, y, 1 + z) and O12 at (x, y, -1 + z), thereby generating by translation a second chain of edge-fused rings, this time running parallel to the [001] direction and containing alternating [R_2^2(12)] and [R_2^2(10)] rings. The combination of the [100] and [001] chains generates a (010) sheet built from four different types of ring, [R_2^2(10)], [R_2^2(12)], [R^4_2(14)] and [R_4^4(20)] (Fig. 7[link]). The first two ring types each involve one (2R,3R) anion and one (2S,3S) anion, while the latter two types involve two anions of each hand; each ring is therefore approximately, but not crystallographically, centrosymmetric. The hydrogen-bonded anion sheet is modestly reinforced by an antiparallel and nearly centrosymmetric carbonyl–carbonyl interaction involving the groups C14=O13 and C24=O23 in the anions at (x, y, z) and (1 + x, y, z), respectively. The distances O13⋯C14i and C14⋯O23i [symmetry code (i) 1 + x, y, z] are 2.887 (3) and 2.865 (3) Å, respectively, with angles C14—O13⋯C24i and C14⋯O23i—C24i of 92.9 (2) and 94.2 (2)°, respectively, hence forming an almost ideal type-II interaction (Allen et al., 1998[Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320-329.]). The reference anion sheet lies in the domain 0.38 < y < 0.59, with the [R_2^2(12)] anion dimers all centred at around y = 0.50; the immediately adjacent sheets, related to the first by the action of the 21 screw axis, lie in the domain −0.12 < y < 0.09 and 0.88 < y < 1.09, with their [R_2^2(12)] anion dimers centred at around y = 0.0 and y = 1.0, respectively.

3.4.3. Compound (IV)

The anion substructure of (IV) consists of simple chains generated by translation. The hydroxyl atom O5 in the anion at (x, y, z) acts as a hydrogen-bond donor to the carboxylate atom O1 in the anion at (1 + x, y, z), so generating by translation a C(5) chain running parallel to the [100] direction (Fig. 8[link]). This chain lies in the domain 0.54 < y < 0.85, and a second chain, related to the first by the action of the 21 screw axis, lies in the domain 0.04 < y < 0.35: the [100] chains are linked into sheets by the two types of cation.

3.4.4. Compound (V)

In (V) there are two independent tartrate anions, albeit both with the (R,R) configuration, and there are four independent O—H⋯O hydrogen bonds which link the anions into sheets generated by translation. With the asymmetric unit (Fig. 4[link]), the hydroxyl atom O25 acts as a hydrogen-bond donor to the carboxylate atom O11. The hydroxyl atom O15 in the anion pair at (x, y, z) acts as a donor to the carboxylate atom O22 in the anion pair at (1 + x, y, z), thus generating by translation a C22(10) chain running parallel to the [100] direction. Similarly, the hydroxyl atom O16 at (x, y, z) acts as a donor to the carboxylate atom O23 at (x, y, 1 + z), so generating a second chain by translation, this time of C22(12) type and running parallel to the [001] direction. Finally, the hydroxyl atom O26 at (x, y, z) acts as a donor to the carboxylate atom O13 at (-1 + x, y, -1 + z), thus generating by translation a second C22(12) motif, now running parallel to the [101] direction. The combination of these three translational chain motifs generates a (010) sheet of anions characterized by two different types of [R_4^4(22)] ring (Fig. 9[link]).

This reference sheet of anions lies within the domain 0.42 < y < 0.59 and a second such sheet, related to the first by the action of the 21 screw axes, lies in the domain −0.08 < y < 0.09. The large spaces between the nearly planar anion layers are occupied by the cations.

3.4.5. Compound (VI)

Despite the presence of 14 independent components in the asymmetric unit of (VI) (Fig. 5[link]), the four independent anions together generate a fairly simple two-dimensional substructure, from which all of the other components, both cations and neutral methanol molecules, are pendent.

Within the anion sheet there are eight independent inter-anion O—H⋯O hydrogen bonds all involving hydroxyl O as the donor and carboxylate O as the acceptor. Four of these hydrogen bonds link pairs of anions, each comprising one (R,R) anion and one (S,S) anion, into two almost centrosymmetric dimers, and the other four O—H⋯O hydrogen bonds link the dimers into a continuous sheet. Atoms O16 and O26 act as donors, respectively, to atoms O21 and O11, thus generating a nearly centrosymmetric [R_2^2(12)] dimer, which we denote as the type A dimer, whose centroid is close to (0.25, 0.25, 0.5): similarly, atoms O36 and O46 act as donors, respectively, to atoms O41 and O31, thus generating a second nearly centrosymmetric [R_2^2(12)] dimer, denoted as type B, whose centroid is close to (0.75, 0.75, 0.5).

The inter-dimer hydrogen bonds are so arranged that each type A dimer acts as a donor to two type B dimers and as an acceptor from two further type B dimers, while each type B dimer is similarly linked to four different type A dimers. Thus, for example, in the type A dimer at approximately (0.25, 0.25, 0.5), atoms O25 and O15 act as donors, respectively, to the atoms O44 at (x, -1 + y, z) and O34 at (-1 +x, y, z), which lie in the type B dimers at approximately (0.75, −0.25, 0.5) and (−0.25, 0.75, 0.5), respectively: similarly, atoms O14 and O24 in the type A dimer at approximately (0.25, 0.25, 0.5) accept hydrogen bonds, respectively, from atoms O35 at (x, y, z) and O45 at (-1 + x, -1 + y, z), which lie in the type B dimers at approximately (0.75, 0.75, 0.5) and (−0.25, −0.25, 0.5), respectively. In this manner, the two types of dimer are linked into a (001) sheet containing two independent [R_2^2(12)] rings within the dimers and two independent [R_6^6(32)] rings between the dimers. If the individual anions are taken to be the nodes of the resulting net, this is of the (6,3) type (Batten & Robson, 1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]), while if the pseudosymmetric dimers are taken as the nodes the net is of the (4,4) type (Fig. 10[link]). Just one sheet of this type passes through each unit cell, occupying only about one-third of the domain of z: for the selected location of the asymmetric unit, the sheet occupies the domain 0.34 < z < 0.68.

3.5. Linking of the cations to the anion substructures

In each of (I), (III), (V) and (VI) the cations are linked to anion sheets, whereas in (IV) the cations link anion chains into sheets; it is convenient to discuss these two structure types separately. In each of these compounds the [PhCH(CH3)NH3]+ cations act as threefold donors in N—H⋯O hydrogen bonds and each cation is linked to three different anions (Table 2[link]): the majority of these hydrogen bonds are of two-centre type, but three-centre N—H⋯(O)2 systems occur in (III)

3.5.1. Compounds (I), (III), (V) and (VI)

In each of these compounds the three anions which are directly hydrogen-bonded to a given cation form part of the same sheet: however, the orientation of the organic parts of the cations is not the same in each compound. The cations in (I) are all of the (S) configuration and all are hydrogen-bonded to just one face of the anion sheet (Fig. 6[link]), so that viewed along the plane of the anion sheet the structure appears to consist of alternating slabs of cations and anions (Fig. 11[link]). In (III), by contrast, there are cations pendent from both faces of the anion sheet (Fig. 7[link]), although all have the same (R) configuration, with all of the type 1 cations containing N3 pendent from one face and all of the type 2 containing N4 cations pendent from the opposite face. Hence, each (010) layer is tripartite with a polar central layer containing all the hydrogen bonds and two lipophilic outer layers (Fig. 12[link]).

In (V) the cations are again pendent from both faces of the anion sheet (Fig. 9[link]), however, there are cations of both (R) and (S) configurations bonded to both faces. The cations containing N3 and N4, which have the (R) and (S) configurations, respectively, are pendent from one face, while the cations containing N5 and N6, again of (R) and (S) configurations, respectively, are pendent from the opposite face: hence, a tripartite layer is again generated (Fig. 13[link]). All of the cations in (VI) have the (R) configuration and four cations are pendent from each face of the sheet: those containing N5, N8, N1 and N12 are pendent from one face, and those containing N6, N7, N9 and N10 are pendent from the other face (Fig. 14[link]).

3.5.2. Compound (IV)

The anion substructure in (IV) consists of simple [100] chains generated by translation and the action of the cations is to link these chains into sheets, while the action of the 21 screw axes is to cause an alternation of each type of cation, both of (S) configuration, between the two faces of these sheets.

The ammonium atom N1 at (x, y, z) acts as a hydrogen-bond donor, via H1B, to atom O4 in the anion at (x, y, z), which lies in the reference [100] chain, and via H1A and H1C to atoms O2 in the anion at ([1 - x, -{1\over 2}+ y, 1 - z]) and O1 in the anion at [(-x, -{1\over 2}+ y, 1 - z]), both of which lie in an adjacent [100] chain related to the first chain by the action of the 21 screw axes. Atom N2 at (x, y, z) acts as a donor, via H2A and H2C, to atoms O4 in the anion at (x, y, z) and O3 in the anion at (-1 + x, y, z), respectively, which both lie in the reference anion chain, and via H2B, to atom O2 in the anion at ([-x, -{1\over 2}+ y, 1 - z]), which lie in the adjacent chain referred to previously. In this way the two cations at (x, y, z) are each hydrogen bonded to the same pair of anion chains and propagation of these interactions by the 21 screw axes then links the anion chains and the cations into a (001) sheet (Fig. 8[link]). The reference cations containing N1 and N2 have their PhCH(CH3)— fragments on opposite sides of the sheet, but the action of the screw axes means that there are equal numbers of each of the two cation types on both sides of the sheet (Fig. 15[link]).

3.6. Linking of the sheets in (III)

In none of the compounds described here are there any aromatic ππ stacking interactions, but in (III) only there is a single C—H⋯π(arene) hydrogen bond, whose effect is to link the adjacent tripartite (010) sheets into a continuous framework structure. The aromatic atom C36 in the type 1 cation at (x, y, z), which is pendent from the anion sheet in the domain 0.38 < y < 0.59, acts as a hydrogen-bond donor to the ring C41–C46 in the type 2 cation at ([1 - x, -{1\over 2}+ y, 1 - z]), which is pendent from the anion sheet in the domain −0.12 < y < 0.09, so forming a chain running parallel to the [010] direction and generated by the 21 screw axis along (0.5, y, 0.5), which serves to link each (010) sheet to the two adjacent sheets (Fig. 16[link]).

3.7. (S)-1-Phenylethylammonium meso-hydrogen tartrate

This compound crystallizes in the space group P21 in a unit cell very similar to that of (I) (Table 1[link]), but with the anion in an almost centrosymmetric configuration (Kroon et al., 1984[Kroon, J., Duisenberg, A. J. M. & Peerdeman, A. F. (1984). Acta Cryst. C40, 645-647.]): although no analysis of the supramolecular structure appears in this report, the reported atom coordinates indicate both similarities to, and differences from, that of (I). As in (I), the anions are linked into hydrogen-bonded (010) sheets and the cations are pendent from just one face of this sheet. However, whereas in (I) the sheets contain just a single type of [R_4^4(22)] ring, in the meso-tartrate analogue the sheets contain alternating [R_2^2(10)] and [R_4^4(20)] rings.

3.8. (R)-Histidinium (R,R)-hydrogen tartrate

The supramolecular structure of (R)-histidinium (R,R)-hydrogen tartrate has been reported very recently (Johnson & Feeder, 2004[Johnson, M. N. & Feeder, N. (2004). Acta Cryst. E60, o1476-o1477.]). In this salt, which crystallizes in the space group P1 with Z′ = 1, the anions form (010) sheets of [R_4^4(22)], formed in a manner entirely similar to those in (I) (see §3.4.1[link]), with one-dimensional substructures in the form of C(6) and C(7) chains along [100] and [010], respectively, although in (I) the C(7) chain is parallel to [001]. The principal difference between the structure of (I) and that of (R)-histidinium (R,R)-hydrogen tartrate arises from the hydrogen-bonding characteristics of the cations. In (I) the cation is a threefold donor in N—H⋯O hydrogen bonds, whereas in (R)-histidinium (R,R)-hydrogen tartrate the cation is a fivefold donor (although not all of the N—H⋯O hydrogen bonds are listed in Table 2[link] of Johnson & Feeder, 2004[Johnson, M. N. & Feeder, N. (2004). Acta Cryst. E60, o1476-o1477.]), and the action of the cation is to link the anion sheets into a continuous three-dimensional framework.

4. Concluding comments

For both the 1:1 salts (I)–(III) and the 2:1 salts (IV)–(VI) described here, modest changes in the stereochemical nature of the components provokes rather considerable changes in the crystallization characteristics, as manifested by a comparison of both the unit-cell dimensions and the Z′ values within each series (Table 1[link]). At a more detailed level, no two salts described here, apart from the enantiomorphous pair (II) and (III), have a common anion substructure, and it is notable that we have not observed in any of (I)–(VI) any three-dimensional anion substructures as observed in the 1:2 salts formed by racemic tartaric acid with each of the simple achiral diamines piperazine and 1,4-diazabicycle[2.2.2]octane (Farrell et al., 2002a[Farrell, D. M. M., Ferguson, G., Lough, A. J. & Glidewell, C. (2002a). Acta Cryst. B58, 272-288.]). In the present series, even when the anion sub-structures are two-dimensional, the variety and the sizes of the hydrogen-bonded rings from which the sheets are built are different in every case. We have previously observed very marked diversity of supramolecular aggregation in series involving geometrical (constitutional) as opposed to setereochemical (configurational) isomerism (Bowes et al., 2003a[Bowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003a). Acta Cryst. B59, 100-117.]; Glidewell et al., 2002[Glidewell, C., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. B58, 864-876.], 2004[Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2004). Acta Cryst. B60, 472-480.]). In the salts (I) and (IV), where both components are enantiopure, there is no hint of any mimicry of pseudosymmetry (Figs. 11[link] and 15[link]). However, in the salts (II), (III) and (VI), where the cations are enantiopure and the anions are racemic, there is strong mimicry of centrosymmetry (Figs. 12[link] and 14[link]), with weaker indications in (V) (Fig. 9[link]). In general, pseudo-symmetry seems to be manifest in the present series when the anions are racemic, indicating that the formation of the anion sub-structure is a major determinant of the supramolecular structure as a whole.

Supporting information


Comment top

In full text version

Experimental top

In full text version

Refinement top

In full text version

Computing details top

For all compounds, data collection: Kappa-CCD server software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
[Figure 11]
[Figure 12]
[Figure 13]
[Figure 14]
[Figure 15]
[Figure 16]
In full text version.
(I) (S)-1-Phenylethylammonium (R,R)-tartrate(1-) top
Crystal data top
C8H12N·C4H5O6F(000) = 288
Mr = 271.27Dx = 1.425 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1497 reflections
a = 6.3425 (2) Åθ = 2.9–27.5°
b = 13.9448 (3) ŵ = 0.12 mm1
c = 7.5021 (3) ÅT = 150 K
β = 107.6599 (14)°Block, colourless
V = 632.25 (4) Å30.30 × 0.25 × 0.22 mm
Z = 2
Data collection top
Kappa-CCD
diffractometer
1497 independent reflections
Radiation source: fine-focus sealed X-ray tube1386 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
h = 87
Tmin = 0.923, Tmax = 0.983k = 1718
5067 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0419P)2 + 0.0759P]
where P = (Fo2 + 2Fc2)/3
1497 reflections(Δ/σ)max < 0.001
177 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C8H12N·C4H5O6V = 632.25 (4) Å3
Mr = 271.27Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.3425 (2) ŵ = 0.12 mm1
b = 13.9448 (3) ÅT = 150 K
c = 7.5021 (3) Å0.30 × 0.25 × 0.22 mm
β = 107.6599 (14)°
Data collection top
Kappa-CCD
diffractometer
1497 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
1386 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.983Rint = 0.042
5067 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.077H-atom parameters constrained
S = 1.09Δρmax = 0.16 e Å3
1497 reflectionsΔρmin = 0.20 e Å3
177 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2960 (2)0.42472 (12)0.49188 (18)0.0220 (3)
O20.0698 (2)0.42427 (12)0.34959 (19)0.0221 (3)
O30.2124 (2)0.37822 (11)0.21678 (19)0.0212 (3)
O40.5036 (2)0.47083 (12)0.0727 (2)0.0244 (3)
O50.0345 (2)0.47002 (12)0.02165 (18)0.0235 (3)
O60.2191 (3)0.29349 (10)0.1013 (2)0.0244 (3)
C10.1254 (3)0.43361 (14)0.3506 (2)0.0166 (4)
C20.1674 (3)0.46078 (15)0.1664 (2)0.0162 (4)
C30.3147 (3)0.38611 (14)0.1132 (3)0.0176 (4)
C40.3549 (3)0.41584 (14)0.0696 (2)0.0167 (4)
N10.7490 (3)0.49259 (12)0.6287 (2)0.0186 (3)
C110.6050 (3)0.64562 (14)0.4699 (3)0.0205 (4)
C120.6329 (4)0.63511 (16)0.2939 (3)0.0238 (4)
C130.4879 (4)0.67869 (17)0.1382 (3)0.0281 (5)
C140.3139 (4)0.73371 (16)0.1562 (4)0.0313 (5)
C150.2835 (4)0.74412 (17)0.3315 (4)0.0314 (5)
C160.4288 (4)0.70078 (15)0.4866 (3)0.0256 (5)
C170.7625 (3)0.60055 (15)0.6422 (3)0.0201 (4)
C181.0021 (4)0.63048 (16)0.6751 (3)0.0256 (5)
H30.24910.39160.31250.032*
H50.14030.46000.06470.035*
H60.16070.27890.01150.037*
H20.24540.52400.18360.019*
H3A0.46050.38500.21350.021*
H1A0.60470.47410.59630.028*
H1B0.82380.46650.74130.028*
H1C0.81020.47210.54030.028*
H120.75230.59780.28020.029*
H130.50820.67070.01870.034*
H140.21590.76420.04980.038*
H150.16310.78100.34460.038*
H160.40800.70880.60590.031*
H170.71720.62080.75320.024*
H18A1.05020.61070.56820.038*
H18B1.09590.59970.78910.038*
H18C1.01450.70030.68930.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0191 (7)0.0337 (7)0.0131 (6)0.0020 (6)0.0049 (5)0.0015 (6)
O20.0191 (7)0.0332 (7)0.0165 (6)0.0014 (6)0.0091 (5)0.0010 (6)
O30.0209 (7)0.0307 (8)0.0131 (6)0.0044 (6)0.0069 (5)0.0007 (6)
O40.0218 (7)0.0331 (8)0.0200 (7)0.0061 (6)0.0089 (6)0.0010 (6)
O50.0148 (7)0.0407 (8)0.0149 (7)0.0045 (6)0.0045 (5)0.0055 (6)
O60.0350 (9)0.0202 (7)0.0205 (7)0.0021 (6)0.0120 (7)0.0011 (6)
C10.0197 (9)0.0180 (9)0.0132 (8)0.0002 (7)0.0067 (7)0.0012 (8)
C20.0152 (8)0.0213 (9)0.0121 (8)0.0001 (7)0.0043 (7)0.0017 (7)
C30.0166 (9)0.0223 (9)0.0150 (9)0.0008 (8)0.0065 (7)0.0009 (8)
C40.0150 (8)0.0218 (9)0.0140 (8)0.0024 (8)0.0053 (7)0.0011 (8)
N10.0166 (8)0.0219 (8)0.0179 (8)0.0001 (7)0.0062 (6)0.0023 (7)
C110.0181 (10)0.0183 (9)0.0248 (10)0.0015 (7)0.0064 (8)0.0010 (8)
C120.0222 (10)0.0249 (10)0.0246 (10)0.0002 (8)0.0074 (8)0.0034 (8)
C130.0289 (11)0.0284 (11)0.0241 (10)0.0057 (9)0.0038 (9)0.0047 (10)
C140.0237 (11)0.0249 (11)0.0377 (12)0.0029 (10)0.0018 (9)0.0103 (10)
C150.0215 (11)0.0227 (10)0.0462 (13)0.0045 (9)0.0045 (10)0.0012 (10)
C160.0208 (10)0.0229 (11)0.0327 (11)0.0006 (8)0.0074 (9)0.0038 (9)
C170.0205 (10)0.0201 (10)0.0203 (10)0.0005 (8)0.0070 (8)0.0014 (8)
C180.0206 (10)0.0278 (11)0.0261 (10)0.0030 (8)0.0035 (8)0.0020 (9)
Geometric parameters (Å, º) top
O1—C11.270 (2)C11—C121.392 (3)
O2—C11.243 (2)C11—C161.393 (3)
O3—C41.306 (2)C11—C171.510 (3)
O3—H30.84C12—C131.389 (3)
O4—C41.221 (2)C12—H120.95
O5—C21.411 (2)C13—C141.384 (3)
O5—H50.84C13—H130.95
O6—C31.418 (2)C14—C151.393 (4)
O6—H60.84C14—H140.95
C1—C21.532 (2)C15—C161.385 (3)
C2—C31.531 (3)C15—H150.95
C2—H21.00C16—H160.95
C3—C41.526 (3)C17—C181.522 (3)
C3—H3A1.00C17—H171.00
N1—C171.510 (3)C18—H18A0.98
N1—H1A0.91C18—H18B0.98
N1—H1B0.91C18—H18C0.98
N1—H1C0.91
C4—O3—H3109.5C16—C11—C17119.55 (19)
C2—O5—H5109.5C13—C12—C11120.6 (2)
C3—O6—H6109.5C13—C12—H12119.7
O2—C1—O1126.14 (17)C11—C12—H12119.7
O2—C1—C2117.76 (16)C14—C13—C12120.3 (2)
O1—C1—C2116.08 (16)C14—C13—H13119.8
O5—C2—C3110.16 (15)C12—C13—H13119.8
O5—C2—C1110.55 (14)C13—C14—C15119.5 (2)
C3—C2—C1110.73 (15)C13—C14—H14120.2
O5—C2—H2108.4C15—C14—H14120.2
C3—C2—H2108.4C16—C15—C14120.0 (2)
C1—C2—H2108.4C16—C15—H15120.0
O6—C3—C4112.09 (16)C14—C15—H15120.0
O6—C3—C2110.64 (15)C15—C16—C11120.9 (2)
C4—C3—C2109.33 (16)C15—C16—H16119.6
O6—C3—H3A108.2C11—C16—H16119.6
C4—C3—H3A108.2N1—C17—C11110.37 (16)
C2—C3—H3A108.2N1—C17—C18108.54 (17)
O4—C4—O3125.20 (17)C11—C17—C18113.16 (17)
O4—C4—C3121.87 (16)N1—C17—H17108.2
O3—C4—C3112.91 (16)C11—C17—H17108.2
C17—N1—H1A109.5C18—C17—H17108.2
C17—N1—H1B109.5C17—C18—H18A109.5
H1A—N1—H1B109.5C17—C18—H18B109.5
C17—N1—H1C109.5H18A—C18—H18B109.5
H1A—N1—H1C109.5C17—C18—H18C109.5
H1B—N1—H1C109.5H18A—C18—H18C109.5
C12—C11—C16118.7 (2)H18B—C18—H18C109.5
C12—C11—C17121.78 (19)
O2—C1—C2—O50.4 (3)C16—C11—C12—C130.0 (3)
O1—C1—C2—O5178.99 (17)C17—C11—C12—C13178.87 (19)
O2—C1—C2—C3122.78 (19)C11—C12—C13—C140.4 (3)
O1—C1—C2—C358.6 (2)C12—C13—C14—C150.8 (3)
O5—C2—C3—O665.99 (19)C13—C14—C15—C161.0 (3)
C1—C2—C3—O656.61 (19)C14—C15—C16—C110.7 (3)
O5—C2—C3—C457.9 (2)C12—C11—C16—C150.2 (3)
C1—C2—C3—C4179.47 (15)C17—C11—C16—C15179.1 (2)
O6—C3—C4—O4151.29 (18)C12—C11—C17—N165.4 (2)
C2—C3—C4—O485.7 (2)C16—C11—C17—N1115.74 (19)
O6—C3—C4—O330.1 (2)C12—C11—C17—C1856.4 (3)
C2—C3—C4—O392.9 (2)C16—C11—C17—C18122.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.841.652.486 (2)174
O5—H5···O20.842.112.616 (2)119
O5—H5···O4ii0.842.182.797 (2)130
O6—H6···O30.842.172.652 (2)116
N1—H1A···O10.912.002.901 (2)172
N1—H1B···O5iii0.912.022.867 (2)154
N1—H1C···O2iv0.911.932.842 (2)177
Symmetry codes: (i) x, y, z1; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x+1, y, z.
(II) (S)-1-Phenylethylammonium rac-tartrate(1-) top
Crystal data top
C8H12N·C4H5O6F(000) = 576
Mr = 271.27Dx = 1.336 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3191 reflections
a = 7.3025 (2) Åθ = 2.7–27.7°
b = 22.8901 (11) ŵ = 0.11 mm1
c = 8.1193 (3) ÅT = 150 K
β = 96.599 (2)°Needle, colourless
V = 1348.19 (9) Å30.28 × 0.16 × 0.14 mm
Z = 4
Data collection top
Kappa-CCD
diffractometer
3191 independent reflections
Radiation source: fine-focus sealed X-ray tube2734 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.129
ϕ scans, and ω scans with κ offsetsθmax = 27.7°, θmin = 2.7°
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
h = 99
Tmin = 0.584, Tmax = 0.998k = 2929
15852 measured reflectionsl = 810
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0713P)2 + 0.0775P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3191 reflectionsΔρmax = 0.34 e Å3
354 parametersΔρmin = 0.24 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.039 (6)
Crystal data top
C8H12N·C4H5O6V = 1348.19 (9) Å3
Mr = 271.27Z = 4
Monoclinic, P21Mo Kα radiation
a = 7.3025 (2) ŵ = 0.11 mm1
b = 22.8901 (11) ÅT = 150 K
c = 8.1193 (3) Å0.28 × 0.16 × 0.14 mm
β = 96.599 (2)°
Data collection top
Kappa-CCD
diffractometer
3191 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
2734 reflections with I > 2σ(I)
Tmin = 0.584, Tmax = 0.998Rint = 0.129
15852 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.130H-atom parameters constrained
S = 1.06Δρmax = 0.34 e Å3
3191 reflectionsΔρmin = 0.24 e Å3
354 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.3272 (3)0.58482 (10)0.9097 (2)0.0363 (5)
O120.3593 (3)0.55621 (11)1.1755 (3)0.0405 (5)
O150.7170 (3)0.54608 (10)1.1988 (2)0.0366 (5)
O160.6239 (3)0.47743 (9)0.9105 (3)0.0370 (5)
O130.9965 (3)0.48977 (10)0.9489 (3)0.0381 (5)
O140.9756 (3)0.58685 (10)0.9130 (3)0.0376 (5)
C110.4206 (4)0.56938 (13)1.0442 (3)0.0326 (6)
C120.6307 (4)0.56948 (14)1.0461 (3)0.0325 (6)
C130.6947 (4)0.53480 (14)0.9027 (3)0.0331 (6)
C140.9063 (4)0.53409 (14)0.9225 (3)0.0327 (6)
O210.5816 (3)0.41528 (10)0.6188 (2)0.0351 (4)
O220.5502 (3)0.44629 (11)0.3542 (3)0.0404 (5)
O250.1910 (3)0.45112 (10)0.3258 (2)0.0373 (5)
O260.2844 (3)0.52255 (10)0.6151 (3)0.0372 (5)
O230.0897 (3)0.51062 (10)0.5760 (3)0.0385 (5)
O240.0679 (3)0.41304 (10)0.6051 (3)0.0380 (5)
C210.4876 (4)0.43169 (13)0.4833 (3)0.0334 (6)
C220.2775 (4)0.42982 (13)0.4803 (3)0.0328 (6)
C230.2117 (4)0.46514 (14)0.6218 (3)0.0334 (6)
C240.0007 (4)0.46629 (14)0.5987 (3)0.0343 (6)
N30.0680 (3)0.58651 (11)1.3443 (3)0.0333 (5)
C310.1949 (4)0.68531 (14)1.4188 (4)0.0384 (6)
C320.2889 (5)0.67206 (15)1.5730 (4)0.0436 (7)
C330.4374 (5)0.70634 (17)1.6392 (5)0.0505 (8)
C340.4901 (5)0.75446 (17)1.5522 (5)0.0522 (9)
C350.3969 (5)0.76803 (17)1.3991 (5)0.0543 (9)
C360.2503 (5)0.73294 (16)1.3315 (4)0.0482 (8)
C370.0260 (4)0.65053 (14)1.3515 (4)0.0388 (6)
C380.1344 (5)0.65949 (17)1.4535 (5)0.0520 (8)
N40.8388 (3)0.41354 (11)0.1841 (3)0.0341 (5)
C410.9610 (4)0.31838 (14)0.0957 (4)0.0371 (6)
C421.0452 (5)0.34204 (15)0.0339 (4)0.0424 (7)
C431.1758 (5)0.31047 (16)0.1084 (4)0.0468 (7)
C441.2232 (4)0.25444 (15)0.0543 (4)0.0449 (7)
C451.1391 (5)0.23028 (16)0.0749 (5)0.0481 (8)
C461.0097 (5)0.26189 (15)0.1493 (4)0.0447 (7)
C470.8086 (4)0.34888 (13)0.1724 (4)0.0360 (6)
C480.6201 (4)0.33761 (17)0.0746 (4)0.0468 (7)
H150.63580.53431.25620.055*
H160.62200.46140.81730.056*
H141.09070.58460.91570.056*
H15A0.67220.61091.03690.039*
H16A0.64700.55340.79470.040*
H250.27160.46360.26880.056*
H260.28990.53800.70940.056*
H240.18180.41510.61120.057*
H25A0.23950.38820.49260.039*
H26A0.25680.44660.73050.040*
H3A0.15760.58061.27700.050*
H3B0.03570.56681.30360.050*
H3C0.10740.57331.44810.050*
H320.25180.63951.63360.052*
H330.50230.69671.74390.061*
H340.59020.77811.59780.063*
H350.43230.80121.33980.065*
H360.18850.74181.22500.058*
H370.01370.66431.23600.047*
H38A0.09880.64611.56730.078*
H38B0.24120.63711.40420.078*
H38C0.16620.70111.45450.078*
H4A0.76200.42930.25290.051*
H4B0.95790.42090.22500.051*
H4C0.81480.42980.08160.051*
H421.01310.38030.07210.051*
H431.23270.32730.19650.056*
H441.31240.23280.10510.054*
H451.17060.19190.11220.058*
H460.95340.24500.23780.054*
H470.80620.33330.28720.043*
H48A0.61790.35400.03710.070*
H48B0.52390.35620.13140.070*
H48C0.59760.29540.06690.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0331 (10)0.0418 (12)0.0339 (10)0.0007 (9)0.0033 (8)0.0017 (8)
O120.0357 (10)0.0512 (13)0.0359 (11)0.0044 (10)0.0097 (9)0.0043 (9)
O150.0335 (10)0.0484 (13)0.0277 (9)0.0021 (9)0.0026 (7)0.0015 (9)
O160.0399 (10)0.0381 (11)0.0331 (10)0.0056 (9)0.0041 (8)0.0042 (8)
O130.0392 (10)0.0381 (12)0.0372 (11)0.0030 (9)0.0058 (9)0.0026 (9)
O140.0302 (9)0.0380 (11)0.0455 (12)0.0007 (8)0.0072 (8)0.0010 (9)
C110.0301 (13)0.0343 (14)0.0339 (14)0.0012 (11)0.0062 (11)0.0017 (11)
C120.0307 (13)0.0371 (15)0.0296 (13)0.0009 (11)0.0037 (10)0.0001 (11)
C130.0341 (14)0.0346 (14)0.0309 (13)0.0004 (12)0.0048 (10)0.0015 (11)
C140.0333 (13)0.0362 (15)0.0290 (13)0.0003 (12)0.0061 (10)0.0014 (11)
O210.0320 (9)0.0398 (11)0.0332 (10)0.0021 (9)0.0027 (7)0.0014 (9)
O220.0350 (10)0.0523 (14)0.0345 (11)0.0021 (9)0.0074 (8)0.0028 (9)
O250.0329 (10)0.0497 (13)0.0292 (10)0.0014 (9)0.0027 (8)0.0011 (9)
O260.0404 (11)0.0390 (12)0.0320 (10)0.0020 (9)0.0032 (8)0.0037 (8)
O230.0359 (11)0.0417 (12)0.0383 (11)0.0055 (9)0.0064 (8)0.0053 (9)
O240.0327 (9)0.0403 (11)0.0419 (11)0.0006 (9)0.0079 (8)0.0005 (9)
C210.0340 (13)0.0338 (15)0.0328 (13)0.0005 (11)0.0056 (11)0.0020 (11)
C220.0327 (13)0.0371 (15)0.0287 (13)0.0003 (12)0.0034 (10)0.0008 (11)
C230.0336 (13)0.0353 (15)0.0317 (14)0.0011 (12)0.0047 (10)0.0010 (11)
C240.0345 (13)0.0431 (17)0.0255 (12)0.0028 (13)0.0047 (10)0.0003 (11)
N30.0349 (11)0.0340 (12)0.0313 (12)0.0002 (10)0.0050 (9)0.0016 (9)
C310.0419 (15)0.0354 (15)0.0376 (15)0.0012 (13)0.0033 (12)0.0001 (12)
C320.0501 (17)0.0399 (16)0.0393 (15)0.0043 (14)0.0008 (13)0.0006 (12)
C330.0502 (18)0.0503 (19)0.0479 (18)0.0006 (16)0.0071 (15)0.0070 (15)
C340.0442 (17)0.0463 (19)0.065 (2)0.0059 (15)0.0036 (16)0.0136 (17)
C350.059 (2)0.0423 (19)0.062 (2)0.0085 (16)0.0104 (17)0.0048 (16)
C360.0549 (19)0.0431 (17)0.0455 (17)0.0015 (15)0.0017 (14)0.0058 (14)
C370.0411 (15)0.0351 (15)0.0394 (15)0.0025 (13)0.0002 (12)0.0002 (12)
C380.0434 (17)0.052 (2)0.061 (2)0.0027 (15)0.0078 (15)0.0162 (17)
N40.0330 (11)0.0373 (13)0.0322 (11)0.0003 (11)0.0039 (9)0.0013 (10)
C410.0403 (15)0.0388 (15)0.0311 (13)0.0003 (13)0.0000 (11)0.0001 (11)
C420.0485 (17)0.0374 (15)0.0421 (15)0.0039 (14)0.0092 (13)0.0028 (13)
C430.0508 (18)0.0464 (18)0.0438 (17)0.0001 (15)0.0079 (14)0.0027 (14)
C440.0377 (15)0.0417 (16)0.0543 (18)0.0028 (13)0.0014 (13)0.0115 (14)
C450.0452 (17)0.0372 (16)0.060 (2)0.0023 (14)0.0021 (15)0.0020 (15)
C460.0492 (18)0.0386 (17)0.0452 (17)0.0003 (14)0.0009 (14)0.0053 (13)
C470.0380 (14)0.0336 (15)0.0362 (14)0.0025 (12)0.0038 (11)0.0025 (11)
C480.0384 (16)0.0478 (19)0.0536 (18)0.0045 (14)0.0027 (13)0.0076 (15)
Geometric parameters (Å, º) top
O11—C111.269 (4)C32—C331.395 (5)
O12—C111.240 (3)C32—H320.95
O15—C121.428 (3)C33—C341.387 (6)
O15—H150.84C33—H330.95
O16—C131.415 (4)C34—C351.382 (6)
O16—H160.84C34—H340.95
O13—C141.215 (4)C35—C361.399 (5)
O14—C141.315 (4)C35—H350.95
O14—H140.84C36—H360.95
C11—C121.533 (4)C37—C381.523 (5)
C12—C131.527 (4)C37—H371.00
C12—H15A1.00C38—H38A0.98
C13—C141.535 (4)C38—H38B0.98
C13—H16A1.00C38—H38C0.98
O21—C211.284 (4)N4—C471.498 (4)
O22—C211.237 (4)N4—H4A0.91
O25—C221.424 (3)N4—H4B0.91
O25—H250.84N4—H4C0.91
O26—C231.421 (4)C41—C421.388 (4)
O26—H260.84C41—C461.397 (5)
O23—C241.213 (4)C41—C471.508 (4)
O24—C241.321 (4)C42—C431.389 (5)
O24—H240.84C42—H420.95
C21—C221.532 (4)C43—C441.386 (5)
C22—C231.527 (4)C43—H430.95
C22—H25A1.00C44—C451.390 (5)
C23—C241.531 (4)C44—H440.95
C23—H26A1.00C45—C461.383 (5)
N3—C371.500 (4)C45—H450.95
N3—H3A0.91C46—H460.95
N3—H3B0.91C47—C481.530 (4)
N3—H3C0.91C47—H471.00
C31—C361.386 (5)C48—H48A0.98
C31—C321.390 (4)C48—H48B0.98
C31—C371.516 (4)C48—H48C0.98
C12—O15—H15109.5C35—C34—C33120.0 (3)
C13—O16—H16109.5C35—C34—H34120.0
C14—O14—H14109.5C33—C34—H34120.0
O12—C11—O11126.6 (3)C34—C35—C36120.0 (3)
O12—C11—C12116.8 (2)C34—C35—H35120.0
O11—C11—C12116.5 (2)C36—C35—H35120.0
O15—C12—C13108.9 (2)C31—C36—C35120.4 (3)
O15—C12—C11110.5 (2)C31—C36—H36119.8
C13—C12—C11112.7 (2)C35—C36—H36119.8
O15—C12—H15A108.2N3—C37—C31111.5 (2)
C13—C12—H15A108.2N3—C37—C38109.0 (3)
C11—C12—H15A108.2C31—C37—C38112.2 (3)
O16—C13—C12107.6 (2)N3—C37—H37108.0
O16—C13—C14110.7 (2)C31—C37—H37108.0
C12—C13—C14108.6 (2)C38—C37—H37108.0
O16—C13—H16A110.0C37—C38—H38A109.5
C12—C13—H16A110.0C37—C38—H38B109.5
C14—C13—H16A110.0H38A—C38—H38B109.5
O13—C14—O14124.9 (3)C37—C38—H38C109.5
O13—C14—C13123.1 (3)H38A—C38—H38C109.5
O14—C14—C13112.0 (2)H38B—C38—H38C109.5
C22—O25—H25109.5C47—N4—H4A109.5
C23—O26—H26109.5C47—N4—H4B109.5
C24—O24—H24109.5H4A—N4—H4B109.5
O22—C21—O21126.3 (3)C47—N4—H4C109.5
O22—C21—C22117.5 (3)H4A—N4—H4C109.5
O21—C21—C22116.2 (2)H4B—N4—H4C109.5
O25—C22—C23109.6 (2)C42—C41—C46118.6 (3)
O25—C22—C21110.3 (2)C42—C41—C47123.0 (3)
C23—C22—C21112.0 (2)C46—C41—C47118.3 (3)
O25—C22—H25A108.3C41—C42—C43120.9 (3)
C23—C22—H25A108.3C41—C42—H42119.6
C21—C22—H25A108.3C43—C42—H42119.6
O26—C23—C22108.0 (2)C44—C43—C42120.1 (3)
O26—C23—C24110.8 (2)C44—C43—H43119.9
C22—C23—C24108.4 (2)C42—C43—H43119.9
O26—C23—H26A109.9C43—C44—C45119.4 (3)
C22—C23—H26A109.9C43—C44—H44120.3
C24—C23—H26A109.9C45—C44—H44120.3
O23—C24—O24125.2 (3)C46—C45—C44120.3 (3)
O23—C24—C23123.7 (3)C46—C45—H45119.8
O24—C24—C23111.1 (2)C44—C45—H45119.8
C37—N3—H3A109.5C45—C46—C41120.7 (3)
C37—N3—H3B109.5C45—C46—H46119.7
H3A—N3—H3B109.5C41—C46—H46119.7
C37—N3—H3C109.5N4—C47—C41111.9 (2)
H3A—N3—H3C109.5N4—C47—C48108.5 (2)
H3B—N3—H3C109.5C41—C47—C48111.7 (3)
C36—C31—C32119.3 (3)N4—C47—H47108.2
C36—C31—C37120.1 (3)C41—C47—H47108.2
C32—C31—C37120.5 (3)C48—C47—H47108.2
C31—C32—C33120.4 (3)C47—C48—H48A109.5
C31—C32—H32119.8C47—C48—H48B109.5
C33—C32—H32119.8H48A—C48—H48B109.5
C34—C33—C32119.9 (3)C47—C48—H48C109.5
C34—C33—H33120.0H48A—C48—H48C109.5
C32—C33—H33120.0H48B—C48—H48C109.5
O12—C11—C12—O157.9 (4)C36—C31—C32—C330.1 (5)
O11—C11—C12—O15174.6 (3)C37—C31—C32—C33176.0 (3)
O12—C11—C12—C13129.9 (3)C31—C32—C33—C341.0 (6)
O11—C11—C12—C1352.5 (4)C32—C33—C34—C350.7 (6)
O15—C12—C13—O1666.6 (3)C33—C34—C35—C360.5 (6)
C11—C12—C13—O1656.3 (3)C32—C31—C36—C351.3 (5)
O15—C12—C13—C1453.3 (3)C37—C31—C36—C35174.8 (3)
C11—C12—C13—C14176.2 (2)C34—C35—C36—C311.5 (6)
O16—C13—C14—O133.1 (4)C36—C31—C37—N3127.7 (3)
C12—C13—C14—O13114.8 (3)C32—C31—C37—N356.3 (4)
O16—C13—C14—O14179.0 (2)C36—C31—C37—C38109.7 (4)
C12—C13—C14—O1463.1 (3)C32—C31—C37—C3866.3 (4)
O22—C21—C22—O255.2 (4)C46—C41—C42—C430.3 (5)
O21—C21—C22—O25177.8 (3)C47—C41—C42—C43175.3 (3)
O22—C21—C22—C23127.5 (3)C41—C42—C43—C440.3 (5)
O21—C21—C22—C2355.5 (3)C42—C43—C44—C450.0 (5)
O25—C22—C23—O2668.8 (3)C43—C44—C45—C460.2 (5)
C21—C22—C23—O2654.0 (3)C44—C45—C46—C410.2 (5)
O25—C22—C23—C2451.3 (3)C42—C41—C46—C450.0 (5)
C21—C22—C23—C24174.1 (2)C47—C41—C46—C45175.3 (3)
O26—C23—C24—O230.8 (4)C42—C41—C47—N437.7 (4)
C22—C23—C24—O23117.6 (3)C46—C41—C47—N4147.3 (3)
O26—C23—C24—O24179.9 (2)C42—C41—C47—C4884.2 (4)
C22—C23—C24—O2461.7 (3)C46—C41—C47—C4890.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H15···O120.842.112.607 (3)118
O15—H15···O22i0.842.282.941 (3)136
O16—H16···O210.841.922.750 (3)169
O14—H14···O11ii0.841.732.571 (3)175
O25—H25···O220.842.112.610 (3)118
O25—H25···O12iii0.842.363.022 (3)136
O26—H26···O110.841.942.771 (3)170
O24—H24···O21iv0.841.742.576 (3)177
N3—H3A···O120.911.852.749 (3)167
N3—H3B···O15iv0.911.962.850 (3)164
N3—H3C···O26i0.912.112.945 (3)152
N3—H3C···O23i0.912.362.894 (3)118
N4—H4A···O220.911.872.753 (3)162
N4—H4B···O25ii0.911.932.828 (3)169
N4—H4C···O16iii0.912.152.956 (3)147
N4—H4C···O13iii0.912.272.919 (3)128
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x, y, z1; (iv) x1, y, z.
(III) (R)-1-Phenylethylammonium (R,R)-tartrate(1-) top
Crystal data top
C8H12N·C4H5O6F(000) = 576
Mr = 271.27Dx = 1.339 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 9403 reflections
a = 7.2952 (2) Åθ = 2.7–27.5°
b = 22.8935 (11) ŵ = 0.11 mm1
c = 8.1100 (3) ÅT = 150 K
β = 96.603 (2)°Block, colourless
V = 1345.49 (9) Å30.36 × 0.26 × 0.20 mm
Z = 4
Data collection top
Kappa-CCD
diffractometer
3160 independent reflections
Radiation source: fine-focus sealed X-ray tube2446 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
h = 99
Tmin = 0.869, Tmax = 0.991k = 2729
9403 measured reflectionsl = 910
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.0771P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3160 reflectionsΔρmax = 0.18 e Å3
354 parametersΔρmin = 0.21 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.020 (3)
Crystal data top
C8H12N·C4H5O6V = 1345.49 (9) Å3
Mr = 271.27Z = 4
Monoclinic, P21Mo Kα radiation
a = 7.2952 (2) ŵ = 0.11 mm1
b = 22.8935 (11) ÅT = 150 K
c = 8.1100 (3) Å0.36 × 0.26 × 0.20 mm
β = 96.603 (2)°
Data collection top
Kappa-CCD
diffractometer
3160 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
2446 reflections with I > 2σ(I)
Tmin = 0.869, Tmax = 0.991Rint = 0.061
9403 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.091H-atom parameters constrained
S = 1.04Δρmax = 0.18 e Å3
3160 reflectionsΔρmin = 0.21 e Å3
354 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.3272 (2)0.41530 (9)0.9097 (2)0.0257 (5)
O120.3595 (2)0.44399 (9)1.1757 (2)0.0288 (5)
O130.9959 (2)0.51043 (9)0.9486 (2)0.0270 (5)
O140.9757 (2)0.41304 (9)0.9131 (3)0.0271 (5)
H141.09080.41530.91470.041*
O150.7173 (2)0.45378 (9)1.1989 (2)0.0252 (5)
H150.63730.46981.25050.038*
O160.6238 (3)0.52254 (8)0.9103 (2)0.0253 (4)
H160.61530.53780.81560.038*
C110.4202 (3)0.43080 (12)1.0439 (3)0.0212 (6)
C120.6310 (3)0.43043 (13)1.0460 (3)0.0220 (6)
H12A0.67240.38901.03650.026*
C130.6952 (3)0.46536 (13)0.9026 (3)0.0207 (6)
H13A0.64750.44680.79440.025*
C140.9061 (3)0.46575 (13)0.9224 (3)0.0218 (6)
O210.5810 (2)0.58454 (9)0.6180 (2)0.0248 (4)
O220.5501 (2)0.55369 (9)0.3546 (2)0.0299 (5)
O230.0889 (3)0.48931 (9)0.5760 (2)0.0275 (5)
O240.0681 (2)0.58693 (9)0.6050 (2)0.0269 (5)
H240.18260.58490.60830.040*
O250.1912 (2)0.54904 (9)0.3256 (2)0.0267 (5)
H250.27170.53610.26900.040*
O260.2846 (3)0.47761 (9)0.6146 (2)0.0258 (5)
H260.29740.46320.71040.039*
C210.4874 (3)0.56854 (12)0.4839 (3)0.0223 (6)
C220.2775 (3)0.56993 (13)0.4797 (3)0.0226 (6)
H22A0.23900.61150.49220.027*
C230.2120 (3)0.53486 (13)0.6208 (3)0.0220 (6)
H23A0.25770.55340.72940.026*
C240.0006 (3)0.53375 (13)0.5993 (3)0.0217 (6)
N30.0681 (3)0.41331 (10)1.3442 (3)0.0231 (5)
H3A0.10700.42661.44810.035*
H3B0.03570.43291.30290.035*
H3C0.15820.41931.27720.035*
C310.1950 (4)0.31489 (13)1.4185 (4)0.0260 (6)
C320.2900 (4)0.32782 (14)1.5730 (4)0.0333 (7)
H320.25360.36041.63410.040*
C330.4377 (4)0.29348 (15)1.6387 (4)0.0391 (8)
H330.50280.30301.74350.047*
C340.4897 (4)0.24573 (15)1.5519 (4)0.0418 (8)
H340.58980.22201.59750.050*
C350.3967 (4)0.23222 (16)1.3988 (5)0.0437 (8)
H350.43260.19921.33910.052*
C360.2505 (4)0.26695 (14)1.3321 (4)0.0368 (7)
H360.18770.25781.22600.044*
C370.0268 (4)0.34927 (13)1.3516 (4)0.0278 (7)
H370.01270.33551.23590.033*
C380.1340 (4)0.34033 (16)1.4533 (5)0.0421 (8)
H38A0.10120.35571.56550.063*
H38B0.16140.29851.45950.063*
H38C0.24290.36101.40020.063*
N40.8388 (3)0.58646 (10)0.1844 (3)0.0236 (5)
H4A0.81620.57020.08170.035*
H4B0.95780.57930.22630.035*
H4C0.76140.57060.25260.035*
C410.9609 (4)0.68175 (13)0.0957 (3)0.0265 (6)
C421.0442 (4)0.65797 (14)0.0343 (4)0.0320 (7)
H421.01150.61980.07290.038*
C431.1751 (4)0.68962 (14)0.1082 (4)0.0361 (7)
H431.23240.67280.19630.043*
C441.2225 (4)0.74541 (14)0.0546 (4)0.0358 (7)
H441.31180.76700.10560.043*
C451.1386 (4)0.76969 (14)0.0745 (4)0.0377 (8)
H451.16990.80820.11160.045*
C461.0098 (4)0.73805 (14)0.1490 (4)0.0339 (7)
H460.95380.75490.23790.041*
C470.8077 (4)0.65096 (12)0.1724 (4)0.0251 (6)
H470.80500.66660.28720.030*
C480.6202 (4)0.66221 (15)0.0749 (4)0.0385 (8)
H48A0.61970.64720.03830.058*
H48B0.59560.70430.07100.058*
H48C0.52430.64240.12920.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0198 (9)0.0312 (12)0.0260 (11)0.0019 (8)0.0028 (8)0.0015 (9)
O120.0220 (9)0.0377 (13)0.0277 (11)0.0034 (9)0.0069 (9)0.0032 (9)
O130.0250 (10)0.0287 (12)0.0279 (11)0.0042 (9)0.0060 (9)0.0041 (9)
O140.0161 (8)0.0259 (11)0.0400 (12)0.0009 (8)0.0057 (8)0.0003 (9)
O150.0176 (9)0.0360 (13)0.0218 (10)0.0031 (8)0.0011 (8)0.0001 (9)
O160.0267 (10)0.0280 (11)0.0208 (10)0.0042 (8)0.0022 (8)0.0027 (8)
C110.0184 (12)0.0225 (15)0.0228 (15)0.0003 (11)0.0030 (11)0.0024 (12)
C120.0164 (12)0.0261 (16)0.0232 (14)0.0020 (11)0.0014 (11)0.0015 (12)
C130.0185 (12)0.0224 (15)0.0212 (14)0.0007 (11)0.0026 (11)0.0010 (11)
C140.0239 (14)0.0246 (16)0.0175 (13)0.0018 (13)0.0049 (11)0.0016 (12)
O210.0199 (9)0.0272 (11)0.0271 (10)0.0015 (8)0.0010 (8)0.0016 (9)
O220.0210 (10)0.0406 (13)0.0290 (11)0.0026 (9)0.0066 (8)0.0010 (9)
O230.0234 (10)0.0291 (12)0.0304 (11)0.0054 (8)0.0046 (8)0.0056 (9)
O240.0175 (9)0.0287 (12)0.0349 (11)0.0009 (9)0.0050 (8)0.0017 (9)
O250.0202 (9)0.0386 (13)0.0210 (10)0.0008 (9)0.0012 (8)0.0001 (9)
O260.0258 (10)0.0263 (12)0.0251 (10)0.0022 (8)0.0017 (8)0.0039 (8)
C210.0201 (13)0.0215 (16)0.0251 (15)0.0010 (11)0.0015 (12)0.0044 (12)
C220.0191 (12)0.0265 (16)0.0223 (14)0.0009 (12)0.0028 (11)0.0004 (12)
C230.0204 (13)0.0230 (15)0.0224 (14)0.0001 (11)0.0019 (11)0.0001 (12)
C240.0200 (13)0.0282 (17)0.0175 (13)0.0009 (12)0.0048 (11)0.0007 (12)
N30.0214 (11)0.0263 (13)0.0212 (12)0.0002 (10)0.0015 (9)0.0023 (10)
C310.0246 (13)0.0241 (16)0.0293 (15)0.0010 (12)0.0026 (12)0.0018 (12)
C320.0345 (15)0.0318 (18)0.0326 (17)0.0030 (13)0.0008 (13)0.0028 (13)
C330.0381 (17)0.036 (2)0.0412 (18)0.0017 (15)0.0048 (15)0.0066 (16)
C340.0304 (16)0.036 (2)0.058 (2)0.0059 (14)0.0029 (16)0.0144 (17)
C350.0435 (19)0.0331 (19)0.056 (2)0.0064 (15)0.0107 (17)0.0014 (16)
C360.0414 (18)0.0315 (18)0.0365 (17)0.0011 (14)0.0006 (14)0.0038 (14)
C370.0258 (14)0.0254 (16)0.0314 (16)0.0059 (13)0.0003 (12)0.0002 (13)
C380.0283 (15)0.041 (2)0.057 (2)0.0001 (14)0.0082 (15)0.0193 (17)
N40.0211 (11)0.0274 (14)0.0224 (12)0.0001 (10)0.0034 (9)0.0006 (10)
C410.0246 (14)0.0259 (16)0.0279 (15)0.0014 (12)0.0022 (12)0.0008 (12)
C420.0354 (16)0.0258 (16)0.0350 (16)0.0032 (13)0.0051 (13)0.0009 (13)
C430.0375 (17)0.0327 (19)0.0390 (18)0.0010 (14)0.0086 (14)0.0036 (14)
C440.0261 (15)0.0317 (18)0.0485 (19)0.0008 (13)0.0011 (14)0.0130 (16)
C450.0328 (16)0.0239 (17)0.054 (2)0.0011 (13)0.0055 (15)0.0020 (15)
C460.0327 (16)0.0289 (18)0.0387 (17)0.0021 (13)0.0019 (14)0.0044 (14)
C470.0246 (14)0.0226 (15)0.0279 (15)0.0035 (12)0.0017 (12)0.0032 (12)
C480.0285 (15)0.0363 (19)0.050 (2)0.0070 (14)0.0024 (14)0.0063 (16)
Geometric parameters (Å, º) top
O11—C111.265 (3)C32—C331.389 (4)
O12—C111.241 (3)C32—H320.95
O13—C141.220 (3)C33—C341.377 (5)
O14—C141.315 (4)C33—H330.95
O14—H140.84C34—C351.380 (5)
O15—C121.428 (3)C34—H340.95
O15—H150.84C35—C361.389 (5)
O16—C131.413 (3)C35—H350.95
O16—H160.84C36—H360.95
C11—C121.536 (3)C37—C381.523 (4)
C12—C131.529 (4)C37—H371.00
C12—H12A1.00C38—H38A0.98
C13—C141.529 (3)C38—H38B0.98
C13—H13A1.00C38—H38C0.98
O21—C211.270 (3)N4—C471.495 (4)
O22—C211.239 (3)N4—H4A0.91
O23—C241.212 (3)N4—H4B0.91
O24—C241.319 (3)N4—H4C0.91
O24—H240.84C41—C421.387 (4)
O25—C221.416 (3)C41—C461.393 (4)
O25—H250.84C41—C471.514 (4)
O26—C231.417 (3)C42—C431.389 (4)
O26—H260.84C42—H420.95
C21—C221.528 (4)C43—C441.381 (5)
C22—C231.519 (4)C43—H430.95
C22—H22A1.00C44—C451.388 (5)
C23—C241.532 (3)C44—H440.95
C23—H23A1.00C45—C461.380 (4)
N3—C371.499 (4)C45—H450.95
N3—H3A0.91C46—H460.95
N3—H3B0.91C47—C481.521 (4)
N3—H3C0.91C47—H471.00
C31—C361.387 (4)C48—H48A0.98
C31—C321.392 (4)C48—H48B0.98
C31—C371.506 (4)C48—H48C0.98
C14—O14—H14109.5C33—C34—C35120.1 (3)
C12—O15—H15109.5C33—C34—H34119.9
C13—O16—H16109.5C35—C34—H34119.9
O12—C11—O11126.9 (2)C34—C35—C36119.9 (3)
O12—C11—C12116.6 (2)C34—C35—H35120.1
O11—C11—C12116.5 (2)C36—C35—H35120.1
O15—C12—C13108.8 (2)C31—C36—C35120.7 (3)
O15—C12—C11110.4 (2)C31—C36—H36119.6
C13—C12—C11112.5 (2)C35—C36—H36119.6
O15—C12—H12A108.4N3—C37—C31111.5 (2)
C13—C12—H12A108.4N3—C37—C38108.9 (2)
C11—C12—H12A108.4C31—C37—C38112.4 (2)
O16—C13—C14111.2 (2)N3—C37—H37108.0
O16—C13—C12107.7 (2)C31—C37—H37108.0
C14—C13—C12108.4 (2)C38—C37—H37108.0
O16—C13—H13A109.8C37—C38—H38A109.5
C14—C13—H13A109.8C37—C38—H38B109.5
C12—C13—H13A109.8H38A—C38—H38B109.5
O13—C14—O14125.2 (2)C37—C38—H38C109.5
O13—C14—C13122.5 (3)H38A—C38—H38C109.5
O14—C14—C13112.3 (2)H38B—C38—H38C109.5
C24—O24—H24109.5C47—N4—H4A109.5
C22—O25—H25109.5C47—N4—H4B109.5
C23—O26—H26109.5H4A—N4—H4B109.5
O22—C21—O21126.1 (2)C47—N4—H4C109.5
O22—C21—C22117.0 (2)H4A—N4—H4C109.5
O21—C21—C22116.9 (2)H4B—N4—H4C109.5
O25—C22—C23109.9 (2)C42—C41—C46118.7 (3)
O25—C22—C21110.8 (2)C42—C41—C47122.5 (3)
C23—C22—C21111.9 (2)C46—C41—C47118.6 (3)
O25—C22—H22A108.0C41—C42—C43120.4 (3)
C23—C22—H22A108.0C41—C42—H42119.8
C21—C22—H22A108.0C43—C42—H42119.8
O26—C23—C22108.1 (2)C44—C43—C42120.4 (3)
O26—C23—C24110.9 (2)C44—C43—H43119.8
C22—C23—C24108.8 (2)C42—C43—H43119.8
O26—C23—H23A109.7C43—C44—C45119.5 (3)
C22—C23—H23A109.7C43—C44—H44120.3
C24—C23—H23A109.7C45—C44—H44120.3
O23—C24—O24125.4 (2)C46—C45—C44120.1 (3)
O23—C24—C23123.3 (3)C46—C45—H45119.9
O24—C24—C23111.2 (2)C44—C45—H45119.9
C37—N3—H3A109.5C45—C46—C41120.9 (3)
C37—N3—H3B109.5C45—C46—H46119.6
H3A—N3—H3B109.5C41—C46—H46119.6
C37—N3—H3C109.5N4—C47—C41111.9 (2)
H3A—N3—H3C109.5N4—C47—C48108.8 (2)
H3B—N3—H3C109.5C41—C47—C48111.7 (2)
C36—C31—C32118.6 (3)N4—C47—H47108.1
C36—C31—C37120.3 (3)C41—C47—H47108.1
C32—C31—C37120.9 (3)C48—C47—H47108.1
C33—C32—C31120.6 (3)C47—C48—H48A109.5
C33—C32—H32119.7C47—C48—H48B109.5
C31—C32—H32119.7H48A—C48—H48B109.5
C34—C33—C32120.0 (3)C47—C48—H48C109.5
C34—C33—H33120.0H48A—C48—H48C109.5
C32—C33—H33120.0H48B—C48—H48C109.5
O12—C11—C12—O158.0 (3)C36—C31—C32—C330.2 (5)
O11—C11—C12—O15174.8 (2)C37—C31—C32—C33175.7 (3)
O12—C11—C12—C13129.7 (3)C31—C32—C33—C340.9 (5)
O11—C11—C12—C1353.1 (3)C32—C33—C34—C350.7 (5)
O15—C12—C13—O1666.8 (2)C33—C34—C35—C360.1 (5)
C11—C12—C13—O1655.8 (3)C32—C31—C36—C350.6 (5)
O15—C12—C13—C1453.6 (3)C37—C31—C36—C35174.9 (3)
C11—C12—C13—C14176.2 (2)C34—C35—C36—C310.8 (5)
O16—C13—C14—O132.9 (4)C36—C31—C37—N3128.2 (3)
C12—C13—C14—O13115.3 (3)C32—C31—C37—N356.4 (4)
O16—C13—C14—O14179.0 (2)C36—C31—C37—C38109.2 (3)
C12—C13—C14—O1462.8 (3)C32—C31—C37—C3866.2 (4)
O22—C21—C22—O254.4 (3)C46—C41—C42—C430.6 (4)
O21—C21—C22—O25177.8 (2)C47—C41—C42—C43175.5 (3)
O22—C21—C22—C23127.4 (3)C41—C42—C43—C440.7 (4)
O21—C21—C22—C2354.8 (3)C42—C43—C44—C450.2 (4)
O25—C22—C23—O2669.1 (3)C43—C44—C45—C460.4 (4)
C21—C22—C23—O2654.5 (3)C44—C45—C46—C410.5 (4)
O25—C22—C23—C2451.4 (3)C42—C41—C46—C450.0 (4)
C21—C22—C23—C24175.0 (2)C47—C41—C46—C45175.1 (3)
O26—C23—C24—O231.7 (4)C42—C41—C47—N438.1 (4)
C22—C23—C24—O23117.1 (3)C46—C41—C47—N4147.0 (3)
O26—C23—C24—O24180.0 (2)C42—C41—C47—C4884.1 (3)
C22—C23—C24—O2461.2 (3)C46—C41—C47—C4890.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H15···O120.842.132.605 (2)116
O15—H15···O22i0.842.222.944 (3)144
O16—H16···O210.841.922.750 (3)170
O14—H14···O11ii0.841.732.568 (2)176
O25—H25···O220.842.112.604 (2)117
O25—H25···O12iii0.842.353.019 (3)136
O26—H26···O110.841.942.773 (3)169
O24—H24···O21iv0.841.742.575 (2)177
N3—H3A···O26i0.912.112.945 (3)152
N3—H3A···O23i0.912.352.893 (3)118
N3—H3B···O15iv0.911.962.847 (3)165
N3—H3C···O120.911.852.747 (3)167
N4—H4A···O16iii0.912.152.956 (3)147
N4—H4A···O13iii0.912.252.916 (3)129
N4—H4B···O25ii0.911.932.824 (3)169
N4—H4C···O220.911.872.752 (3)162
C36—H36···Cgv0.952.873.775 (3)160
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x, y, z1; (iv) x1, y, z; (v) x+1, y1/2, z+1.
(IV) bis-(S)-1-Phenylethylammonium (R,R)-tartrate(2-) top
Crystal data top
2(C8H12N)·C4H4O6F(000) = 420
Mr = 392.44Dx = 1.267 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2434 reflections
a = 5.5620 (2) Åθ = 3.1–27.5°
b = 16.0630 (3) ŵ = 0.09 mm1
c = 11.8260 (4) ÅT = 150 K
β = 103.2810 (12)°Plate, colourless
V = 1028.31 (5) Å30.36 × 0.26 × 0.10 mm
Z = 2
Data collection top
Kappa-CCD
diffractometer
2434 independent reflections
Radiation source: fine-focus sealed X-ray tube2187 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
h = 77
Tmin = 0.877, Tmax = 0.995k = 2019
8194 measured reflectionsl = 1415
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0574P)2 + 0.0872P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2434 reflectionsΔρmax = 0.22 e Å3
260 parametersΔρmin = 0.24 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.036 (7)
Crystal data top
2(C8H12N)·C4H4O6V = 1028.31 (5) Å3
Mr = 392.44Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.5620 (2) ŵ = 0.09 mm1
b = 16.0630 (3) ÅT = 150 K
c = 11.8260 (4) Å0.36 × 0.26 × 0.10 mm
β = 103.2810 (12)°
Data collection top
Kappa-CCD
diffractometer
2434 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
2187 reflections with I > 2σ(I)
Tmin = 0.877, Tmax = 0.995Rint = 0.050
8194 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.094H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
2434 reflectionsΔρmin = 0.24 e Å3
260 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1580 (3)0.78816 (10)0.44636 (15)0.0356 (4)
O20.1833 (3)0.85005 (10)0.54792 (15)0.0368 (4)
O30.4876 (3)0.60682 (11)0.29174 (16)0.0419 (4)
O40.2168 (3)0.54276 (9)0.37515 (14)0.0324 (4)
O50.4621 (3)0.71189 (10)0.54093 (13)0.0294 (3)
O60.3040 (3)0.75508 (10)0.30065 (13)0.0314 (4)
C10.0678 (4)0.78956 (13)0.49291 (18)0.0261 (4)
C20.2123 (4)0.70972 (12)0.48037 (17)0.0224 (4)
C30.1882 (4)0.69053 (13)0.35161 (18)0.0246 (4)
C40.3079 (4)0.60629 (13)0.33763 (17)0.0263 (4)
N10.4500 (3)0.42380 (10)0.53992 (14)0.0237 (4)
C110.4643 (4)0.49557 (13)0.72661 (17)0.0244 (4)
C120.4416 (4)0.58029 (14)0.74569 (18)0.0276 (4)
C130.3044 (4)0.60863 (15)0.8228 (2)0.0326 (5)
C140.1926 (4)0.55224 (16)0.8827 (2)0.0369 (5)
C150.2132 (4)0.46768 (17)0.8641 (2)0.0368 (5)
C160.3480 (4)0.43945 (14)0.78661 (19)0.0304 (5)
C170.6180 (3)0.46243 (13)0.64525 (17)0.0245 (4)
C180.7785 (4)0.52599 (14)0.60186 (19)0.0273 (4)
N20.2307 (3)0.47010 (11)0.27975 (14)0.0252 (4)
C210.1154 (4)0.37692 (12)0.13222 (18)0.0245 (4)
C220.1016 (4)0.35321 (15)0.2096 (2)0.0321 (5)
C230.2448 (4)0.28855 (16)0.1819 (2)0.0368 (5)
C240.1730 (4)0.24790 (15)0.0766 (2)0.0348 (5)
C250.0427 (5)0.27039 (15)0.0009 (2)0.0384 (6)
C260.1873 (4)0.33410 (14)0.02711 (19)0.0329 (5)
C270.2724 (4)0.44953 (13)0.15384 (17)0.0252 (4)
C280.2211 (5)0.52813 (14)0.09017 (19)0.0329 (5)
H50.54480.73840.50180.044*
H60.43630.73710.28690.047*
H20.13190.66300.51370.027*
H30.00900.68820.31180.030*
H1A0.54240.39610.49770.036*
H1B0.36120.46450.49540.036*
H1C0.34520.38750.56310.036*
H120.52040.61930.70570.033*
H130.28770.66670.83430.039*
H140.10180.57150.93650.044*
H150.13480.42890.90460.044*
H160.36130.38140.77430.036*
H170.72850.41770.68720.029*
H18A0.67330.56900.55670.041*
H18B0.87360.49820.55260.041*
H18C0.89210.55180.66830.041*
H2A0.07860.49340.30460.038*
H2B0.24010.42280.32080.038*
H2C0.34820.50670.29070.038*
H220.15260.38130.28190.039*
H230.39210.27240.23550.044*
H240.27230.20440.05750.042*
H250.09210.24230.07320.046*
H260.33700.34880.02590.039*
H270.45010.43420.12460.030*
H28A0.04670.54360.11680.049*
H28B0.32510.57370.10660.049*
H28C0.25840.51750.00630.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0277 (8)0.0282 (8)0.0539 (10)0.0071 (6)0.0155 (7)0.0018 (7)
O20.0546 (10)0.0226 (8)0.0398 (9)0.0097 (7)0.0243 (8)0.0103 (6)
O30.0505 (10)0.0331 (9)0.0487 (10)0.0117 (8)0.0246 (9)0.0019 (7)
O40.0382 (8)0.0197 (7)0.0343 (8)0.0006 (6)0.0020 (7)0.0007 (6)
O50.0259 (8)0.0352 (9)0.0255 (7)0.0007 (6)0.0028 (6)0.0018 (6)
O60.0434 (9)0.0241 (8)0.0291 (8)0.0046 (6)0.0130 (7)0.0048 (6)
C10.0341 (11)0.0198 (9)0.0301 (10)0.0007 (8)0.0193 (9)0.0002 (8)
C20.0238 (10)0.0201 (9)0.0238 (9)0.0000 (7)0.0066 (7)0.0008 (7)
C30.0273 (10)0.0210 (10)0.0244 (9)0.0030 (7)0.0037 (8)0.0015 (7)
C40.0299 (10)0.0231 (10)0.0230 (10)0.0051 (8)0.0002 (8)0.0027 (8)
N10.0261 (8)0.0206 (8)0.0246 (8)0.0021 (6)0.0060 (7)0.0006 (7)
C110.0233 (10)0.0269 (10)0.0217 (9)0.0011 (7)0.0022 (8)0.0029 (7)
C120.0290 (10)0.0267 (11)0.0265 (10)0.0020 (8)0.0054 (8)0.0010 (8)
C130.0333 (11)0.0316 (11)0.0330 (11)0.0031 (9)0.0080 (9)0.0068 (9)
C140.0365 (12)0.0489 (15)0.0275 (11)0.0020 (10)0.0119 (9)0.0031 (10)
C150.0371 (12)0.0452 (14)0.0296 (11)0.0065 (10)0.0109 (9)0.0098 (10)
C160.0325 (11)0.0273 (11)0.0294 (10)0.0022 (8)0.0033 (9)0.0069 (8)
C170.0227 (9)0.0227 (10)0.0268 (10)0.0006 (7)0.0033 (8)0.0009 (8)
C180.0236 (9)0.0271 (11)0.0312 (10)0.0030 (8)0.0061 (8)0.0008 (8)
N20.0303 (9)0.0231 (9)0.0238 (8)0.0029 (7)0.0097 (7)0.0020 (7)
C210.0278 (10)0.0239 (10)0.0222 (9)0.0004 (8)0.0065 (8)0.0017 (7)
C220.0333 (12)0.0320 (11)0.0284 (11)0.0042 (9)0.0017 (9)0.0065 (9)
C230.0351 (12)0.0332 (12)0.0394 (12)0.0083 (10)0.0030 (10)0.0036 (10)
C240.0418 (13)0.0269 (11)0.0369 (12)0.0066 (9)0.0113 (10)0.0047 (9)
C250.0522 (14)0.0350 (14)0.0272 (11)0.0040 (10)0.0076 (10)0.0068 (9)
C260.0383 (12)0.0330 (12)0.0244 (10)0.0048 (9)0.0013 (9)0.0005 (9)
C270.0281 (10)0.0241 (10)0.0236 (10)0.0015 (7)0.0064 (8)0.0009 (8)
C280.0441 (12)0.0278 (11)0.0281 (11)0.0058 (9)0.0112 (9)0.0074 (8)
Geometric parameters (Å, º) top
O1—C11.250 (3)C16—H160.95
O2—C11.260 (3)C17—C181.521 (3)
O3—C41.242 (3)C17—H171.00
O4—C41.264 (3)C18—H18A0.98
O5—C21.409 (2)C18—H18B0.98
O5—H50.84C18—H18C0.98
O6—C31.426 (3)N2—C271.491 (3)
O6—H60.84N2—H2A0.91
C1—C21.539 (3)N2—H2B0.91
C2—C31.529 (3)N2—H2C0.91
C2—H21.00C21—C221.390 (3)
C3—C41.534 (3)C21—C261.396 (3)
C3—H31.00C21—C271.514 (3)
N1—C171.508 (2)C22—C231.393 (3)
N1—H1A0.91C22—H220.95
N1—H1B0.91C23—C241.381 (3)
N1—H1C0.91C23—H230.95
C11—C121.390 (3)C24—C251.380 (4)
C11—C161.395 (3)C24—H240.95
C11—C171.522 (3)C25—C261.388 (3)
C12—C131.394 (3)C25—H250.95
C12—H120.95C26—H260.95
C13—C141.382 (3)C27—C281.530 (3)
C13—H130.95C27—H271.00
C14—C151.385 (4)C28—H28A0.98
C14—H140.95C28—H28B0.98
C15—C161.387 (3)C28—H28C0.98
C15—H150.95
C2—O5—H5109.5C18—C17—C11115.91 (17)
C3—O6—H6109.5N1—C17—H17107.9
O1—C1—O2125.6 (2)C18—C17—H17107.9
O1—C1—C2115.90 (18)C11—C17—H17107.9
O2—C1—C2118.46 (19)C17—C18—H18A109.5
O5—C2—C3111.23 (16)C17—C18—H18B109.5
O5—C2—C1113.96 (17)H18A—C18—H18B109.5
C3—C2—C1109.61 (16)C17—C18—H18C109.5
O5—C2—H2107.2H18A—C18—H18C109.5
C3—C2—H2107.2H18B—C18—H18C109.5
C1—C2—H2107.2C27—N2—H2A109.5
O6—C3—C2109.24 (16)C27—N2—H2B109.5
O6—C3—C4110.27 (17)H2A—N2—H2B109.5
C2—C3—C4110.13 (16)C27—N2—H2C109.5
O6—C3—H3109.1H2A—N2—H2C109.5
C2—C3—H3109.1H2B—N2—H2C109.5
C4—C3—H3109.1C22—C21—C26118.62 (19)
O3—C4—O4125.9 (2)C22—C21—C27123.18 (18)
O3—C4—C3117.0 (2)C26—C21—C27118.14 (18)
O4—C4—C3117.09 (18)C21—C22—C23120.4 (2)
C17—N1—H1A109.5C21—C22—H22119.8
C17—N1—H1B109.5C23—C22—H22119.8
H1A—N1—H1B109.5C24—C23—C22120.2 (2)
C17—N1—H1C109.5C24—C23—H23119.9
H1A—N1—H1C109.5C22—C23—H23119.9
H1B—N1—H1C109.5C25—C24—C23120.1 (2)
C12—C11—C16118.7 (2)C25—C24—H24119.9
C12—C11—C17122.01 (18)C23—C24—H24119.9
C16—C11—C17119.27 (19)C24—C25—C26119.8 (2)
C11—C12—C13120.7 (2)C24—C25—H25120.1
C11—C12—H12119.7C26—C25—H25120.1
C13—C12—H12119.7C25—C26—C21120.8 (2)
C14—C13—C12120.0 (2)C25—C26—H26119.6
C14—C13—H13120.0C21—C26—H26119.6
C12—C13—H13120.0N2—C27—C21112.10 (16)
C13—C14—C15119.9 (2)N2—C27—C28107.75 (17)
C13—C14—H14120.1C21—C27—C28111.86 (17)
C15—C14—H14120.1N2—C27—H27108.3
C14—C15—C16120.2 (2)C21—C27—H27108.3
C14—C15—H15119.9C28—C27—H27108.3
C16—C15—H15119.9C27—C28—H28A109.5
C15—C16—C11120.6 (2)C27—C28—H28B109.5
C15—C16—H16119.7H28A—C28—H28B109.5
C11—C16—H16119.7C27—C28—H28C109.5
N1—C17—C18107.32 (16)H28A—C28—H28C109.5
N1—C17—C11109.56 (15)H28B—C28—H28C109.5
O1—C1—C2—O5175.79 (18)C12—C11—C16—C150.3 (3)
O2—C1—C2—O54.3 (3)C17—C11—C16—C15177.96 (19)
O1—C1—C2—C358.8 (2)C12—C11—C17—N1111.8 (2)
O2—C1—C2—C3121.1 (2)C16—C11—C17—N170.0 (2)
O5—C2—C3—O662.2 (2)C12—C11—C17—C189.7 (3)
C1—C2—C3—O664.8 (2)C16—C11—C17—C18168.40 (18)
O5—C2—C3—C459.1 (2)C26—C21—C22—C230.6 (3)
C1—C2—C3—C4173.98 (16)C27—C21—C22—C23176.6 (2)
O6—C3—C4—O33.5 (3)C21—C22—C23—C240.5 (4)
C2—C3—C4—O3117.2 (2)C22—C23—C24—C250.9 (4)
O6—C3—C4—O4177.40 (17)C23—C24—C25—C260.1 (4)
C2—C3—C4—O462.0 (2)C24—C25—C26—C211.0 (4)
C16—C11—C12—C130.3 (3)C22—C21—C26—C251.4 (3)
C17—C11—C12—C13178.45 (19)C27—C21—C26—C25175.9 (2)
C11—C12—C13—C141.1 (3)C22—C21—C27—N222.7 (3)
C12—C13—C14—C151.3 (4)C26—C21—C27—N2160.08 (19)
C13—C14—C15—C160.7 (4)C22—C21—C27—C2898.5 (2)
C14—C15—C16—C110.0 (3)C26—C21—C27—C2878.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O1i0.842.072.882 (2)161
O5—H5···O60.842.462.860 (2)110
O6—H6···O30.842.112.603 (2)117
N1—H1A···O2ii0.911.882.759 (2)161
N1—H1B···O40.911.932.823 (2)167
N1—H1C···O1iii0.911.892.745 (2)155
N2—H2A···O40.911.842.746 (2)172
N2—H2B···O2iii0.911.912.774 (2)158
N2—H2C···O3iv0.911.852.720 (2)159
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1; (iii) x, y1/2, z+1; (iv) x1, y, z.
(V) bis-rac-1-Phenylethylammonium (R,R)-tartrate(2-) top
Crystal data top
2(C8H12N)·C4H4O6F(000) = 840
Mr = 392.44Dx = 1.271 Mg m3
Monoclinic, P21Synchrotron radiation, λ = 0.6900 Å
Hall symbol: P 2ybCell parameters from 5818 reflections
a = 8.3381 (14) Åθ = 1.7–29.4°
b = 22.738 (4) ŵ = 0.09 mm1
c = 10.8190 (18) ÅT = 150 K
β = 90.120 (3)°Plate, colourless
V = 2051.2 (6) Å30.30 × 0.22 × 0.06 mm
Z = 4
Data collection top
Kappa-CCD
diffractometer
5504 reflections with I > 2σ(I)
Radiation source: synchrotronRint = 0.034
ϕ scans, and ω scans with κ offsetsθmax = 29.4°, θmin = 1.7°
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
h = 1111
Tmin = 0.972, Tmax = 0.994k = 3030
18641 measured reflectionsl = 1514
5818 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0842P)2 + 0.5384P]
where P = (Fo2 + 2Fc2)/3
5818 reflections(Δ/σ)max = 0.001
517 parametersΔρmax = 0.59 e Å3
1 restraintΔρmin = 0.34 e Å3
Crystal data top
2(C8H12N)·C4H4O6V = 2051.2 (6) Å3
Mr = 392.44Z = 4
Monoclinic, P21Synchrotron radiation, λ = 0.6900 Å
a = 8.3381 (14) ŵ = 0.09 mm1
b = 22.738 (4) ÅT = 150 K
c = 10.8190 (18) Å0.30 × 0.22 × 0.06 mm
β = 90.120 (3)°
Data collection top
Kappa-CCD
diffractometer
5818 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
5504 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.994Rint = 0.034
18641 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0541 restraint
wR(F2) = 0.151H-atom parameters constrained
S = 1.16Δρmax = 0.59 e Å3
5818 reflectionsΔρmin = 0.34 e Å3
517 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.3959 (2)0.48525 (10)0.76691 (19)0.0302 (4)
O120.3469 (2)0.56775 (9)0.87050 (17)0.0259 (4)
O130.8339 (2)0.52948 (11)1.16414 (19)0.0325 (4)
O140.8851 (2)0.58334 (11)0.99741 (18)0.0299 (4)
O150.6974 (2)0.47686 (9)0.85069 (17)0.0257 (4)
H150.76200.48260.79250.039*
O160.5463 (2)0.49404 (10)1.07704 (17)0.0283 (4)
H160.50580.50591.14360.042*
C110.4381 (3)0.52675 (12)0.8356 (2)0.0202 (4)
C120.6148 (3)0.52957 (12)0.8771 (2)0.0194 (4)
H120.66870.56260.83250.023*
C130.6220 (3)0.54174 (12)1.0160 (2)0.0205 (4)
H130.55880.57821.03310.025*
C140.7944 (3)0.55160 (12)1.0615 (2)0.0222 (5)
O210.1309 (2)0.42473 (10)0.49823 (19)0.0281 (4)
O220.0807 (2)0.47946 (11)0.66396 (19)0.0314 (4)
O230.3618 (2)0.52484 (11)0.27015 (19)0.0311 (4)
O240.4064 (2)0.44174 (10)0.37315 (18)0.0266 (4)
O250.2057 (2)0.51542 (10)0.57711 (17)0.0280 (4)
H250.25310.50290.64040.042*
O260.0582 (2)0.53313 (10)0.34984 (17)0.0267 (4)
H260.00540.52750.29070.040*
C210.0411 (3)0.45736 (12)0.5619 (2)0.0217 (5)
C220.1308 (3)0.46791 (12)0.5153 (2)0.0210 (5)
H220.19490.43160.53220.025*
C230.1396 (3)0.48055 (12)0.3772 (2)0.0205 (4)
H230.08600.44760.33180.025*
C240.3177 (3)0.48294 (13)0.3376 (2)0.0219 (5)
C310.1566 (4)0.63264 (14)0.6447 (3)0.0328 (6)
C320.2708 (4)0.66246 (17)0.7127 (3)0.0388 (7)
H320.24040.68390.78440.047*
C330.4310 (4)0.6609 (2)0.6753 (4)0.0512 (10)
H330.50920.68240.72050.061*
C340.4772 (5)0.6286 (2)0.5735 (5)0.0615 (13)
H340.58700.62660.55030.074*
C350.3631 (6)0.5993 (2)0.5060 (5)0.0639 (13)
H350.39400.57700.43550.077*
C360.2022 (5)0.60200 (18)0.5404 (4)0.0465 (9)
H360.12340.58270.49180.056*
C370.0170 (4)0.62933 (18)0.6851 (4)0.0452 (9)
H370.08070.62020.60920.054*
C380.0875 (6)0.6821 (2)0.7386 (7)0.0802 (19)
H38A0.02500.69420.81090.120*
H38B0.08670.71380.67710.120*
H38C0.19820.67400.76370.120*
N30.0384 (3)0.57865 (12)0.7700 (2)0.0261 (5)
H3A0.14250.57690.79530.039*
H3B0.01240.54480.72990.039*
H3C0.02640.58320.83690.039*
C411.3613 (4)0.67717 (14)1.1196 (3)0.0335 (6)
C421.4098 (6)0.7115 (2)1.0210 (4)0.0526 (10)
H421.33670.71990.95590.063*
C431.5659 (7)0.7337 (3)1.0167 (5)0.0719 (16)
H431.59800.75740.94880.086*
C441.6709 (5)0.7220 (2)1.1075 (5)0.0642 (14)
H441.77680.73731.10330.077*
C451.6251 (5)0.6874 (2)1.2082 (5)0.0554 (11)
H451.69920.67911.27270.066*
C461.4697 (4)0.66522 (17)1.2127 (4)0.0405 (7)
H461.43790.64161.28070.049*
C471.1919 (3)0.65292 (15)1.1208 (3)0.0346 (6)
H471.13270.67141.05040.041*
C481.0991 (5)0.6659 (2)1.2365 (5)0.0550 (10)
H48A0.99400.64661.23190.082*
H48B1.08440.70841.24460.082*
H48C1.15820.65091.30830.082*
N41.1937 (2)0.58875 (11)1.0989 (2)0.0247 (4)
H4A1.23720.57031.16560.037*
H4B1.25340.58071.03070.037*
H4C1.09160.57581.08700.037*
C510.9062 (3)0.37519 (14)1.1482 (3)0.0291 (5)
C520.9509 (4)0.40679 (17)1.0440 (3)0.0407 (7)
H520.87150.42600.99560.049*
C531.1117 (5)0.4104 (2)1.0102 (4)0.0554 (11)
H531.14140.43290.93990.066*
C541.2278 (5)0.3818 (2)1.0775 (4)0.0549 (11)
H541.33720.38451.05380.066*
C551.1846 (4)0.3492 (2)1.1798 (4)0.0462 (9)
H551.26420.32871.22570.055*
C561.0240 (4)0.34625 (15)1.2160 (3)0.0342 (6)
H560.99520.32431.28730.041*
C570.7335 (3)0.37795 (15)1.1905 (3)0.0320 (6)
H570.66380.38311.11590.038*
C580.6725 (5)0.32510 (19)1.2629 (5)0.0519 (9)
H58A0.73990.31911.33610.078*
H58B0.67670.29001.21050.078*
H58C0.56150.33221.28860.078*
N50.7135 (3)0.43108 (11)1.2718 (2)0.0253 (4)
H5A0.78190.42851.33720.038*
H5B0.61070.43271.29980.038*
H5C0.73570.46411.22760.038*
C610.3822 (3)0.33194 (13)0.6272 (3)0.0258 (5)
C620.3332 (4)0.29366 (16)0.5349 (3)0.0383 (7)
H620.40880.27910.47690.046*
C630.1723 (5)0.27648 (18)0.5271 (4)0.0483 (9)
H630.13840.25050.46340.058*
C640.0641 (4)0.29712 (18)0.6111 (4)0.0443 (8)
H640.04510.28560.60490.053*
C650.1114 (4)0.33474 (17)0.7053 (3)0.0375 (7)
H650.03530.34870.76360.045*
C660.2708 (3)0.35185 (14)0.7136 (3)0.0299 (5)
H660.30420.37720.77850.036*
C670.5548 (3)0.35279 (13)0.6308 (3)0.0284 (5)
H670.61580.33110.56550.034*
C680.6369 (4)0.34175 (17)0.7547 (3)0.0395 (7)
H68A0.74750.35630.75150.059*
H68B0.63740.29950.77220.059*
H68C0.57850.36240.82010.059*
N60.5620 (3)0.41681 (11)0.6017 (2)0.0242 (4)
H6A0.50200.42430.53310.036*
H6B0.66560.42740.58760.036*
H6C0.52270.43770.66670.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0221 (8)0.0434 (12)0.0253 (9)0.0001 (8)0.0092 (7)0.0088 (8)
O120.0177 (8)0.0418 (11)0.0182 (8)0.0051 (7)0.0033 (6)0.0027 (7)
O130.0251 (9)0.0480 (12)0.0245 (9)0.0025 (9)0.0135 (7)0.0026 (9)
O140.0169 (8)0.0512 (13)0.0214 (9)0.0070 (8)0.0005 (7)0.0036 (8)
O150.0193 (8)0.0399 (10)0.0179 (8)0.0057 (8)0.0050 (6)0.0013 (7)
O160.0193 (8)0.0532 (13)0.0123 (7)0.0065 (8)0.0028 (6)0.0039 (8)
C110.0146 (9)0.0355 (12)0.0105 (9)0.0001 (9)0.0029 (7)0.0020 (8)
C120.0138 (9)0.0318 (12)0.0124 (9)0.0005 (8)0.0014 (7)0.0001 (8)
C130.0115 (9)0.0375 (13)0.0125 (9)0.0005 (8)0.0009 (7)0.0000 (8)
C140.0144 (9)0.0357 (13)0.0165 (10)0.0015 (9)0.0031 (8)0.0051 (9)
O210.0163 (8)0.0467 (12)0.0214 (9)0.0056 (7)0.0012 (7)0.0036 (8)
O220.0239 (9)0.0487 (12)0.0215 (9)0.0013 (9)0.0115 (7)0.0013 (8)
O230.0210 (8)0.0470 (12)0.0254 (9)0.0002 (8)0.0075 (7)0.0078 (9)
O240.0160 (8)0.0453 (11)0.0187 (8)0.0051 (7)0.0027 (6)0.0015 (8)
O250.0215 (8)0.0484 (12)0.0141 (8)0.0053 (8)0.0034 (6)0.0015 (7)
O260.0181 (8)0.0443 (11)0.0175 (8)0.0053 (8)0.0050 (6)0.0015 (8)
C210.0139 (9)0.0373 (13)0.0140 (10)0.0022 (9)0.0016 (8)0.0044 (9)
C220.0118 (9)0.0391 (13)0.0122 (9)0.0002 (8)0.0008 (7)0.0012 (9)
C230.0148 (9)0.0340 (12)0.0128 (9)0.0000 (9)0.0007 (7)0.0006 (9)
C240.0137 (9)0.0402 (13)0.0118 (9)0.0013 (9)0.0013 (7)0.0024 (9)
C310.0274 (13)0.0401 (16)0.0308 (14)0.0016 (11)0.0091 (11)0.0123 (12)
C320.0357 (15)0.0466 (18)0.0339 (15)0.0011 (13)0.0035 (12)0.0081 (13)
C330.0319 (16)0.066 (2)0.056 (2)0.0065 (16)0.0001 (15)0.0201 (19)
C340.0330 (17)0.072 (3)0.079 (3)0.0013 (18)0.028 (2)0.024 (2)
C350.073 (3)0.056 (2)0.063 (3)0.001 (2)0.046 (2)0.001 (2)
C360.054 (2)0.049 (2)0.0372 (17)0.0129 (16)0.0156 (15)0.0048 (15)
C370.0288 (14)0.059 (2)0.048 (2)0.0080 (14)0.0114 (14)0.0239 (17)
C380.047 (2)0.056 (3)0.138 (6)0.007 (2)0.029 (3)0.011 (3)
N30.0175 (9)0.0439 (13)0.0168 (9)0.0031 (9)0.0016 (7)0.0001 (9)
C410.0309 (14)0.0331 (14)0.0366 (15)0.0045 (11)0.0027 (11)0.0070 (12)
C420.061 (2)0.059 (2)0.0377 (18)0.0229 (19)0.0007 (17)0.0011 (16)
C430.081 (3)0.079 (3)0.056 (3)0.046 (3)0.030 (3)0.013 (2)
C440.041 (2)0.072 (3)0.080 (3)0.030 (2)0.022 (2)0.038 (3)
C450.0316 (16)0.063 (3)0.071 (3)0.0060 (16)0.0057 (17)0.027 (2)
C460.0290 (14)0.0455 (18)0.0470 (19)0.0030 (12)0.0024 (13)0.0057 (14)
C470.0227 (12)0.0382 (15)0.0428 (17)0.0020 (11)0.0005 (11)0.0019 (13)
C480.0407 (18)0.057 (2)0.068 (3)0.0023 (17)0.0136 (18)0.021 (2)
N40.0155 (9)0.0393 (12)0.0191 (9)0.0027 (8)0.0017 (7)0.0028 (9)
C510.0246 (12)0.0395 (14)0.0232 (12)0.0062 (11)0.0013 (10)0.0076 (11)
C520.0425 (17)0.055 (2)0.0246 (14)0.0156 (15)0.0084 (12)0.0003 (13)
C530.058 (2)0.064 (3)0.045 (2)0.011 (2)0.0290 (18)0.0002 (18)
C540.0305 (16)0.073 (3)0.061 (2)0.0041 (17)0.0202 (16)0.018 (2)
C550.0289 (15)0.062 (2)0.0478 (19)0.0134 (15)0.0028 (13)0.0133 (17)
C560.0289 (13)0.0421 (16)0.0318 (14)0.0069 (12)0.0031 (11)0.0046 (12)
C570.0217 (12)0.0458 (16)0.0286 (13)0.0016 (11)0.0024 (10)0.0111 (12)
C580.0389 (18)0.049 (2)0.067 (3)0.0070 (15)0.0103 (18)0.0077 (19)
N50.0176 (9)0.0411 (13)0.0172 (9)0.0047 (8)0.0003 (7)0.0007 (8)
C610.0229 (11)0.0298 (12)0.0249 (12)0.0025 (9)0.0001 (9)0.0024 (10)
C620.0402 (16)0.0428 (17)0.0319 (15)0.0052 (14)0.0009 (12)0.0054 (13)
C630.050 (2)0.049 (2)0.046 (2)0.0162 (16)0.0181 (16)0.0024 (15)
C640.0326 (15)0.052 (2)0.0484 (19)0.0163 (14)0.0117 (14)0.0125 (16)
C650.0245 (13)0.0476 (18)0.0404 (16)0.0049 (12)0.0006 (12)0.0086 (14)
C660.0215 (12)0.0381 (14)0.0301 (13)0.0021 (10)0.0004 (10)0.0000 (11)
C670.0187 (11)0.0358 (14)0.0306 (13)0.0018 (10)0.0027 (9)0.0029 (11)
C680.0262 (13)0.0483 (18)0.0440 (18)0.0022 (12)0.0099 (12)0.0127 (14)
N60.0161 (9)0.0372 (12)0.0193 (9)0.0025 (8)0.0017 (7)0.0014 (8)
Geometric parameters (Å, º) top
O11—C111.251 (3)C44—H440.95
O12—C111.262 (3)C45—C461.392 (5)
O13—C141.263 (3)C45—H450.95
O14—C141.255 (3)C46—H460.95
O15—C121.412 (3)C47—N41.478 (4)
O15—H150.84C47—C481.501 (5)
O16—C131.419 (3)C47—H471.00
O16—H160.84C48—H48A0.98
C11—C121.541 (3)C48—H48B0.98
C12—C131.529 (3)C48—H48C0.98
C12—H121.00N4—H4A0.91
C13—C141.535 (3)N4—H4B0.91
C13—H131.00N4—H4C0.91
O21—C211.259 (3)C51—C521.389 (5)
O22—C211.258 (3)C51—C561.390 (4)
O23—C241.256 (3)C51—C571.513 (4)
O24—C241.253 (3)C52—C531.393 (5)
O25—C221.415 (3)C52—H520.95
O25—H250.84C53—C541.374 (7)
O26—C231.406 (3)C53—H530.95
O26—H260.84C54—C551.381 (7)
C21—C221.539 (3)C54—H540.95
C22—C231.523 (3)C55—C561.397 (5)
C22—H221.00C55—H550.95
C23—C241.548 (3)C56—H560.95
C23—H231.00C57—N51.504 (4)
C31—C361.379 (5)C57—C581.523 (6)
C31—C321.382 (5)C57—H571.00
C31—C371.513 (4)C58—H58A0.98
C32—C331.396 (5)C58—H58B0.98
C32—H320.95C58—H58C0.98
C33—C341.378 (7)N5—H5A0.91
C33—H330.95N5—H5B0.91
C34—C351.373 (8)N5—H5C0.91
C34—H340.95C61—C621.385 (4)
C35—C361.393 (6)C61—C661.395 (4)
C35—H350.95C61—C671.516 (4)
C36—H360.95C62—C631.400 (5)
C37—C381.456 (7)C62—H620.95
C37—N31.485 (4)C63—C641.365 (6)
C37—H371.00C63—H630.95
C38—H38A0.98C64—C651.387 (5)
C38—H38B0.98C64—H640.95
C38—H38C0.98C65—C661.387 (4)
N3—H3A0.91C65—H650.95
N3—H3B0.91C66—H660.95
N3—H3C0.91C67—N61.490 (4)
C41—C461.379 (5)C67—C681.525 (4)
C41—C421.382 (5)C67—H671.00
C41—C471.517 (4)C68—H68A0.98
C42—C431.398 (6)C68—H68B0.98
C42—H420.95C68—H68C0.98
C43—C441.341 (9)N6—H6A0.91
C43—H430.95N6—H6B0.91
C44—C451.397 (8)N6—H6C0.91
C12—O15—H15109.5C41—C46—H46119.6
C13—O16—H16109.5C45—C46—H46119.6
O11—C11—O12124.5 (2)N4—C47—C48109.4 (3)
O11—C11—C12118.2 (2)N4—C47—C41110.3 (2)
O12—C11—C12117.3 (2)C48—C47—C41114.7 (3)
O15—C12—C13109.5 (2)N4—C47—H47107.4
O15—C12—C11111.8 (2)C48—C47—H47107.4
C13—C12—C11109.22 (18)C41—C47—H47107.4
O15—C12—H12108.7C47—C48—H48A109.5
C13—C12—H12108.7C47—C48—H48B109.5
C11—C12—H12108.7H48A—C48—H48B109.5
O16—C13—C12107.6 (2)C47—C48—H48C109.5
O16—C13—C14112.3 (2)H48A—C48—H48C109.5
C12—C13—C14112.09 (19)H48B—C48—H48C109.5
O16—C13—H13108.2C47—N4—H4A109.5
C12—C13—H13108.2C47—N4—H4B109.5
C14—C13—H13108.2H4A—N4—H4B109.5
O14—C14—O13123.9 (2)C47—N4—H4C109.5
O14—C14—C13118.2 (2)H4A—N4—H4C109.5
O13—C14—C13117.8 (2)H4B—N4—H4C109.5
C22—O25—H25109.5C52—C51—C56118.8 (3)
C23—O26—H26109.5C52—C51—C57118.7 (3)
O22—C21—O21124.0 (2)C56—C51—C57122.2 (3)
O22—C21—C22118.2 (2)C51—C52—C53120.3 (3)
O21—C21—C22117.8 (2)C51—C52—H52119.9
O25—C22—C23107.3 (2)C53—C52—H52119.9
O25—C22—C21112.0 (2)C54—C53—C52120.7 (4)
C23—C22—C21113.43 (19)C54—C53—H53119.7
O25—C22—H22108.0C52—C53—H53119.7
C23—C22—H22108.0C53—C54—C55119.6 (3)
C21—C22—H22108.0C53—C54—H54120.2
O26—C23—C22110.1 (2)C55—C54—H54120.2
O26—C23—C24112.0 (2)C54—C55—C56120.1 (4)
C22—C23—C24109.03 (18)C54—C55—H55119.9
O26—C23—H23108.6C56—C55—H55119.9
C22—C23—H23108.6C51—C56—C55120.4 (3)
C24—C23—H23108.6C51—C56—H56119.8
O24—C24—O23124.9 (2)C55—C56—H56119.8
O24—C24—C23117.0 (2)N5—C57—C51108.5 (2)
O23—C24—C23118.0 (2)N5—C57—C58107.2 (3)
C36—C31—C32119.6 (3)C51—C57—C58116.2 (3)
C36—C31—C37118.2 (3)N5—C57—H57108.2
C32—C31—C37122.1 (3)C51—C57—H57108.2
C31—C32—C33119.6 (4)C58—C57—H57108.2
C31—C32—H32120.2C57—C58—H58A109.5
C33—C32—H32120.2C57—C58—H58B109.5
C34—C33—C32120.7 (4)H58A—C58—H58B109.5
C34—C33—H33119.7C57—C58—H58C109.5
C32—C33—H33119.7H58A—C58—H58C109.5
C35—C34—C33119.4 (4)H58B—C58—H58C109.5
C35—C34—H34120.3C57—N5—H5A109.5
C33—C34—H34120.3C57—N5—H5B109.5
C34—C35—C36120.3 (4)H5A—N5—H5B109.5
C34—C35—H35119.9C57—N5—H5C109.5
C36—C35—H35119.9H5A—N5—H5C109.5
C31—C36—C35120.3 (4)H5B—N5—H5C109.5
C31—C36—H36119.8C62—C61—C66119.4 (3)
C35—C36—H36119.8C62—C61—C67119.6 (3)
C38—C37—N3110.3 (4)C66—C61—C67121.0 (3)
C38—C37—C31117.3 (4)C61—C62—C63120.0 (3)
N3—C37—C31109.3 (3)C61—C62—H62120.0
C38—C37—H37106.4C63—C62—H62120.0
N3—C37—H37106.4C64—C63—C62119.9 (3)
C31—C37—H37106.4C64—C63—H63120.0
C37—C38—H38A109.5C62—C63—H63120.0
C37—C38—H38B109.5C63—C64—C65120.9 (3)
H38A—C38—H38B109.5C63—C64—H64119.5
C37—C38—H38C109.5C65—C64—H64119.5
H38A—C38—H38C109.5C66—C65—C64119.4 (3)
H38B—C38—H38C109.5C66—C65—H65120.3
C37—N3—H3A109.5C64—C65—H65120.3
C37—N3—H3B109.5C65—C66—C61120.3 (3)
H3A—N3—H3B109.5C65—C66—H66119.9
C37—N3—H3C109.5C61—C66—H66119.9
H3A—N3—H3C109.5N6—C67—C61109.8 (2)
H3B—N3—H3C109.5N6—C67—C68109.2 (3)
C46—C41—C42118.8 (3)C61—C67—C68113.3 (3)
C46—C41—C47122.1 (3)N6—C67—H67108.2
C42—C41—C47119.1 (3)C61—C67—H67108.2
C41—C42—C43120.2 (4)C68—C67—H67108.2
C41—C42—H42119.9C67—C68—H68A109.5
C43—C42—H42119.9C67—C68—H68B109.5
C44—C43—C42120.7 (5)H68A—C68—H68B109.5
C44—C43—H43119.6C67—C68—H68C109.5
C42—C43—H43119.6H68A—C68—H68C109.5
C43—C44—C45120.2 (4)H68B—C68—H68C109.5
C43—C44—H44119.9C67—N6—H6A109.5
C45—C44—H44119.9C67—N6—H6B109.5
C46—C45—C44119.2 (4)H6A—N6—H6B109.5
C46—C45—H45120.4C67—N6—H6C109.5
C44—C45—H45120.4H6A—N6—H6C109.5
C41—C46—C45120.8 (4)H6B—N6—H6C109.5
O11—C11—C12—O1512.3 (3)C46—C41—C42—C430.3 (6)
O12—C11—C12—O15169.8 (2)C47—C41—C42—C43179.1 (4)
O11—C11—C12—C13133.7 (2)C41—C42—C43—C440.3 (8)
O12—C11—C12—C1348.4 (3)C42—C43—C44—C450.2 (8)
O15—C12—C13—O1660.8 (2)C43—C44—C45—C460.2 (7)
C11—C12—C13—O1662.0 (3)C42—C41—C46—C450.3 (6)
O15—C12—C13—C1463.2 (3)C47—C41—C46—C45179.1 (3)
C11—C12—C13—C14174.0 (2)C44—C45—C46—C410.2 (6)
O16—C13—C14—O14164.7 (2)C46—C41—C47—N470.2 (4)
C12—C13—C14—O1443.4 (3)C42—C41—C47—N4108.6 (4)
O16—C13—C14—O1318.5 (3)C46—C41—C47—C4853.9 (5)
C12—C13—C14—O13139.9 (3)C42—C41—C47—C48127.3 (4)
O22—C21—C22—O2517.4 (3)C56—C51—C52—C531.6 (5)
O21—C21—C22—O25165.9 (2)C57—C51—C52—C53173.0 (4)
O22—C21—C22—C23139.0 (3)C51—C52—C53—C541.5 (7)
O21—C21—C22—C2344.3 (3)C52—C53—C54—C550.1 (7)
O25—C22—C23—O2660.7 (2)C53—C54—C55—C561.2 (6)
C21—C22—C23—O2663.5 (3)C52—C51—C56—C550.2 (5)
O25—C22—C23—C2462.6 (3)C57—C51—C56—C55174.2 (3)
C21—C22—C23—C24173.2 (2)C54—C55—C56—C511.2 (6)
O26—C23—C24—O24170.3 (2)C52—C51—C57—N585.7 (3)
C22—C23—C24—O2448.3 (3)C56—C51—C57—N588.7 (4)
O26—C23—C24—O2311.5 (3)C52—C51—C57—C58153.6 (3)
C22—C23—C24—O23133.5 (2)C56—C51—C57—C5832.0 (4)
C36—C31—C32—C330.4 (5)C66—C61—C62—C631.6 (5)
C37—C31—C32—C33175.9 (3)C67—C61—C62—C63176.8 (3)
C31—C32—C33—C341.9 (6)C61—C62—C63—C640.5 (6)
C32—C33—C34—C352.2 (7)C62—C63—C64—C650.5 (6)
C33—C34—C35—C360.3 (7)C63—C64—C65—C660.4 (6)
C32—C31—C36—C352.3 (6)C64—C65—C66—C610.7 (5)
C37—C31—C36—C35174.1 (4)C62—C61—C66—C651.7 (5)
C34—C35—C36—C312.0 (7)C67—C61—C66—C65176.7 (3)
C36—C31—C37—C38144.2 (5)C62—C61—C67—N6112.0 (3)
C32—C31—C37—C3839.5 (6)C66—C61—C67—N666.4 (3)
C36—C31—C37—N389.3 (4)C62—C61—C67—C68125.7 (3)
C32—C31—C37—N387.0 (4)C66—C61—C67—C6855.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H15···O22i0.841.912.743 (3)169
O16—H16···O23ii0.841.872.690 (3)164
O25—H25···O110.841.862.681 (3)167
O26—H26···O13iii0.841.912.743 (3)169
N3—H3A···O120.911.902.801 (3)171
N3—H3B···O220.911.822.718 (4)168
N3—H3C···O14iv0.911.892.777 (3)165
N4—H4A···O23v0.911.852.738 (3)165
N4—H4B···O12i0.911.922.825 (3)170
N4—H4C···O140.911.982.798 (3)149
N5—H5A···O21v0.911.892.774 (3)164
N5—H5B···O24ii0.911.892.798 (3)173
N5—H5C···O130.911.832.716 (3)164
N6—H6A···O240.911.952.847 (3)171
N6—H6B···O21i0.911.962.803 (3)154
N6—H6C···O110.911.862.747 (3)164
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x1, y, z1; (iv) x1, y, z; (v) x+1, y, z+1.
(VI) bis-(R)-1.Phenylethylammonium rac-tartrate(2-) top
Crystal data top
4(C8H12N)·2(C4H4O6)·CH4OZ = 2
Mr = 816.93F(000) = 876
Triclinic, P1Dx = 1.267 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0822 (3) ÅCell parameters from 9771 reflections
b = 15.7819 (5) Åθ = 2.6–27.6°
c = 15.9040 (5) ŵ = 0.09 mm1
α = 108.7460 (15)°T = 150 K
β = 96.858 (2)°Plate, colourless
γ = 90.0600 (18)°0.20 × 0.16 × 0.08 mm
V = 2141.33 (12) Å3
Data collection top
Kappa-CCD
diffractometer
9771 independent reflections
Radiation source: fine-focus sealed X-ray tube6899 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.094
ϕ scans, and ω scans with κ offsetsθmax = 27.6°, θmin = 2.6°
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
h = 1111
Tmin = 0.975, Tmax = 0.993k = 2017
28530 measured reflectionsl = 1920
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.066P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
9771 reflectionsΔρmax = 0.44 e Å3
1074 parametersΔρmin = 0.40 e Å3
3 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0191 (18)
Crystal data top
4(C8H12N)·2(C4H4O6)·CH4Oγ = 90.0600 (18)°
Mr = 816.93V = 2141.33 (12) Å3
Triclinic, P1Z = 2
a = 9.0822 (3) ÅMo Kα radiation
b = 15.7819 (5) ŵ = 0.09 mm1
c = 15.9040 (5) ÅT = 150 K
α = 108.7460 (15)°0.20 × 0.16 × 0.08 mm
β = 96.858 (2)°
Data collection top
Kappa-CCD
diffractometer
9771 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
6899 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.993Rint = 0.094
28530 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0513 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.04Δρmax = 0.44 e Å3
9771 reflectionsΔρmin = 0.40 e Å3
1074 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O120.1286 (3)0.32807 (17)0.43058 (18)0.0309 (6)
O110.0193 (3)0.21248 (17)0.40497 (19)0.0305 (6)
O130.4229 (3)0.37649 (19)0.34477 (19)0.0373 (7)
O140.4236 (4)0.4723 (2)0.4833 (2)0.0473 (8)
O150.0711 (3)0.43776 (17)0.40486 (19)0.0302 (6)
H150.02920.45460.45150.045*
O160.2454 (3)0.36508 (17)0.53131 (17)0.0293 (6)
H160.31150.34140.55690.044*
C110.0084 (4)0.2922 (3)0.4104 (2)0.0259 (8)
C120.1113 (4)0.3475 (2)0.3882 (3)0.0260 (8)
H12D0.11910.32110.32280.031*
C130.2625 (4)0.3419 (3)0.4389 (3)0.0276 (8)
H13A0.29350.27850.41770.033*
C140.3806 (4)0.4019 (3)0.4216 (3)0.0312 (9)
O210.4854 (3)0.28847 (17)0.59234 (19)0.0328 (6)
O220.6239 (3)0.16811 (18)0.56818 (18)0.0315 (6)
O230.0848 (3)0.13457 (18)0.66674 (18)0.0312 (6)
O240.0449 (5)0.0494 (3)0.5243 (2)0.0709 (12)
O250.4190 (3)0.06888 (17)0.60625 (19)0.0317 (6)
H250.45990.04720.55970.048*
O260.2503 (3)0.13390 (18)0.47096 (17)0.0292 (6)
H260.18170.15360.44300.044*
C210.5070 (4)0.2087 (3)0.5888 (2)0.0270 (8)
C220.3844 (4)0.1587 (2)0.6159 (3)0.0266 (8)
H22A0.37710.19000.68070.032*
C230.2350 (4)0.1642 (2)0.5640 (2)0.0245 (8)
H23A0.20810.22840.58120.029*
C240.1128 (4)0.1106 (3)0.5867 (3)0.0294 (8)
O310.5630 (3)0.79291 (17)0.60979 (18)0.0304 (6)
O320.4034 (3)0.67865 (17)0.58923 (18)0.0297 (6)
O330.9854 (3)0.6271 (2)0.6763 (2)0.0394 (7)
O340.9327 (4)0.5333 (2)0.5377 (2)0.0477 (8)
O350.6137 (3)0.56940 (17)0.61649 (19)0.0306 (6)
H350.55670.55070.56810.046*
O360.7363 (3)0.64020 (18)0.48814 (17)0.0292 (6)
H360.79710.65850.46130.044*
C310.5313 (4)0.7143 (2)0.6074 (2)0.0257 (8)
C320.6613 (4)0.6601 (2)0.6317 (3)0.0268 (8)
H32A0.69580.68770.69710.032*
C330.7913 (4)0.6646 (3)0.5811 (3)0.0267 (8)
H33A0.83280.72770.60190.032*
C340.9147 (4)0.6032 (3)0.5990 (3)0.0310 (9)
O410.9463 (3)0.71289 (17)0.41826 (19)0.0317 (6)
O421.0950 (3)0.83235 (18)0.43839 (18)0.0302 (6)
O430.5133 (3)0.86458 (19)0.34099 (19)0.0348 (6)
O440.5368 (5)0.9517 (3)0.4810 (2)0.0829 (15)
O450.8738 (3)0.93122 (17)0.40015 (19)0.0319 (6)
H450.93480.95330.44640.048*
O460.7622 (3)0.86603 (18)0.53609 (17)0.0315 (6)
H460.70740.84450.56380.047*
C410.9695 (4)0.7924 (3)0.4192 (3)0.0273 (8)
C420.8350 (4)0.8415 (2)0.3916 (3)0.0253 (8)
H42A0.80100.80970.32690.030*
C430.7074 (4)0.8360 (3)0.4431 (3)0.0258 (8)
H43A0.67340.77170.42580.031*
C440.5759 (4)0.8889 (3)0.4201 (3)0.0306 (9)
N50.7932 (4)1.0526 (2)0.6477 (2)0.0302 (7)
H5A0.88831.07520.65750.045*
H5B0.73491.08190.61630.045*
H5C0.79050.99320.61580.045*
C510.8325 (4)1.0195 (3)0.7922 (3)0.0322 (9)
C520.9587 (5)1.0616 (3)0.8495 (3)0.0410 (10)
H520.98841.12030.85240.049*
C531.0416 (5)1.0196 (4)0.9023 (3)0.0508 (12)
H531.12751.04920.94070.061*
C540.9988 (6)0.9348 (4)0.8987 (3)0.0542 (13)
H541.05520.90600.93510.065*
C550.8754 (6)0.8916 (4)0.8431 (4)0.0549 (13)
H550.84690.83290.84100.066*
C560.7910 (5)0.9335 (3)0.7894 (3)0.0427 (10)
H560.70550.90330.75110.051*
C570.7368 (4)1.0653 (3)0.7365 (3)0.0314 (9)
H570.63481.03650.72360.038*
C580.7233 (5)1.1647 (3)0.7827 (3)0.0440 (11)
H58A0.68891.17420.84100.066*
H58B0.65181.18850.74570.066*
H58C0.82031.19550.79120.066*
N60.7723 (3)1.1132 (2)0.4118 (2)0.0279 (7)
H6A0.78061.05360.40250.042*
H6B0.72921.13850.46240.042*
H6C0.86411.13940.41810.042*
C610.7167 (4)1.0619 (3)0.2471 (3)0.0314 (9)
C620.6992 (4)0.9701 (3)0.2277 (3)0.0338 (9)
H620.66190.94720.26970.041*
C630.7353 (5)0.9109 (3)0.1476 (3)0.0388 (10)
H630.72520.84810.13580.047*
C640.7861 (5)0.9443 (3)0.0852 (3)0.0442 (11)
H640.81040.90420.03030.053*
C650.8017 (5)1.0358 (3)0.1024 (3)0.0455 (11)
H650.83571.05830.05920.055*
C660.7676 (5)1.0949 (3)0.1832 (3)0.0383 (10)
H660.77881.15760.19500.046*
C670.6783 (4)1.1269 (3)0.3333 (3)0.0343 (9)
H670.70181.18870.33310.041*
C680.5173 (5)1.1218 (3)0.3457 (3)0.0478 (11)
H68A0.45551.13180.29510.072*
H68B0.49931.16780.40140.072*
H68C0.49211.06250.34860.072*
N71.2288 (4)0.9470 (2)0.3590 (2)0.0300 (7)
H7A1.32110.92730.34840.045*
H7B1.18670.91460.38870.045*
H7C1.23591.00590.39290.045*
C711.1992 (4)0.9896 (3)0.2205 (3)0.0301 (8)
C721.3086 (5)0.9576 (3)0.1651 (3)0.0368 (9)
H721.34850.90090.16070.044*
C731.3597 (5)1.0075 (3)0.1167 (3)0.0423 (10)
H731.43480.98490.07960.051*
C741.3029 (5)1.0897 (3)0.1215 (3)0.0416 (10)
H741.33771.12330.08740.050*
C751.1952 (5)1.1228 (3)0.1763 (3)0.0422 (10)
H751.15651.17960.18040.051*
C761.1433 (5)1.0734 (3)0.2256 (3)0.0359 (9)
H761.06911.09670.26310.043*
C771.1343 (4)0.9359 (3)0.2716 (3)0.0323 (9)
H771.03500.95990.28560.039*
C781.1111 (5)0.8373 (3)0.2201 (3)0.0449 (11)
H78A1.05520.82940.16120.067*
H78B1.05540.80830.25320.067*
H78C1.20770.81010.21230.067*
N80.2635 (4)0.5499 (2)0.6500 (2)0.0302 (7)
H8A0.17420.57180.66510.045*
H8B0.24870.49700.60440.045*
H8C0.31360.58980.63230.045*
C810.3805 (4)0.6202 (3)0.8072 (3)0.0319 (8)
C820.2649 (5)0.6701 (3)0.8462 (3)0.0441 (10)
H820.16520.65450.81930.053*
C830.2955 (6)0.7427 (3)0.9242 (3)0.0545 (13)
H830.21670.77620.95100.065*
C840.4418 (6)0.7662 (3)0.9631 (3)0.0553 (13)
H840.46270.81501.01720.066*
C850.5558 (6)0.7188 (3)0.9233 (3)0.0562 (13)
H850.65560.73560.94920.067*
C860.5256 (5)0.6464 (3)0.8454 (3)0.0440 (11)
H860.60520.61450.81790.053*
C870.3522 (4)0.5351 (3)0.7295 (3)0.0303 (8)
H870.45060.51270.71160.036*
C880.2734 (5)0.4620 (3)0.7542 (3)0.0366 (9)
H88A0.33610.44760.80190.055*
H88B0.25490.40820.70150.055*
H88C0.17870.48350.77500.055*
N90.1975 (4)0.6085 (2)0.4275 (2)0.0297 (7)
H9A0.12180.64380.41900.045*
H9B0.24980.63450.48250.045*
H9C0.15990.55380.42390.045*
C910.2154 (4)0.5588 (3)0.2637 (3)0.0312 (9)
C920.1000 (5)0.6014 (3)0.2300 (3)0.0410 (10)
H920.06270.65380.26880.049*
C930.0389 (6)0.5691 (3)0.1415 (3)0.0510 (12)
H930.03970.59930.11990.061*
C940.0917 (6)0.4929 (3)0.0843 (3)0.0529 (12)
H940.05080.47120.02300.063*
C950.2040 (5)0.4484 (3)0.1164 (3)0.0487 (12)
H950.24100.39620.07720.058*
C960.2628 (4)0.4798 (3)0.2057 (3)0.0379 (10)
H960.33660.44710.22780.045*
C970.2989 (4)0.5977 (3)0.3563 (3)0.0297 (8)
H970.37820.55610.36440.036*
C980.3717 (4)0.6887 (3)0.3692 (3)0.0323 (9)
H98A0.44200.68210.32550.049*
H98B0.42480.71250.42990.049*
H98C0.29540.72990.36050.049*
N100.7098 (4)0.4554 (2)0.3678 (2)0.0288 (7)
H10A0.71440.50740.41450.043*
H10B0.76640.41450.38430.043*
H10C0.61400.43390.35190.043*
C1010.7631 (4)0.3867 (3)0.2105 (3)0.0329 (9)
C1020.6311 (5)0.3389 (3)0.1696 (3)0.0479 (11)
H1020.54180.35510.19520.058*
C1030.6301 (6)0.2670 (3)0.0906 (3)0.0560 (13)
H1030.53970.23440.06250.067*
C1040.7591 (6)0.2428 (3)0.0530 (3)0.0513 (12)
H1040.75730.19470.00160.062*
C1050.8908 (6)0.2887 (3)0.0952 (3)0.0530 (12)
H1050.98050.27120.07040.064*
C1060.8927 (5)0.3605 (3)0.1740 (3)0.0422 (10)
H1060.98390.39170.20280.051*
C1070.7667 (4)0.4725 (3)0.2900 (3)0.0298 (8)
H1070.87250.49490.30880.036*
C1080.6793 (5)0.5453 (3)0.2653 (3)0.0373 (9)
H10D0.57560.52420.24480.056*
H10E0.72220.55930.21740.056*
H10F0.68380.59920.31790.056*
N110.3122 (4)0.1098 (2)0.5935 (2)0.0292 (7)
H11A0.24820.13400.54260.044*
H11B0.39970.13790.58780.044*
H11C0.32860.05040.60260.044*
C1110.3322 (5)0.0623 (3)0.7581 (3)0.0335 (9)
C1120.3330 (5)0.0309 (3)0.7847 (3)0.0395 (10)
H1120.27800.05930.74750.047*
C1130.4122 (5)0.0826 (3)0.8643 (3)0.0404 (10)
H1130.41140.14600.88130.049*
C1140.4926 (5)0.0425 (3)0.9191 (3)0.0419 (10)
H1140.54760.07800.97370.050*
C1150.4923 (5)0.0502 (3)0.8937 (3)0.0458 (11)
H1150.54720.07810.93150.055*
C1160.4133 (5)0.1025 (3)0.8142 (3)0.0395 (10)
H1160.41410.16590.79770.047*
C1170.2462 (5)0.1215 (3)0.6721 (3)0.0391 (10)
H1170.25860.18500.67010.047*
C1180.0870 (5)0.1064 (4)0.6636 (3)0.0528 (12)
H11D0.04700.10800.71760.079*
H11E0.03660.15320.61140.079*
H11F0.07080.04770.65600.079*
N120.7332 (3)0.3980 (2)0.5934 (2)0.0295 (7)
H12A0.66050.36030.59740.044*
H12B0.76780.37550.53950.044*
H12C0.69560.45270.59860.044*
C1210.8077 (5)0.4427 (3)0.7591 (3)0.0341 (9)
C1220.7022 (5)0.3963 (3)0.7861 (3)0.0448 (11)
H1220.65250.34400.74430.054*
C1230.6689 (6)0.4259 (4)0.8738 (4)0.0577 (13)
H1230.59670.39390.89160.069*
C1240.7402 (6)0.5012 (4)0.9342 (4)0.0597 (15)
H1240.71900.52050.99440.072*
C1250.8429 (6)0.5494 (4)0.9084 (3)0.0580 (14)
H1250.89060.60220.95050.070*
C1260.8765 (5)0.5210 (3)0.8215 (3)0.0441 (10)
H1260.94650.55470.80390.053*
C1270.8584 (4)0.4074 (3)0.6675 (3)0.0299 (8)
H1270.93470.45110.66330.036*
C1280.9282 (4)0.3173 (3)0.6511 (3)0.0367 (9)
H12E1.01240.32220.69730.055*
H12F0.96300.29850.59200.055*
H12G0.85450.27290.65320.055*
O10.2387 (6)0.2634 (3)0.8082 (3)0.0857 (13)
H10.18170.22670.76710.129*
C10.1652 (10)0.3027 (6)0.8748 (5)0.109 (3)
H1A0.22120.35690.91430.164*
H1B0.15100.26180.90860.164*
H1C0.06830.31900.85170.164*
O20.5884 (5)0.7303 (3)0.1910 (3)0.0862 (14)
H20.55410.77350.22890.129*
C20.4731 (12)0.6745 (6)0.1372 (6)0.115 (3)
H2A0.43810.63550.16850.173*
H2B0.50780.63780.08140.173*
H2C0.39160.71060.12370.173*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O120.0239 (14)0.0272 (14)0.0409 (16)0.0028 (11)0.0060 (11)0.0093 (12)
O110.0237 (13)0.0246 (15)0.0435 (16)0.0023 (11)0.0047 (12)0.0113 (12)
O130.0316 (15)0.0381 (17)0.0410 (17)0.0022 (12)0.0089 (13)0.0097 (13)
O140.0499 (19)0.0361 (18)0.0464 (19)0.0219 (14)0.0033 (15)0.0015 (15)
O150.0243 (14)0.0279 (14)0.0421 (17)0.0045 (11)0.0085 (12)0.0149 (13)
O160.0302 (15)0.0262 (14)0.0323 (15)0.0011 (11)0.0028 (11)0.0109 (12)
C110.0246 (19)0.025 (2)0.027 (2)0.0008 (15)0.0008 (15)0.0084 (15)
C120.0193 (18)0.0232 (19)0.036 (2)0.0015 (14)0.0052 (15)0.0092 (16)
C130.0239 (19)0.0233 (19)0.033 (2)0.0024 (15)0.0055 (16)0.0050 (16)
C140.0212 (19)0.030 (2)0.047 (3)0.0021 (15)0.0041 (17)0.019 (2)
O210.0283 (14)0.0235 (15)0.0466 (17)0.0030 (11)0.0025 (12)0.0137 (12)
O220.0254 (14)0.0356 (15)0.0372 (15)0.0045 (11)0.0068 (11)0.0159 (13)
O230.0292 (15)0.0315 (15)0.0332 (16)0.0010 (11)0.0093 (12)0.0088 (12)
O240.084 (3)0.073 (3)0.043 (2)0.053 (2)0.0091 (19)0.0012 (18)
O250.0324 (15)0.0243 (14)0.0415 (17)0.0038 (11)0.0085 (12)0.0138 (12)
O260.0259 (14)0.0346 (15)0.0269 (14)0.0025 (11)0.0008 (11)0.0107 (12)
C210.0218 (19)0.032 (2)0.0252 (19)0.0023 (15)0.0017 (14)0.0087 (16)
C220.029 (2)0.0191 (18)0.030 (2)0.0035 (15)0.0023 (16)0.0061 (15)
C230.0206 (18)0.0231 (19)0.030 (2)0.0011 (14)0.0020 (15)0.0091 (16)
C240.0259 (19)0.025 (2)0.033 (2)0.0020 (15)0.0006 (16)0.0063 (17)
O310.0260 (14)0.0232 (14)0.0432 (16)0.0020 (10)0.0057 (12)0.0120 (12)
O320.0261 (14)0.0242 (14)0.0386 (15)0.0003 (11)0.0024 (12)0.0103 (12)
O330.0325 (16)0.0440 (18)0.0383 (17)0.0071 (13)0.0038 (13)0.0115 (14)
O340.0496 (19)0.0384 (18)0.0453 (18)0.0191 (14)0.0012 (14)0.0014 (14)
O350.0268 (14)0.0231 (14)0.0422 (17)0.0006 (11)0.0012 (12)0.0121 (12)
O360.0261 (14)0.0313 (15)0.0304 (15)0.0006 (11)0.0024 (11)0.0107 (12)
C310.0238 (19)0.025 (2)0.029 (2)0.0032 (15)0.0063 (15)0.0095 (16)
C320.0200 (18)0.027 (2)0.033 (2)0.0007 (15)0.0019 (15)0.0098 (16)
C330.0217 (18)0.0224 (19)0.034 (2)0.0007 (14)0.0004 (15)0.0071 (16)
C340.0233 (19)0.025 (2)0.046 (2)0.0023 (15)0.0044 (17)0.0121 (18)
O410.0285 (14)0.0252 (15)0.0425 (16)0.0039 (11)0.0067 (12)0.0116 (12)
O420.0207 (13)0.0354 (15)0.0348 (15)0.0006 (11)0.0022 (11)0.0121 (12)
O430.0264 (14)0.0358 (16)0.0433 (17)0.0048 (11)0.0003 (12)0.0159 (13)
O440.099 (3)0.080 (3)0.046 (2)0.067 (3)0.005 (2)0.0083 (19)
O450.0286 (15)0.0247 (14)0.0439 (17)0.0010 (11)0.0025 (12)0.0156 (13)
O460.0297 (15)0.0344 (15)0.0317 (15)0.0010 (12)0.0036 (12)0.0124 (12)
C410.0231 (19)0.027 (2)0.030 (2)0.0014 (15)0.0045 (16)0.0070 (16)
C420.027 (2)0.0185 (18)0.030 (2)0.0011 (14)0.0014 (15)0.0083 (15)
C430.0218 (18)0.025 (2)0.031 (2)0.0027 (14)0.0038 (15)0.0092 (16)
C440.028 (2)0.030 (2)0.034 (2)0.0033 (15)0.0036 (17)0.0103 (18)
N50.0271 (17)0.0324 (18)0.0318 (18)0.0016 (13)0.0019 (14)0.0119 (15)
C510.029 (2)0.038 (2)0.030 (2)0.0014 (16)0.0066 (16)0.0094 (17)
C520.032 (2)0.050 (3)0.040 (2)0.0007 (18)0.0024 (19)0.014 (2)
C530.037 (2)0.077 (4)0.042 (3)0.009 (2)0.004 (2)0.025 (3)
C540.049 (3)0.080 (4)0.048 (3)0.021 (3)0.010 (2)0.039 (3)
C550.064 (3)0.057 (3)0.060 (3)0.013 (2)0.022 (3)0.036 (3)
C560.041 (2)0.046 (3)0.045 (3)0.0027 (19)0.011 (2)0.019 (2)
C570.0241 (19)0.039 (2)0.031 (2)0.0008 (16)0.0030 (15)0.0114 (18)
C580.050 (3)0.045 (3)0.038 (2)0.016 (2)0.008 (2)0.013 (2)
N60.0242 (16)0.0269 (17)0.0293 (17)0.0012 (13)0.0019 (13)0.0049 (14)
C610.0224 (19)0.041 (2)0.030 (2)0.0033 (16)0.0005 (15)0.0112 (18)
C620.031 (2)0.038 (2)0.033 (2)0.0017 (16)0.0045 (16)0.0122 (18)
C630.035 (2)0.042 (2)0.037 (2)0.0034 (18)0.0020 (18)0.0114 (19)
C640.040 (2)0.054 (3)0.032 (2)0.005 (2)0.0087 (18)0.003 (2)
C650.041 (3)0.064 (3)0.036 (2)0.003 (2)0.013 (2)0.019 (2)
C660.035 (2)0.041 (2)0.039 (2)0.0032 (18)0.0013 (18)0.014 (2)
C670.032 (2)0.039 (2)0.033 (2)0.0056 (17)0.0028 (17)0.0132 (18)
C680.033 (2)0.066 (3)0.039 (2)0.007 (2)0.0031 (19)0.010 (2)
N70.0268 (17)0.0302 (18)0.0336 (18)0.0019 (13)0.0037 (14)0.0111 (15)
C710.0274 (19)0.031 (2)0.031 (2)0.0007 (15)0.0036 (15)0.0084 (17)
C720.035 (2)0.036 (2)0.043 (2)0.0083 (17)0.0128 (18)0.0149 (19)
C730.047 (3)0.045 (3)0.036 (2)0.002 (2)0.012 (2)0.011 (2)
C740.040 (2)0.050 (3)0.040 (2)0.0008 (19)0.0012 (19)0.023 (2)
C750.048 (3)0.037 (2)0.046 (3)0.0104 (19)0.004 (2)0.020 (2)
C760.033 (2)0.038 (2)0.035 (2)0.0073 (17)0.0040 (17)0.0103 (18)
C770.027 (2)0.037 (2)0.033 (2)0.0013 (16)0.0034 (16)0.0112 (18)
C780.051 (3)0.039 (3)0.042 (3)0.010 (2)0.000 (2)0.012 (2)
N80.0253 (17)0.0313 (18)0.0349 (18)0.0003 (13)0.0007 (14)0.0131 (15)
C810.033 (2)0.032 (2)0.031 (2)0.0017 (16)0.0023 (16)0.0119 (17)
C820.041 (2)0.038 (2)0.045 (3)0.0026 (19)0.001 (2)0.004 (2)
C830.060 (3)0.045 (3)0.047 (3)0.012 (2)0.004 (2)0.000 (2)
C840.072 (4)0.041 (3)0.045 (3)0.001 (2)0.005 (2)0.006 (2)
C850.052 (3)0.046 (3)0.056 (3)0.003 (2)0.016 (2)0.006 (2)
C860.032 (2)0.045 (3)0.047 (3)0.0014 (18)0.0031 (19)0.006 (2)
C870.0262 (19)0.031 (2)0.036 (2)0.0041 (16)0.0007 (16)0.0144 (17)
C880.039 (2)0.032 (2)0.039 (2)0.0014 (17)0.0037 (18)0.0127 (18)
N90.0261 (17)0.0283 (17)0.0350 (18)0.0010 (13)0.0015 (14)0.0115 (14)
C910.026 (2)0.033 (2)0.037 (2)0.0005 (16)0.0034 (16)0.0142 (18)
C920.041 (2)0.041 (3)0.038 (2)0.0058 (19)0.0007 (19)0.010 (2)
C930.054 (3)0.054 (3)0.044 (3)0.015 (2)0.000 (2)0.017 (2)
C940.059 (3)0.055 (3)0.038 (3)0.002 (2)0.003 (2)0.009 (2)
C950.041 (3)0.047 (3)0.047 (3)0.006 (2)0.006 (2)0.001 (2)
C960.030 (2)0.037 (2)0.042 (2)0.0043 (17)0.0023 (18)0.0075 (19)
C970.0224 (19)0.033 (2)0.036 (2)0.0048 (15)0.0044 (15)0.0144 (17)
C980.0264 (19)0.030 (2)0.042 (2)0.0022 (15)0.0045 (17)0.0125 (18)
N100.0267 (17)0.0280 (18)0.0320 (18)0.0009 (13)0.0029 (13)0.0103 (14)
C1010.033 (2)0.030 (2)0.037 (2)0.0036 (16)0.0064 (17)0.0124 (18)
C1020.036 (2)0.041 (3)0.057 (3)0.0024 (19)0.007 (2)0.001 (2)
C1030.055 (3)0.049 (3)0.050 (3)0.000 (2)0.000 (2)0.000 (2)
C1040.074 (4)0.039 (3)0.034 (2)0.005 (2)0.011 (2)0.001 (2)
C1050.059 (3)0.054 (3)0.047 (3)0.011 (2)0.026 (2)0.010 (2)
C1060.035 (2)0.045 (3)0.043 (3)0.0019 (19)0.0078 (19)0.008 (2)
C1070.0270 (19)0.028 (2)0.034 (2)0.0026 (15)0.0042 (16)0.0097 (17)
C1080.039 (2)0.036 (2)0.039 (2)0.0032 (17)0.0015 (18)0.0143 (19)
N110.0274 (17)0.0300 (18)0.0295 (17)0.0005 (13)0.0011 (13)0.0095 (14)
C1110.032 (2)0.037 (2)0.030 (2)0.0040 (17)0.0057 (17)0.0093 (18)
C1120.035 (2)0.048 (3)0.038 (2)0.0011 (18)0.0057 (18)0.018 (2)
C1130.044 (2)0.032 (2)0.042 (3)0.0044 (18)0.009 (2)0.0069 (19)
C1140.045 (3)0.042 (3)0.032 (2)0.0092 (19)0.0053 (19)0.0018 (19)
C1150.042 (3)0.055 (3)0.039 (3)0.003 (2)0.003 (2)0.014 (2)
C1160.042 (2)0.037 (2)0.038 (2)0.0011 (19)0.0085 (19)0.009 (2)
C1170.034 (2)0.051 (3)0.031 (2)0.0120 (19)0.0035 (17)0.0115 (19)
C1180.038 (3)0.068 (3)0.047 (3)0.002 (2)0.003 (2)0.013 (2)
N120.0240 (17)0.0291 (17)0.0365 (18)0.0036 (13)0.0040 (14)0.0122 (14)
C1210.033 (2)0.030 (2)0.038 (2)0.0060 (17)0.0002 (18)0.0091 (18)
C1220.048 (3)0.047 (3)0.041 (3)0.000 (2)0.010 (2)0.015 (2)
C1230.059 (3)0.074 (4)0.049 (3)0.006 (3)0.011 (3)0.030 (3)
C1240.059 (3)0.081 (4)0.038 (3)0.019 (3)0.007 (2)0.017 (3)
C1250.056 (3)0.062 (3)0.040 (3)0.012 (3)0.006 (2)0.001 (2)
C1260.036 (2)0.039 (2)0.047 (3)0.0040 (18)0.0054 (19)0.003 (2)
C1270.0212 (18)0.028 (2)0.039 (2)0.0012 (14)0.0005 (16)0.0107 (17)
C1280.028 (2)0.033 (2)0.052 (3)0.0049 (16)0.0050 (18)0.0171 (19)
O10.095 (3)0.065 (3)0.073 (3)0.004 (2)0.004 (3)0.006 (2)
C10.124 (7)0.132 (7)0.082 (5)0.002 (6)0.036 (5)0.040 (5)
O20.084 (3)0.071 (3)0.085 (3)0.022 (2)0.024 (3)0.005 (2)
C20.149 (8)0.121 (7)0.095 (6)0.027 (6)0.021 (6)0.060 (6)
Geometric parameters (Å, º) top
O12—C111.259 (4)N8—C871.499 (5)
O11—C111.261 (5)N8—H8A0.91
O13—C141.265 (5)N8—H8B0.91
O14—C141.249 (5)N8—H8C0.91
O15—C121.420 (4)C81—C861.387 (6)
O15—H150.84C81—C821.397 (6)
O16—C131.424 (5)C81—C871.502 (6)
O16—H160.84C82—C831.390 (6)
C11—C121.534 (5)C82—H820.95
C12—C131.525 (5)C83—C841.394 (7)
C12—H12D1.00C83—H830.95
C13—C141.535 (5)C84—C851.374 (7)
C13—H13A1.00C84—H840.95
O21—C211.259 (5)C85—C861.386 (7)
O22—C211.263 (5)C85—H850.95
O23—C241.264 (5)C86—H860.95
O24—C241.238 (5)C87—C881.535 (6)
O25—C221.416 (4)C87—H871.00
O25—H250.84C88—H88A0.98
O26—C231.426 (4)C88—H88B0.98
O26—H260.84C88—H88C0.98
C21—C221.543 (5)N9—C971.511 (5)
C22—C231.519 (5)N9—H9A0.91
C22—H22A1.00N9—H9B0.91
C23—C241.539 (5)N9—H9C0.91
C23—H23A1.00C91—C921.391 (6)
O31—C311.261 (5)C91—C961.395 (6)
O32—C311.250 (5)C91—C971.507 (6)
O33—C341.257 (5)C92—C931.379 (7)
O34—C341.242 (5)C92—H920.95
O35—C321.429 (4)C93—C941.381 (7)
O35—H350.84C93—H930.95
O36—C331.429 (5)C94—C951.379 (7)
O36—H360.84C94—H940.95
C31—C321.543 (5)C95—C961.383 (6)
C32—C331.521 (5)C95—H950.95
C32—H32A1.00C96—H960.95
C33—C341.542 (5)C97—C981.522 (5)
C33—H33A1.00C97—H971.00
O41—C411.267 (5)C98—H98A0.98
O42—C411.257 (5)C98—H98B0.98
O43—C441.253 (5)C98—H98C0.98
O44—C441.231 (5)N10—C1071.496 (5)
O45—C421.417 (4)N10—H10A0.91
O45—H450.84N10—H10B0.91
O46—C431.426 (5)N10—H10C0.91
O46—H460.84C101—C1061.380 (6)
C41—C421.542 (5)C101—C1021.388 (6)
C42—C431.515 (5)C101—C1071.524 (5)
C42—H42A1.00C102—C1031.396 (7)
C43—C441.533 (5)C102—H1020.95
C43—H43A1.00C103—C1041.377 (7)
N5—C571.513 (5)C103—H1030.95
N5—H5A0.91C104—C1051.378 (8)
N5—H5B0.91C104—H1040.95
N5—H5C0.91C105—C1061.391 (6)
C51—C561.393 (6)C105—H1050.95
C51—C521.395 (6)C106—H1060.95
C51—C571.514 (6)C107—C1081.523 (5)
C52—C531.385 (6)C107—H1071.00
C52—H520.95C108—H10D0.98
C53—C541.375 (8)C108—H10E0.98
C53—H530.95C108—H10F0.98
C54—C551.370 (8)N11—C1171.512 (5)
C54—H540.95N11—H11A0.91
C55—C561.401 (7)N11—H11B0.91
C55—H550.95N11—H11C0.91
C56—H560.95C111—C1121.394 (6)
C57—C581.516 (6)C111—C1161.395 (6)
C57—H571.00C111—C1171.508 (6)
C58—H58A0.98C112—C1131.379 (6)
C58—H58B0.98C112—H1120.95
C58—H58C0.98C113—C1141.376 (7)
N6—C671.501 (5)C113—H1130.95
N6—H6A0.91C114—C1151.387 (7)
N6—H6B0.91C114—H1140.95
N6—H6C0.91C115—C1161.380 (6)
C61—C621.385 (6)C115—H1150.95
C61—C661.404 (6)C116—H1160.95
C61—C671.505 (5)C117—C1181.463 (6)
C62—C631.393 (6)C117—H1171.00
C62—H620.95C118—H11D0.98
C63—C641.385 (6)C118—H11E0.98
C63—H630.95C118—H11F0.98
C64—C651.384 (7)N12—C1271.506 (5)
C64—H640.95N12—H12A0.91
C65—C661.393 (6)N12—H12B0.91
C65—H650.95N12—H12C0.91
C66—H660.95C121—C1221.391 (6)
C67—C681.504 (6)C121—C1261.402 (6)
C67—H671.00C121—C1271.511 (6)
C68—H68A0.98C122—C1231.392 (7)
C68—H68B0.98C122—H1220.95
C68—H68C0.98C123—C1241.368 (8)
N7—C771.503 (5)C123—H1230.95
N7—H7A0.91C124—C1251.381 (8)
N7—H7B0.91C124—H1240.95
N7—H7C0.91C125—C1261.381 (7)
C71—C721.393 (5)C125—H1250.95
C71—C761.399 (6)C126—H1260.95
C71—C771.511 (6)C127—C1281.516 (5)
C72—C731.378 (6)C127—H1271.00
C72—H720.95C128—H12E0.98
C73—C741.380 (6)C128—H12F0.98
C73—H730.95C128—H12G0.98
C74—C751.378 (6)O1—C11.304 (8)
C74—H740.95O1—H10.84
C75—C761.386 (6)C1—H1A0.98
C75—H750.95C1—H1B0.98
C76—H760.95C1—H1C0.98
C77—C781.509 (6)O2—C21.380 (11)
C77—H771.00O2—H20.84
C78—H78A0.98C2—H2A0.98
C78—H78B0.98C2—H2B0.98
C78—H78C0.98C2—H2C0.98
C12—O15—H15109.5C87—N8—H8C109.5
C13—O16—H16109.5H8A—N8—H8C109.5
O12—C11—O11124.2 (3)H8B—N8—H8C109.5
O12—C11—C12118.4 (3)C86—C81—C82119.0 (4)
O11—C11—C12117.4 (3)C86—C81—C87118.8 (3)
O15—C12—C13111.3 (3)C82—C81—C87122.1 (4)
O15—C12—C11111.2 (3)C83—C82—C81120.1 (4)
C13—C12—C11111.2 (3)C83—C82—H82119.9
O15—C12—H12D107.6C81—C82—H82119.9
C13—C12—H12D107.6C82—C83—C84120.0 (4)
C11—C12—H12D107.6C82—C83—H83120.0
O16—C13—C12107.7 (3)C84—C83—H83120.0
O16—C13—C14112.4 (3)C85—C84—C83119.9 (5)
C12—C13—C14111.4 (3)C85—C84—H84120.0
O16—C13—H13A108.4C83—C84—H84120.0
C12—C13—H13A108.4C84—C85—C86120.2 (5)
C14—C13—H13A108.4C84—C85—H85119.9
O14—C14—O13125.6 (4)C86—C85—H85119.9
O14—C14—C13117.6 (3)C85—C86—C81120.7 (4)
O13—C14—C13116.8 (4)C85—C86—H86119.6
C22—O25—H25109.5C81—C86—H86119.6
C23—O26—H26109.5N8—C87—C81112.1 (3)
O21—C21—O22124.7 (3)N8—C87—C88109.2 (3)
O21—C21—C22117.3 (3)C81—C87—C88112.0 (3)
O22—C21—C22117.9 (3)N8—C87—H87107.8
O25—C22—C23111.6 (3)C81—C87—H87107.8
O25—C22—C21112.1 (3)C88—C87—H87107.8
C23—C22—C21110.6 (3)C87—C88—H88A109.5
O25—C22—H22A107.5C87—C88—H88B109.5
C23—C22—H22A107.5H88A—C88—H88B109.5
C21—C22—H22A107.5C87—C88—H88C109.5
O26—C23—C22108.3 (3)H88A—C88—H88C109.5
O26—C23—C24112.3 (3)H88B—C88—H88C109.5
C22—C23—C24111.3 (3)C97—N9—H9A109.5
O26—C23—H23A108.3C97—N9—H9B109.5
C22—C23—H23A108.3H9A—N9—H9B109.5
C24—C23—H23A108.3C97—N9—H9C109.5
O24—C24—O23124.8 (4)H9A—N9—H9C109.5
O24—C24—C23117.5 (3)H9B—N9—H9C109.5
O23—C24—C23117.6 (3)C92—C91—C96117.6 (4)
C32—O35—H35109.5C92—C91—C97123.2 (4)
C33—O36—H36109.5C96—C91—C97119.0 (3)
O32—C31—O31125.0 (3)C93—C92—C91121.3 (4)
O32—C31—C32118.4 (3)C93—C92—H92119.3
O31—C31—C32116.6 (3)C91—C92—H92119.3
O35—C32—C33111.2 (3)C92—C93—C94120.1 (5)
O35—C32—C31110.9 (3)C92—C93—H93120.0
C33—C32—C31111.3 (3)C94—C93—H93120.0
O35—C32—H32A107.7C95—C94—C93119.7 (4)
C33—C32—H32A107.7C95—C94—H94120.2
C31—C32—H32A107.7C93—C94—H94120.2
O36—C33—C32107.9 (3)C94—C95—C96120.1 (4)
O36—C33—C34111.8 (3)C94—C95—H95120.0
C32—C33—C34110.9 (3)C96—C95—H95120.0
O36—C33—H33A108.7C95—C96—C91121.1 (4)
C32—C33—H33A108.7C95—C96—H96119.5
C34—C33—H33A108.7C91—C96—H96119.5
O34—C34—O33125.4 (4)C91—C97—N9111.4 (3)
O34—C34—C33118.0 (4)C91—C97—C98111.2 (3)
O33—C34—C33116.6 (3)N9—C97—C98108.5 (3)
C42—O45—H45109.5C91—C97—H97108.6
C43—O46—H46109.5N9—C97—H97108.6
O42—C41—O41124.3 (3)C98—C97—H97108.6
O42—C41—C42118.3 (3)C97—C98—H98A109.5
O41—C41—C42117.3 (3)C97—C98—H98B109.5
O45—C42—C43112.0 (3)H98A—C98—H98B109.5
O45—C42—C41111.9 (3)C97—C98—H98C109.5
C43—C42—C41110.9 (3)H98A—C98—H98C109.5
O45—C42—H42A107.3H98B—C98—H98C109.5
C43—C42—H42A107.3C107—N10—H10A109.5
C41—C42—H42A107.3C107—N10—H10B109.5
O46—C43—C42107.9 (3)H10A—N10—H10B109.5
O46—C43—C44112.9 (3)C107—N10—H10C109.5
C42—C43—C44111.5 (3)H10A—N10—H10C109.5
O46—C43—H43A108.1H10B—N10—H10C109.5
C42—C43—H43A108.1C106—C101—C102119.4 (4)
C44—C43—H43A108.1C106—C101—C107118.8 (4)
O44—C44—O43124.1 (4)C102—C101—C107121.6 (4)
O44—C44—C43117.8 (4)C101—C102—C103119.7 (4)
O43—C44—C43118.2 (3)C101—C102—H102120.1
C57—N5—H5A109.5C103—C102—H102120.1
C57—N5—H5B109.5C104—C103—C102120.6 (5)
H5A—N5—H5B109.5C104—C103—H103119.7
C57—N5—H5C109.5C102—C103—H103119.7
H5A—N5—H5C109.5C103—C104—C105119.5 (4)
H5B—N5—H5C109.5C103—C104—H104120.2
C56—C51—C52118.2 (4)C105—C104—H104120.2
C56—C51—C57119.4 (4)C104—C105—C106120.2 (4)
C52—C51—C57122.4 (4)C104—C105—H105119.9
C53—C52—C51121.3 (4)C106—C105—H105119.9
C53—C52—H52119.3C101—C106—C105120.5 (4)
C51—C52—H52119.3C101—C106—H106119.7
C54—C53—C52119.6 (5)C105—C106—H106119.7
C54—C53—H53120.2N10—C107—C108110.1 (3)
C52—C53—H53120.2N10—C107—C101111.3 (3)
C55—C54—C53120.5 (4)C108—C107—C101111.8 (3)
C55—C54—H54119.8N10—C107—H107107.9
C53—C54—H54119.8C108—C107—H107107.9
C54—C55—C56120.3 (5)C101—C107—H107107.9
C54—C55—H55119.8C107—C108—H10D109.5
C56—C55—H55119.8C107—C108—H10E109.5
C51—C56—C55120.1 (5)H10D—C108—H10E109.5
C51—C56—H56120.0C107—C108—H10F109.5
C55—C56—H56120.0H10D—C108—H10F109.5
N5—C57—C51111.5 (3)H10E—C108—H10F109.5
N5—C57—C58108.3 (3)C117—N11—H11A109.5
C51—C57—C58113.9 (3)C117—N11—H11B109.5
N5—C57—H57107.6H11A—N11—H11B109.5
C51—C57—H57107.6C117—N11—H11C109.5
C58—C57—H57107.6H11A—N11—H11C109.5
C57—C58—H58A109.5H11B—N11—H11C109.5
C57—C58—H58B109.5C112—C111—C116118.4 (4)
H58A—C58—H58B109.5C112—C111—C117122.9 (4)
C57—C58—H58C109.5C116—C111—C117118.7 (4)
H58A—C58—H58C109.5C113—C112—C111121.1 (4)
H58B—C58—H58C109.5C113—C112—H112119.5
C67—N6—H6A109.5C111—C112—H112119.5
C67—N6—H6B109.5C114—C113—C112120.2 (4)
H6A—N6—H6B109.5C114—C113—H113119.9
C67—N6—H6C109.5C112—C113—H113119.9
H6A—N6—H6C109.5C113—C114—C115119.4 (4)
H6B—N6—H6C109.5C113—C114—H114120.3
C62—C61—C66118.8 (4)C115—C114—H114120.3
C62—C61—C67121.9 (4)C116—C115—C114120.8 (4)
C66—C61—C67119.3 (4)C116—C115—H115119.6
C61—C62—C63121.1 (4)C114—C115—H115119.6
C61—C62—H62119.4C115—C116—C111120.1 (4)
C63—C62—H62119.4C115—C116—H116119.9
C64—C63—C62119.5 (4)C111—C116—H116119.9
C64—C63—H63120.3C118—C117—C111114.2 (4)
C62—C63—H63120.3C118—C117—N11110.0 (4)
C65—C64—C63120.4 (4)C111—C117—N11109.5 (3)
C65—C64—H64119.8C118—C117—H117107.6
C63—C64—H64119.8C111—C117—H117107.6
C64—C65—C66120.0 (4)N11—C117—H117107.6
C64—C65—H65120.0C117—C118—H11D109.5
C66—C65—H65120.0C117—C118—H11E109.5
C65—C66—C61120.2 (4)H11D—C118—H11E109.5
C65—C66—H66119.9C117—C118—H11F109.5
C61—C66—H66119.9H11D—C118—H11F109.5
N6—C67—C68109.2 (3)H11E—C118—H11F109.5
N6—C67—C61110.4 (3)C127—N12—H12A109.5
C68—C67—C61113.9 (4)C127—N12—H12B109.5
N6—C67—H67107.7H12A—N12—H12B109.5
C68—C67—H67107.7C127—N12—H12C109.5
C61—C67—H67107.7H12A—N12—H12C109.5
C67—C68—H68A109.5H12B—N12—H12C109.5
C67—C68—H68B109.5C122—C121—C126118.5 (4)
H68A—C68—H68B109.5C122—C121—C127122.1 (4)
C67—C68—H68C109.5C126—C121—C127119.2 (4)
H68A—C68—H68C109.5C121—C122—C123120.6 (5)
H68B—C68—H68C109.5C121—C122—H122119.7
C77—N7—H7A109.5C123—C122—H122119.7
C77—N7—H7B109.5C124—C123—C122119.9 (5)
H7A—N7—H7B109.5C124—C123—H123120.0
C77—N7—H7C109.5C122—C123—H123120.0
H7A—N7—H7C109.5C123—C124—C125120.4 (5)
H7B—N7—H7C109.5C123—C124—H124119.8
C72—C71—C76118.2 (4)C125—C124—H124119.8
C72—C71—C77122.8 (4)C126—C125—C124120.2 (5)
C76—C71—C77119.0 (3)C126—C125—H125119.9
C73—C72—C71120.6 (4)C124—C125—H125119.9
C73—C72—H72119.7C125—C126—C121120.3 (5)
C71—C72—H72119.7C125—C126—H126119.9
C72—C73—C74120.8 (4)C121—C126—H126119.9
C72—C73—H73119.6N12—C127—C121112.2 (3)
C74—C73—H73119.6N12—C127—C128107.9 (3)
C75—C74—C73119.5 (4)C121—C127—C128112.5 (3)
C75—C74—H74120.3N12—C127—H127108.0
C73—C74—H74120.3C121—C127—H127108.0
C74—C75—C76120.3 (4)C128—C127—H127108.0
C74—C75—H75119.9C127—C128—H12E109.5
C76—C75—H75119.9C127—C128—H12F109.5
C75—C76—C71120.6 (4)H12E—C128—H12F109.5
C75—C76—H76119.7C127—C128—H12G109.5
C71—C76—H76119.7H12E—C128—H12G109.5
N7—C77—C78108.8 (3)H12F—C128—H12G109.5
N7—C77—C71111.3 (3)C1—O1—H1109.5
C78—C77—C71113.9 (3)O1—C1—H1A109.5
N7—C77—H77107.5O1—C1—H1B109.5
C78—C77—H77107.5H1A—C1—H1B109.5
C71—C77—H77107.5O1—C1—H1C109.5
C77—C78—H78A109.5H1A—C1—H1C109.5
C77—C78—H78B109.5H1B—C1—H1C109.5
H78A—C78—H78B109.5C2—O2—H2109.5
C77—C78—H78C109.5O2—C2—H2A109.5
H78A—C78—H78C109.5O2—C2—H2B109.5
H78B—C78—H78C109.5H2A—C2—H2B109.5
C87—N8—H8A109.5O2—C2—H2C109.5
C87—N8—H8B109.5H2A—C2—H2C109.5
H8A—N8—H8B109.5H2B—C2—H2C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H15···O120.842.372.661 (4)101
O15—H15···O34i0.841.842.628 (4)156
O16—H16···O210.841.902.722 (4)167
O25—H25···O220.842.382.675 (4)101
O25—H25···O44ii0.841.822.584 (4)150
O26—H26···O110.841.892.712 (4)168
O35—H35···O140.841.832.617 (4)156
O36—H36···O410.841.912.741 (4)171
O45—H45···O420.842.382.677 (4)101
O45—H45···O24iii0.841.822.585 (4)150
O46—H46···O310.841.882.711 (4)171
N5—H5A···O23iii0.911.982.885 (4)171
N5—H5B···O22iv0.911.992.882 (4)168
N5—H5C···O460.912.002.902 (4)173
N6—H6A···O450.912.102.973 (4)161
N6—H6B···O22iv0.911.962.858 (4)169
N6—H6C···O11iii0.911.892.768 (4)160
N7—H7A···O43v0.912.012.898 (4)167
N7—H7B···O420.911.952.859 (4)173
N7—H7C···O26iii0.912.002.906 (4)178
N8—H8A···O33i0.911.932.822 (4)168
N8—H8B···O160.912.032.912 (4)163
N8—H8C···O320.911.962.869 (4)175
N9—H9A···O41i0.911.932.832 (4)169
N9—H9B···O320.912.002.891 (4)167
N9—H9C···O150.911.922.825 (4)174
N10—H10A···O360.912.042.920 (4)162
N10—H10B···O12v0.911.952.852 (4)173
N10—H10C···O130.911.932.819 (4)165
N11—H11A···O42vi0.911.962.863 (4)171
N11—H11B···O31ii0.911.912.781 (4)160
N11—H11C···O250.912.032.918 (4)163
N12—H12A···O210.911.932.832 (4)170
N12—H12B···O12v0.912.002.906 (4)172
N12—H12C···O350.911.942.844 (4)177
O1—H1···O230.841.902.730 (5)170
O2—H2···O430.841.972.791 (5)164
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x+1, y+1, z; (iv) x, y+1, z; (v) x+1, y, z; (vi) x1, y1, z.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC8H12N·C4H5O6C8H12N·C4H5O6C8H12N·C4H5O62(C8H12N)·C4H4O6
Mr271.27271.27271.27392.44
Crystal system, space groupMonoclinic, P21Monoclinic, P21Monoclinic, P21Monoclinic, P21
Temperature (K)150150150150
a, b, c (Å)6.3425 (2), 13.9448 (3), 7.5021 (3)7.3025 (2), 22.8901 (11), 8.1193 (3)7.2952 (2), 22.8935 (11), 8.1100 (3)5.5620 (2), 16.0630 (3), 11.8260 (4)
α, β, γ (°)90, 107.6599 (14), 9090, 96.599 (2), 9090, 96.603 (2), 9090, 103.2810 (12), 90
V3)632.25 (4)1348.19 (9)1345.49 (9)1028.31 (5)
Z2442
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.120.110.110.09
Crystal size (mm)0.30 × 0.25 × 0.220.28 × 0.16 × 0.140.36 × 0.26 × 0.200.36 × 0.26 × 0.10
Data collection
DiffractometerKappa-CCD
diffractometer
Kappa-CCD
diffractometer
Kappa-CCD
diffractometer
Kappa-CCD
diffractometer
Absorption correctionMulti-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Tmin, Tmax0.923, 0.9830.584, 0.9980.869, 0.9910.877, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
5067, 1497, 1386 15852, 3191, 2734 9403, 3160, 2446 8194, 2434, 2187
Rint0.0420.1290.0610.050
(sin θ/λ)max1)0.6490.6530.6500.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.077, 1.09 0.047, 0.130, 1.06 0.040, 0.091, 1.04 0.035, 0.094, 1.05
No. of reflections1497319131602434
No. of parameters177354354260
No. of restraints1111
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.200.34, 0.240.18, 0.210.22, 0.24


(V)(VI)
Crystal data
Chemical formula2(C8H12N)·C4H4O64(C8H12N)·2(C4H4O6)·CH4O
Mr392.44816.93
Crystal system, space groupMonoclinic, P21Triclinic, P1
Temperature (K)150150
a, b, c (Å)8.3381 (14), 22.738 (4), 10.8190 (18)9.0822 (3), 15.7819 (5), 15.9040 (5)
α, β, γ (°)90, 90.120 (3), 90108.7460 (15), 96.858 (2), 90.0600 (18)
V3)2051.2 (6)2141.33 (12)
Z42
Radiation typeSynchrotron, λ = 0.6900 ÅMo Kα
µ (mm1)0.090.09
Crystal size (mm)0.30 × 0.22 × 0.060.20 × 0.16 × 0.08
Data collection
DiffractometerKappa-CCD
diffractometer
Kappa-CCD
diffractometer
Absorption correctionMulti-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Tmin, Tmax0.972, 0.9940.975, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
18641, 5818, 5504 28530, 9771, 6899
Rint0.0340.094
(sin θ/λ)max1)0.7110.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.151, 1.16 0.051, 0.132, 1.04
No. of reflections58189771
No. of parameters5171074
No. of restraints13
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.340.44, 0.40

Computer programs: Kappa-CCD server software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.841.652.486 (2)174
O5—H5···O20.842.112.616 (2)119
O5—H5···O4ii0.842.182.797 (2)130
O6—H6···O30.842.172.652 (2)116
N1—H1A···O10.912.002.901 (2)172
N1—H1B···O5iii0.912.022.867 (2)154
N1—H1C···O2iv0.911.932.842 (2)177
Symmetry codes: (i) x, y, z1; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O15—H15···O120.842.112.607 (3)118
O15—H15···O22i0.842.282.941 (3)136
O16—H16···O210.841.922.750 (3)169
O14—H14···O11ii0.841.732.571 (3)175
O25—H25···O220.842.112.610 (3)118
O25—H25···O12iii0.842.363.022 (3)136
O26—H26···O110.841.942.771 (3)170
O24—H24···O21iv0.841.742.576 (3)177
N3—H3A···O120.911.852.749 (3)167
N3—H3B···O15iv0.911.962.850 (3)164
N3—H3C···O26i0.912.112.945 (3)152
N3—H3C···O23i0.912.362.894 (3)118
N4—H4A···O220.911.872.753 (3)162
N4—H4B···O25ii0.911.932.828 (3)169
N4—H4C···O16iii0.912.152.956 (3)147
N4—H4C···O13iii0.912.272.919 (3)128
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x, y, z1; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O15—H15···O120.842.132.605 (2)116
O15—H15···O22i0.842.222.944 (3)144
O16—H16···O210.841.922.750 (3)170
O14—H14···O11ii0.841.732.568 (2)176
O25—H25···O220.842.112.604 (2)117
O25—H25···O12iii0.842.353.019 (3)136
O26—H26···O110.841.942.773 (3)169
O24—H24···O21iv0.841.742.575 (2)177
N3—H3A···O26i0.912.112.945 (3)152
N3—H3A···O23i0.912.352.893 (3)118
N3—H3B···O15iv0.911.962.847 (3)165
N3—H3C···O120.911.852.747 (3)167
N4—H4A···O16iii0.912.152.956 (3)147
N4—H4A···O13iii0.912.252.916 (3)129
N4—H4B···O25ii0.911.932.824 (3)169
N4—H4C···O220.911.872.752 (3)162
C36—H36···Cgv0.952.873.775 (3)160
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x, y, z1; (iv) x1, y, z; (v) x+1, y1/2, z+1.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O1i0.842.072.882 (2)161
O5—H5···O60.842.462.860 (2)110
O6—H6···O30.842.112.603 (2)117
N1—H1A···O2ii0.911.882.759 (2)161
N1—H1B···O40.911.932.823 (2)167
N1—H1C···O1iii0.911.892.745 (2)155
N2—H2A···O40.911.842.746 (2)172
N2—H2B···O2iii0.911.912.774 (2)158
N2—H2C···O3iv0.911.852.720 (2)159
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1; (iii) x, y1/2, z+1; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) for (V) top
D—H···AD—HH···AD···AD—H···A
O15—H15···O22i0.841.912.743 (3)169
O16—H16···O23ii0.841.872.690 (3)164
O25—H25···O110.841.862.681 (3)167
O26—H26···O13iii0.841.912.743 (3)169
N3—H3A···O120.911.902.801 (3)171
N3—H3B···O220.911.822.718 (4)168
N3—H3C···O14iv0.911.892.777 (3)165
N4—H4A···O23v0.911.852.738 (3)165
N4—H4B···O12i0.911.922.825 (3)170
N4—H4C···O140.911.982.798 (3)149
N5—H5A···O21v0.911.892.774 (3)164
N5—H5B···O24ii0.911.892.798 (3)173
N5—H5C···O130.911.832.716 (3)164
N6—H6A···O240.911.952.847 (3)171
N6—H6B···O21i0.911.962.803 (3)154
N6—H6C···O110.911.862.747 (3)164
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x1, y, z1; (iv) x1, y, z; (v) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) for (VI) top
D—H···AD—HH···AD···AD—H···A
O15—H15···O120.842.372.661 (4)101
O15—H15···O34i0.841.842.628 (4)156
O16—H16···O210.841.902.722 (4)167
O25—H25···O220.842.382.675 (4)101
O25—H25···O44ii0.841.822.584 (4)150
O26—H26···O110.841.892.712 (4)168
O35—H35···O140.841.832.617 (4)156
O36—H36···O410.841.912.741 (4)171
O45—H45···O420.842.382.677 (4)101
O45—H45···O24iii0.841.822.585 (4)150
O46—H46···O310.841.882.711 (4)171
N5—H5A···O23iii0.911.982.885 (4)171
N5—H5B···O22iv0.911.992.882 (4)168
N5—H5C···O460.912.002.902 (4)173
N6—H6A···O450.912.102.973 (4)161
N6—H6B···O22iv0.911.962.858 (4)169
N6—H6C···O11iii0.911.892.768 (4)160
N7—H7A···O43v0.912.012.898 (4)167
N7—H7B···O420.911.952.859 (4)173
N7—H7C···O26iii0.912.002.906 (4)178
N8—H8A···O33i0.911.932.822 (4)168
N8—H8B···O160.912.032.912 (4)163
N8—H8C···O320.911.962.869 (4)175
N9—H9A···O41i0.911.932.832 (4)169
N9—H9B···O320.912.002.891 (4)167
N9—H9C···O150.911.922.825 (4)174
N10—H10A···O360.912.042.920 (4)162
N10—H10B···O12v0.911.952.852 (4)173
N10—H10C···O130.911.932.819 (4)165
N11—H11A···O42vi0.911.962.863 (4)171
N11—H11B···O31ii0.911.912.781 (4)160
N11—H11C···O250.912.032.918 (4)163
N12—H12A···O210.911.932.832 (4)170
N12—H12B···O12v0.912.002.906 (4)172
N12—H12C···O350.911.942.844 (4)177
O1—H1···O230.841.902.730 (5)170
O2—H2···O430.841.972.791 (5)164
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x+1, y+1, z; (iv) x, y+1, z; (v) x+1, y, z; (vi) x1, y1, z.
 

Footnotes

1Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM5020 ). Services for accessing these data are described at the back of the journal.

Acknowledgements

X-ray data were collected at the University of Toronto using a Nonius Kappa-CCD diffractometer purchased with funds from NSERC Canada. We acknowledge the CCLRC for provision of beamtime on Station 9.8 of the SRS.

References

First citationAllen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003a). Acta Cryst. B59, 100–117.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003b). Acta Cryst. C59, o329–o331.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrell, D. M. M., Ferguson, G., Lough, A. J. & Glidewell, C. (2002a). Acta Cryst. B58, 272–288.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrell, D. M. M., Ferguson, G., Lough, A. J. & Glidewell, C. (2002b). Acta Cryst. B58, 530–544.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. B58, 864–876.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2004). Acta Cryst. B60, 472–480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohnson, M. N. & Feeder, N. (2004). Acta Cryst. E60, o1476–o1477.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKroon, J., Duisenberg, A. J. M. & Peerdeman, A. F. (1984). Acta Cryst. C40, 645–647.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMolins, E., Miravitlles, C., López-Calahorra, F., Castells, J. & Raventós, J. (1989). Acta Cryst. C45, 104–106.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNonius (1997). Kappa-CCD Server Software, Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307–326.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurkington, D. E., Ferguson, G., Lough, A. J. & Glidewell, C. (2004). Acta Cryst. C60, o617–o622.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWilson, A. J. C. (1976). Acta Cryst. A32, 994–996.  CrossRef IUCr Journals Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds