Structural

Science

ISSN 0108-7681

Lu Cai and Juan C. Nino*

Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611-6400, USA

Correspondence e-mail: jnino@mse.ufl.edu

[^0]
Complex ceramic structures. I. Weberites

The weberite structure $\left(A_{2} B_{2} X_{7}\right)$ is an anion-deficient fluoriterelated superstructure. Compared with fluorites, the reduction in the number of anions leads to a decrease in the coordination number of the B cations (VI coordination) with respect to the A cations (VIII coordination), thus allowing the accommodation of diverse cations. As a result, weberite compounds have a broad range of chemical and physical properties and great technological potential. This article summarizes the structural features of weberite and describes the structure in several different ways. This is the first time that the stacking vector and stacking angle are used to represent the weberite structure. This paper also discusses the crystallographic relationship between weberite, fluorite and pyrochlore (another fluorite-related structure). The cation sublattices of weberite and pyrochlore are correlated by an axial transformation. It has been shown that the different coordination environment of anions is due to the alternating layering of the $A B_{3}$ and $A_{3} B$ close-packed cation layers. A stability field of weberite oxides is proposed in terms of the ratio of ionic radius of cations and relative bond ionicity. In addition, a selection of weberite compounds with interesting properties is discussed.

1. Introduction

The weberite crystal structure (space group: Imma, No. 74), with typical stoichiometry $A_{2} B_{2} X_{7}$ (A and B are cations, X is an anion, O or F), is a type of anion-deficient fluorite superstructure $\left(A X_{2}\right)$. While several other compounds possess the same stoichiometry (pyrochlores, layered perovskites etc.), weberites are isomorphic with the mineral $\mathrm{Na}_{2} \mathrm{MgAlF}_{7}$. This mineral was originally found in Ivigtut in southwestern Greenland and was named after Theobald Weber (Bogvad, 1938). In 1944, Byström (1944) determined the crystal structure, basing his studies on the pyrochlore structure, which is another fluorite-related superstructure.

While the structure has a cationic sublattice arrangement similar to that found in the fluorite structure (face-centered cube), owing to distortions in the anion sublattice, the crystal structure has a high potential to accommodate diverse metals. The cations in (011) planes have nearly the same symmetry as in the hexagonal tungsten bronze (HTB) structure. In addition, the triangular network in $\mathrm{Na}_{2} B^{2+} B^{3+} \mathrm{F}_{7}$ weberites, which is formed by B^{2+} and B^{3+} cations in the HTB-like planes, potentially supports various magnetically ordered systems. To date, fluorine-based weberites such as $\mathrm{Na}_{2} B^{2+} B^{3+} \mathrm{F}_{7}$ and $\mathrm{Ag}_{2} B^{2+} B^{3+} \mathrm{F}_{7}$ have attracted most of the attention owing to their interesting magnetic properties (Cosier et al., 1970; Dance et al., 1974; Frenzen et al., 1992; Laligant et al., 1989; Laligant, Ferey et al., 1987; Pankhurst et al., 1991; Ruchaud et

Received 9 July 2008
Accepted 27 March 2009

Table 1
Weberite structure data (origin at A cations) in space group Imma.

			Atomic position		
Atoms	Wyckoff position	Site symmetry	x	y	z
$A 1$	$4 d$	$2 / m$	0.25	0.25	0.75
$A 2$	$4 a$	$2 / m$	0	0	0
$B 1$	$4 c$	$2 / m$	0.25	0.25	0.25
$B 2$	$4 b$	$2 / m$	0	0	0.5
$X 1$	$8 h$	m	0	y_{1}	z_{1}
$X 2$	$16 j$	1	x_{2}	y_{2}	z_{2}
$X 3$	$4 e$	$m m 2$	0	0.25	z_{3}

$X 1$ is at the center of $A_{3} B, X 2$ is in the $A_{2} B_{2}$ tetrahedron and $X 3$ is inside $A_{4} B_{2}$.
al., 1992; Thompson et al., 1992; Tressaud et al., 1974; Heger, 1973). Investigations on $A_{2} B_{2} \mathrm{O}_{7}$ weberites have mainly focused on crystallography because of the close relationship between the weberite and the pyrochlore structures (Cordfunke \& Ijdo, 1988; Groen \& Ijdo, 1988; Klein et al., 2006; Reading et al., 2002; Astafev et al., 1985; Bonazzi \& Bindi, 2007; Desgardin et al., 1976; Grey et al., 2001, 2003; Grey \& Roth, 2000; Ivanov \& Zavodnik, 1990). Both of the structures form three-dimensional $B X_{6}$ networks and HTB-like layers. Some compounds, for example $\mathrm{Ca}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}$, can form a metastable pyrochlore phase, which can be converted into the weberite structure by heating above 973 K (Brisse et al., 1972). Recently, weberite oxides and weberite-related oxides have been reported to possess interesting physical properties (ferroelectric, dielectric and magnetic) as well as photocatalytic activity (Wakeshima et al., 2004; Abe et al., 2004, 2006; Cai \& Nino, 2007; Cai et al., 2007; Cava et al., 1998; Ebbinghaus et al., 2005; Ivanov et al., 1998; Grey et al., 2001; Lin et al., 2006; Khalifah et al., 1999; Nishimine et al., 2004, 2005; Plaisier et al., 2002; Wakeshima \& Hinatsu, 2006; Hinatsu et al., 2004; Harada \& Hinatsu, 2002, 2001; Lam et al., 2003; Wiss et al., 2000; Wltschek et al., 1996; Gemmill et al., 2005).

There are a considerable number of publications on weberite ceramics. However, information on weberites is scattered. While presenting their work on the structure determination of $\mathrm{Na}_{2} \mathrm{Fe}_{2} \mathrm{~F}_{7}$, Yakubovich et al. (1993) devoted more than half of the paper to a comparison of different types of weberite structures in $\mathrm{Na}_{2} B^{2+} B^{3+} \mathrm{F}_{7}$ compounds and their relationship to the fluorite and the pyrochlore structures, but their discussion was limited to the crystallographic aspects. Lopatin et al. (1985) and Sych et al. (Sych, Kabanova, Garbuz et al., 1988) focused on the stability-field region of these compounds. However, there is no article that correlates the structure and properties of weberites. Therefore, this paper is intended to provide a discussion of weberite ceramics, covering crystallographic aspects including the relationship between weberite, fluorite and pyrochlore, their stability field with respect to pyrochlore, and their interesting properties.

In §2 the structural features of weberite and the characteristics of weberite-like structures are discussed. Several different descriptions of the structure are given and a stacking vector and stacking angle are used for the first time to represent the weberite structure. The crystallographic relationship between the fluorite and the pyrochlore structures is
also discussed. It is also shown that the cation sublattices of pyrochlores can be transformed to the weberite-like lattice. The different stacking of neighboring $A B_{3}$ and $A_{3} B$ layers lead to the different coordination environments of anions in weberite and pyrochlore. A stability field is developed to predict the formation of pyrochlore and weberite oxides. In $\S 3$ ferroelectric and dielectric properties of some weberite compounds are discussed.

2. Crystal structure

2.1. Classic orthorhombic weberite

The space group of the orthorhombic weberite structure is Imma (No.74) with four formula units per unit cell $(Z=4)$. However, the correct space group of weberites was a subject of controversy for a long time, as it was described as both Imma and Imm2 (Sych, Kabanova \& Andreeva, 1988; Haegele et al., 1978; Giuseppetti \& Tadini, 1978; Knop et al., 1982; Byström, 1944). The detailed history of the determination of the space group has been reported by Yakubovich et al. (1993). The two space groups are closely related as Imm2 is a subgroup of Imma. The only evidence ruling out Imma was the observation of very weak ($h k 0$) with $h=2 n+1$ reflections. It was later proven that the existence of ($h k 0$) with $h=2 n+1$ reflections from $\mathrm{Na}_{2} \mathrm{NiFeF}_{7}$ single crystals and $\mathrm{Na}_{2} \mathrm{NiAlF}_{7}$ originated from the Renninger effect ('double reflection' process; Schmidt et al., 1992; Laligant et al., 1989). Thus, there is no doubt that the true space group of the orthorhombic weberite is Imma. The atomic positions and site symmetry are given in Table 1.

In weberites the A ions sit in the $4 a$ and $4 d$ atomic positions with site symmetry $2 / m$ and establish a coordination number of 8 with the anions. The A ions have two different coordination environments. The $A 1$ cations (in atomic position $4 d$) lie in a highly distorted cube (or square prism) where there are two different $A 1-X$ bond lengths. The cubes are edge-shared to form a series of chains in the [100] direction. The $A 2$ cations (in atomic position $4 a$) are located within bi-hexagonal pyramids in which anions are spaced at three different distances from the central cations. Each pyramid is corner-shared with two other pyramids and edge-shared with four $A 1 X_{8}$ cubes. As presented in Table 1 there are three Wyckoff positions for anions ($X 1$ at $8 h, X 2$ at $16 j$ and $X 3$ at $4 e$). $A 1$ ions only connect to $X 1$ and $X 2$, while $A 2$ link to all three types of anions (two $X 1$, four $X 2$ and two $X 3$).

The B ions are located in the $4 b$ and $4 c$ Wyckoff positions (site symmetry $2 / \mathrm{m}$) and have a coordination number of 6 , i.e. $A_{2}^{\mathrm{VIII}} B_{2}^{\mathrm{VII}} X_{7}$. The weberite structure can be described as a network of corner-shared $B X_{6}$ octahedra with the penetration of A cations (see Fig. 1). There are two types of $B X_{6}$ octahedra: $B-1\left(B^{2+}\right.$ in the case of $A_{2} B^{2+} B^{3+} \mathrm{F}_{7}, A=\mathrm{Na}^{+}$or $\left.\mathrm{Ag}^{+}\right)$in $4 c$ Wyckoff positions, and $B-2\left(B^{3+}\right.$ in the case of $\left.A_{2} B^{2+} B^{3+} \mathrm{F}_{7}\right)$ in $4 b$ Wyckoff positions. Each of the six vertices of $B-1$ octahedra connects to another B octahedron, while only four vertices of a $B-2$ octahedron link to other B octahedra. The two unpaired vertices are in a trans configuration. As will be
discussed later, trigonal or monoclinic weberite variants cause a cis configuration (see Fig. 2). The $B-1$ octahedra are cornerlinked to each other and form $B-1$ octahedral chains parallel to the $A 1$ chains (in the [100] direction). The $B-2$ octahedra are isolated from each other and link the $B-1$ octahedral chains to form a three-dimensional octahedral network.

The arrangements of A and B ions lead to three different cation tetrahedra. Six anions occupy the two $A_{3} B\left(A_{3} B X, X 1\right)$ and four $A_{2} B_{2}$ tetrahedral interstices $\left(A_{2} B_{2} X, X 2\right)$ and none are located inside the two $A B_{3}$ sites $\left(A B_{3}[]\right.$, where [] represents a vacant site) in a formula unit. The remaining anion $(X 3)$ maintains four coordination and lies outside the two edge-shared $A B_{3}$ tetrahedra, very close to the shared $B-B$

Figure 1
B-octahedral network and A cations (a) in the $[1,0.04,0.07]$ direction and (b) in the $[0.1,0,1]$ direction; the black lines are the unit cell.
edge (see Fig. 3). $X 3$ can also be considered to sit inside the octahedron $\left(A_{4} B_{2}\right)$, which shares faces with two adjacent $A B_{3}$ tetrahedra, and distort towards the $B-B$ edge (Grey et al., 2003).

The weberite structure can also be considered as a stacking of repeated layers or slabs. The most common way to examine the structure is to view it as stacked, alternating close-packed metal layers $A_{3} B$ and $A B_{3}$ on (011) parallel planes. In $A_{3} B$ layers, four $A-1$ and two $A-2$ ions form a hexagonal ring with $B-2$ occupying the center. In other words the A cations form Kagomé-type networks. [Kagomé in Japanese means a bamboo-basket woven pattern. It is formed by interlaced triangles and each lattice point has four equivalent bonds. 'Kagomé' was introduced by Husimi after he and his co-

Figure 2
(a) A $B-1$ octahedron in the center and its connection to another six octahedra; (b) trans configuration of $B-2$ octahedra; (c) cis configuration of $B-2$ octahedra.
worker Syôzi found a new antiferromagnetic lattice by star-totriangle transformation from a honeycomb lattice (Mekata, 2003). Syôzi published the first Kagomé paper in 1951 (Syozi, 1951); see Fig. 4.] In $A B_{3}$ layers the $B X_{6}$ octahedron arrangement is nearly identical with the basal plane of the hexagonal tungsten bronze (HTB) structures and $A-2$ cations are in the center of the hexagonal rings. The HTB-like layers can also be simplified by a Kagomé net representation (Fig. 5). The HTB-like layers are displaced with respect to each other by an interlayer stacking vector (SV) which is defined as the projected distance, viewed down the (pseudo-) sixfold axis, between crystallographically similar ions in adjacent layers. White (1984) and Cohelho et al. (1997) used SV as an alternative description for zirconolite, zirkelite, pyrochlore and polymignyte. Here, SV is used to describe weberite. The

Figure 3
Anion coordination: (a) X-1 in $A_{3} B ;(b) X-2$ in $A_{2} B_{2}$; (c) $X-3$ in $A_{4} B_{2}$.
stacking vectors in the weberite structure are nearly in the [$0 \overline{1} 1$], [$\overline{3} 1 \overline{1}]$ and [$31 \overline{1}]$ directions. They are typically of the order $4 \AA$. The angle between successive stacking vectors (SA) is approximately 120°. The distance between two neighboring HTB-like layers along the (pseudo-) sixfold axis is approximately $5.8 \AA$. Fig. 6 shows the stacking vectors between three sequences of HTB layers.

There is yet another way to consider the weberite repeated layers. The first layer is formed by the alternating $B-1$ octahedral chains and $A-1$ distorted cube (or square prism) chains, which are in the [100] direction for classic orthorhombic weberites. In this layer the $B-1$ octahedra are edge-shared with

$$
\stackrel{c}{c}+a
$$

(a)

(b)

Figure 4
(a) Kagomé net presentation of A cations on $A_{3} B$ layers; (b) $A X_{8}$ polyhedral representation of $A_{3} B$ layers, which are parallel to the (011) plane.
$A-1$ cubes. The second layer is alternating $B-2$ octahedra and $A-2$ bi-hexagonal pyramids in the [100] direction as in Fig. 7 (Rossell, 1979; Renaudin et al., 1988).

2.2. Relationship to fluorite and pyrochlore

Weberite and pyrochlore $\left(A_{2} B_{2} X_{7}\right)$ are both fluorite-related ($A X_{2}$ or $A_{4} X_{8}$) superstructures. The coordination number of A and B is the same in both structures. These two structures have a similar cationic sublattice, which is comprised of stacked cubic close-packed cation layers, the same as (111) planes in fluorite. These layers alternate between the compositions $A_{3} B$ and $A B_{3}$ and are parallel to (111) planes in pyrochlore and

Figure 5
(a) Kagomé net presentation of B cations on $A B_{3}$ layers; (b) $B X_{6}$ polyhedral representation of $A B_{3}$ layers, which are parallel to the (011) plane.
(011) planes in weberite. $A B_{3}$ layers in pyrochlore can also be described as HTB-like layers. The length of SV and the value of SA of the pyrochlore structure are almost the same as weberite. However, the difference between the weberite and the pyrochlore structures is the different stacking of two successive $A B_{3}$ and $A_{3} B$ layers, which will be discussed later in this section. The crystallographic relationship between the weberite and the pyrochlore structures is further confirmed by the fact that the space group of weberite (Imma) is a subgroup of $F d \overline{3} m$, the space group of pyrochlore. If the lattice parameter of pyrochlores is $2 a$ with respect to fluorite $a(a \simeq 5 \AA)$, then the lattice parameters of the classic orthorhombic

Figure 6
Left: Stacking vectors (black arrows) between three sequences of HTB layers; right: Kagomé nets of three successive HTB layers (purple arrows are stacking vectors). This figure is in color in the online version of this paper.

Figure 7
(a) The layer consisting of $A 1$ and $B 1$ lines; (b) $A-2$ and $B-2$ layers, viewed in the [010] direction.

Table 2
Pyrochlore $\left(A_{2} B_{2} X_{6} X^{\prime}\right)$ structure data in space group Imcm.

			Atomic position		
Atoms	Wyckoff position	Site symmetry	x	y	z
A	$4 b$	$2 / m$	0	0.5	0
	$4 c$	$2 / m$	0.25	0.25	0.25
B	$4 a$	$2 / m$	0	0	0
	$4 d$	$2 / m$	0.25	0.75	0.25
X	$4 e$	$m m 2$	0.5	$x+0.25$	0.25
	$4 e$	$m m 2$	0	x	0.25
	$16 j$	1	$x-0.125$	0.125	$x+0.125$
X^{\prime}	$4 e$	$m m 2$	0.25	0.375	0

The x is the oxygen parameter inside the $A_{2} B_{2}$ tetrahedral site. The value is between 0.3125 and 0.375 .
weberites are approximately $2^{1 / 2} a, 2 a$ and $2^{1 / 2} a$. The rotation of 45° about the b axis of the pyrochlore cation sublattice leads to the weberite-like cation sublattice (Fig. 8). The (111) planes of pyrochlore are transformed to the (011) of the new lattice. The transformation relationship can be written as

$$
W=P\left(\begin{array}{ccc}
0.5 & 0 & 0.5 \tag{1}\\
0 & 1 & 0 \\
-0.5 & 0 & 0.5
\end{array}\right) .
$$

The transformation leads to the space group Imcm, which is a different setting of Imma. The Imma lattice can be achieved by the 90° rotation of the coordinate system of Imcm. The transformation matrix is

Figure 8
(a) Cationic network on (111) of fluorite; (b) $A B_{3}$ layer; (c) $A_{3} B$ layer on (011) of weberite; dashed lines are the unit cell; (d) axial transformation of pyrochlore to weberite [black dashed lines: a fluorite cell; blue lines: double pyrochlore cells; red dotted lines: weberite lattice; green shadow $(011)_{\mathrm{w}}$ and $(111)_{\mathrm{p}}$]. This figure is in color in the online version of this paper.
weberite are listed in Table 3. For space reasons, only reflections up to $(222)_{\mathrm{f}}$ are presented.

It is important to recall that in fluorites, each anion is at the center of the cationic tetrahedra $\left(A_{4} X\right)$. The arrangement of A and B leads to different cation tetrahedra: $A B_{3}, A_{3} B$ and $A_{2} B_{2}$ in weberites, and A_{4}, B_{4} and $A_{2} B_{2}$ in pyrochlores. The reason for the formation of different cation tetrahedra is that weberites and pyrochlores are different in stacking two neighboring $A B_{3}$ and $A_{3} B$ layers, although generally they follow the pattern of cubic close-packed cation layers. The three nearest-neighbor metal ions in these layers form pseudoequilateral triangles. The distribution of A and B cations in $A B_{3}$ layers will lead to two types of triangles: $A B_{2}$ and B_{3}. The cations in the following $A_{3} B$ layer lie above the centers of these triangles. If an $A B_{3}$ layer is a reference, there are $2^{1 / 2} a / 2$ along $[100]_{\mathrm{w}}$ or $[10 \overline{1}]_{\mathrm{P}}$ displacement in the above $A_{3} B$ layer between weberite and pyrochlore. As a result, in the $A_{3} B$ layer, A cations are above the center of $A B_{2}$ triangles and B cations are above B_{3} triangles in pyrochlore, while in weberite, 2/3 $A(A-1)$ and all B cations are above the $A B_{2}$ triangles and the remaining A cations ($A-2$) are above B_{3} triangles (see Fig. 9). Therefore, these arrangements lead to two $A B_{3}$, two $A_{3} B$ and four $A_{2} B_{2}$ in a formula unit of weberite, and in the case of pyrochlore, one A_{4}, six $A_{2} B_{2}$ and one B_{4}. In addition, different stacking of two neighboring $A B_{3}$ and $A_{3} B$ layers can explain why the transformation of the pyrochlore cation sublattice into a weberite-like lattice results in a different setting of the space group.

As stated in $\S 2.1$, in a formula unit the $X 3$ anion of weberite is located outside the cation tetrahedra and leaves two $A B_{3}$ tetrahedra with a vacant center. In contrast, all anions in the pyrochlore structure are inside the cation tetrahedra. Therefore, it can be argued that pyrochlore is more closely related to fluorite than weberite since the former preserves all the anions in cation tetrahedral interstices (Yakubovich et al., 1993; Grey et al., 2003). In weberite it is understandable that the X-deficient site is more favorable in B-rich tetrahedra $\left(A B_{3}\right.$ than $A_{2} B_{2}$ and $A_{3} B$), because B ions have a smaller coordination number (CN). However, it raises the question: why there are two $A B_{3}$ tetrahedra with a vacant center and the $X 3$ is not inside the cation tetrahedra? Grey et al. (2003) argued that in $\mathrm{Ca}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7}$ weberite, the sum of valence $\left(\sum v / C N\right)$ in CaTa_{3} tetrahedra is so highly over-saturated that CaTa_{3} cannot accommodate $X 3$. Actually, the highly over-saturated $A B_{3}$ tetrahedra occur in all weberite compounds: $A_{2}^{1+} B^{2+} B^{3+} \mathrm{F}_{7}$, $A_{2}^{2+} B_{2}^{5+} \mathrm{O}_{7}$ and $A_{2}^{1+} B_{2}^{6+} \mathrm{O}_{7}$. The nominal sum of valence in the center of $A B_{3}$ is 1.46 for $A_{2}^{1+} B^{2+} B^{3+} \mathrm{F}_{7}, 2.75$ for $A_{2}^{2+} B_{2}^{5+} \mathrm{O}_{7}$, 3.13 for $A_{2}^{1+} B_{2}^{6+} \mathrm{O}_{7}$. Thus, anions should distort largely towards A cations to meet the required valence, which would then result in a shorter $A-X$ distance than a $B-X$ distance. However, A ions are larger and have a larger CN than B ions and so the $A-X$ bond length should be larger than the $B-X$ bond length. The end result is that anions cannot move towards A cations and the required valence cannot be achieved. By contrast, the sum of valence in the center of $A B_{3}$ is under-saturated, being 0.875 for $A_{2}^{1+} B^{2+} B^{3+} \mathrm{F}_{7}, 1.58$ for $A_{2}^{2+} B_{2}^{5+} \mathrm{O}_{7}$ and 1.375 for $A_{2}^{1+} B_{2}^{6+} \mathrm{O}_{7}$. Anions are required to

Table 3
XRD reflections for fluorite, pyrochlore and weberite.

XRD reflections			
hkl (fluorite)	$h k l$ (pyrochlore)	$h k l$ (weberite)	Corresponding pyrochlore plane
	111	011	111
		101	200
		020	020
		002	202
	220	121	220
		200	$20 \overline{2}$
		112	311
	311	211	311
		031	131
111	222	022	222
		220	$22 \overline{2}$
200	400	202	400
		040	040
		013	313
	331	132	331
		231	331
		103	402
		222	420
		301	402
		141	240
		123	422
		042	242
		321	$42 \overline{2}$
		240	$24 \overline{2}$
	333	033	333
		213	511
	511	312	$51 \overline{1}$
		051	151
		004	404
220	440	242	440
		400	$40 \overline{4}$
		114	513
		233	531
		152	351
	531	332	531
		251	$35 \overline{1}$
		411	513
		024	424
		143	442
	442	341	$44 \overline{2}$
		420	$42 \overline{4}$
		303	600
		060	060
		204	602
		323	620
	620	402	$60 \overline{2}$
		161	260
		134	533
	533	053	353
		431	$53 \overline{3}$
		224	622
		062	262
311	622	422	$62 \overline{2}$
		260	262
222	444	044	444
		440	$44 \overline{4}$

move towards B cations, which is favored by the bond length argument above. As for $A_{2} B_{2}$ tetrahedra, the sum of valence is 1.08 for $A_{2}^{1+} B^{2+} B^{3+} \mathrm{F}_{7}, 2.17$ for $A_{2}^{2+} B_{2}^{5+} \mathrm{O}_{7}$ and 2.25 for $A_{2}^{1+} B_{2}^{6+} \mathrm{O}_{7}$. In this case the sum of valence is close to the anion oxidation state.

In order to check the stability of the $X 3$, the empirical equation by Brese \& O'Keeffe (1991) is used to calculate the valence of the $X 3$

$$
\begin{equation*}
V_{i}=\sum v_{i j}=\sum \exp \left(\left(R_{i j}-r_{i j}\right) / b\right) \tag{3}
\end{equation*}
$$

where $R_{i j}$ is the bond-valence parameter, $r_{i j}$ is the bond distance and b is a constant. Three representative compounds were chosen for detailed analysis: $\mathrm{Na}_{2}^{1+} \mathrm{Mg}^{2+} \mathrm{Al}^{3+} \mathrm{F}_{7}$, $\mathrm{Sr}_{2}^{2+} \mathrm{Sb}_{2}^{5+} \mathrm{O}_{7}$ and $\mathrm{Ag}_{2}^{1+} \mathrm{Te}_{2}^{6+} \mathrm{O}_{7}$. There are few, if any, reported bond-length data for $\mathrm{Ag}_{2} B_{2} \mathrm{~F}_{7} . \mathrm{Na}_{2} \mathrm{MgAlF}_{7}$ was chosen since it is the aristotype of the weberite compounds. The $r_{i j}$ of $\mathrm{Na}_{2}^{1+} \mathrm{Mg}^{2+} \mathrm{Al}^{3+} \mathrm{F}_{7}$ is from Knop et al. (1982) based on singlecrystal XRD. $\mathrm{Sr}_{2}^{2+} \mathrm{Sb}_{2}^{5+} \mathrm{O}_{7}$ was chosen because it is a stable weberite even under high pressure and neutron diffraction data are available (Knop et al., 1980; Groen \& Ijdo, 1988). As for $A_{2}^{1+} B_{2}^{6+} \mathrm{O}_{7}$ compounds, only the crystal structure $\mathrm{Ag}_{2} \mathrm{Te}_{2} \mathrm{O}_{7}$ has been reported (Klein et al., 2006). Table 4 lists the detailed valence information including all three anion types as well as cations by the empirical equation above using the bondvalence parameters (Brese \& O’Keeffe, 1991; Brown, 2002) and the bond lengths $\left(r_{i j}\right)$ from the literature. The valence of

$X 3$ is close to its oxidation state in these compounds. It is worth noting that the discrepancy is small in $\mathrm{Ag}_{2}^{1+} \mathrm{Te}_{2}^{6+} \mathrm{O}_{7}$ for all three oxygen anions. Therefore, $A_{2}^{1+} B_{2}^{6+} \mathrm{O}_{7}$ weberites are possible.

Another significant difference is the formation of $B X_{6}$ networks. All of the anions in weberites participate in the formation of $B X_{6}$ octahedra, but only $6 / 7$ of the anions in pyrochlores do. The $B X_{6}$ octahedral network in both structures is fairly rigid. Therefore, in order to maintain the octahedral network it is difficult for the weberite to form vacancies at anion sites. By contrast, the pyrochlore structure tolerates X deficiency or paired A and X deficiencies relatively easily. Examples of such pyrochlore oxides are $\mathrm{Bi}_{1.5} \mathrm{Zn}_{0.92} \mathrm{Nb}_{1.5} \mathrm{O}_{6.92}$ and $\mathrm{Tl}_{2} B_{2} \mathrm{O}_{6}\left(B=\mathrm{Nb}\right.$, Ta and U), $\mathrm{Tl}_{2} \mathrm{Os}_{2} \mathrm{O}_{7-x}$ and $\mathrm{Pb}_{2} \mathrm{Os}_{2} \mathrm{O}_{7-x}$ (Nino, 2002; Subramanian et al., 1983; Reading et al., 2002). In addition, the substitution of small amounts of oxygen by F^{-} may prevent the formation of weberites. For example, $\mathrm{Ca}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}$ pyrochlore transforms into weberite irreversibly

(b)

(d)

Figure 9
$A_{3} B$ and $A B_{3}$ slabs of (a) weberite and (b) pyrochlore. Cations connected by dotted lines are on the $A B_{3}$ layer and by grey lines are on the $A_{3} B$ layer. The red lines (or dotted line) show cation tetrahedra. This figure is in color in the online version of this paper.

Table 4
Examples of bond-valence sum for anions and cations by Brese and O'Keeffe.

$X 1$ in $A_{3} B$ tetrahedra				$X 2$ in $A_{2} B_{2}$ tetrahedra				$X 3$ outside the $A B_{3}$ tetrahedra			
Bonds	$r_{i j}(\AA)$	$v_{i j}$	$\sum v_{i j}$	Bonds	$r_{i j}(\AA)$	$v_{i j}$	$\sum v_{i j}$	Bonds	$r_{i j}(\AA)$	$v_{i j}$	$\sum v_{i j}$
$\mathrm{Na}_{2} \mathrm{MgAlF}_{7}$											
$\mathrm{Al}-\mathrm{F}$	1.825	0.469		$\mathrm{Mg}-\mathrm{F}$	1.960	0.360		$\mathrm{Mg}-\mathrm{F}$	1.951	0.368	
Na2-F	2.211	0.236	0.972	Al-F	1.793	0.512	1.022	$\mathrm{Mg}-\mathrm{F}$	1.951	0.368	0866
$\mathrm{Na} 1-\mathrm{F}$	2.423	0.133		Na2-F	2.549	0.095		Na2-F	2.689	0.065	
$\mathrm{Na} 1-\mathrm{F}$	2.423	0.133		Na1-F	2.749	0.055		Na2-F	2.689	0.065	
$\underline{\mathrm{Na} 1^{1+}: \sum v_{i j}=0.779 ; \mathrm{Na}^{1+}: \sum v_{i j}=0.981 ; \mathrm{Mg}^{2+}: \sum v_{i j}=2.17 ; \mathrm{Al}^{3+}: \sum v_{i j}=2.89}$											
$\mathrm{Sr}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}$											
Sb2-O	1.922	1.056		Sb1-O	1.971	0.926		Sb1-F	2.005	0.843	
Sr2-O	2.363	0.515		Sb2-O	2.202	0.512	2151	Sb1-F	2.005	0.843	1963
Sr1-O	2.502	0.354		Sr1-O	2.833	0.145	2.151	Sr2-F	2.850	0.138	.963
Sr1-O	2.502	0.354		Sr2-O	2.599	0.273		Sr2-F	2.850	0.138	

$\mathrm{Ag}_{2} \mathrm{Te}_{2} \mathrm{O}_{7}$											
Te2-O	1.825	1.281	1.864	Ag1-O	2.806	0.067	2.041	Ag2-O	2.806	0.067	1.98
Ag2-O	2.388	0.207		Ag2-O	2.549	0.134		Ag2-O	2.806	0.067	
Ag1-O	2.465	0.168		Te1-O	1.997	0.806		Te1-O	1.946	0.925	
Ag1-O	2.465	0.168		Te2-O	1.905	1.034		Te1-O	1.946	0.925	

$r_{i j}$ is the bond distance, $v_{i j}$ is the bond valence.
above 973 K , but $\mathrm{CaNaSb}_{2} \mathrm{O}_{6} \mathrm{~F}$ and $\mathrm{Ca}_{1.56} \mathrm{Sb}_{2} \mathrm{O}_{6.37} \mathrm{~F}_{0.44}$ pyrochlores are stable (Aleshin \& Roy, 1962; Aia et al., 1963).

2.3. Weberite-like structures

The weberite structures show a wide variety of different modifications including monoclinic and trigonal variants. Grey et al. (2003) proposed the use of the nomenclature of the International Mineralogical Association Commission New Minerals and Mineral Names (IMA-CNMMN), which was initially approved for zirconolite $\mathrm{CaZrTi}_{2} \mathrm{O}_{7}$ (Bayliss et al., 1989). As discussed above, the basic building unit is a slab formed by one $A_{3} B$ and one $A B_{3}$ layer. The differences between weberites are the crystal system and the number of slabs (N) in a unit cell. A notation which combines N and the first letter of the crystal system is used to indicate different weberites. For example, the notation of the classic orthorhombic weberite is $2 O$ because it has two slabs in a unit cell. The reported weberites include $2 O, 2 M, 3 T, 4 M, 5 M, 6 M, 6 T$, $7 M$ and $8 O$. Tables 5 and 6 list different types of $A_{2} B_{2} \mathrm{~F}_{7}$ and $A_{2} B_{2} \mathrm{O}_{7}$ weberites, respectively. $(\mathrm{NaCu}) \mathrm{Cu}_{2} \mathrm{~F}_{7}$ (or $\mathrm{NaCu}_{3} \mathrm{~F}_{7}$, space group $C 2 / c$) and $\left(\mathrm{Ca}_{0.5} \mathrm{Ln}_{1.5}\right)\left(\mathrm{Ca}_{0.5} \mathrm{Sb}_{1.5}\right) \mathrm{O}_{7}$ (or $\mathrm{CaLn}_{1.5} \mathrm{Sb}_{1.5} \mathrm{O}_{7}$, space group $I 2 / m 11, \mathrm{Ln}=\mathrm{La}, \mathrm{Pr}, \mathrm{Nd}$ and Y) are special $2 M$ weberites and more like pseudo- $2 O$ weberites for they maintain the structural feature of $2 O$ rather than $2 M$, as will be discussed later. $\mathrm{Ca}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7}$-based compounds are important in the weberite family since for $N>4$, only $\mathrm{Ca}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7}$-based compounds have been reported. Grey and co-workers (Grey et al., 1999, 2001, 2003; Grey \& Roth, 2000) have shown that $\mathrm{Ca}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7}$ compounds can crystallize into $3 T$, $4 M, 5 M, 6 T, 6 M$ and $7 M$ by different doping or synthesis methods and later Ebbinghaus et al. (2005) also synthesized an
$8 O \mathrm{Ca}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7}$ single crystal using the optical floating zone method.

A significant difference between $2 O$ and non- $2 O$ weberites is that the $A B_{3}$ and $A_{3} B$ layers are parallel to the (011) planes for $2 O$ and parallel to the (001) planes for other weberites, except for $\mathrm{NaCu}_{3} \mathrm{~F}_{7}$ and $\mathrm{CaLn}_{1.5} \mathrm{Sb}_{1.5} \mathrm{O}_{7}(\mathrm{Ln}=\mathrm{La}, \mathrm{Pr}, \mathrm{Nd}$ and Y). The formula unit (Z) of $\mathrm{NaCu}_{3} \mathrm{~F}_{7}$ and $\mathrm{CaLn}_{1.5} \mathrm{Sb}_{1.5} \mathrm{O}_{7}$ is also consistent with $2 O$ weberites, four rather than eight, the latter the formula unit for other $2 M$ weberites. As in $\S 2.2$ the lattice parameters of $2 O$ weberites are approximately $2^{1 / 2} a, 2 a$ and $2^{1 / 2} a(a \simeq 5 \AA$, the lattice parameters for fluorite). The lattice parameters of $2 M$ weberites are nearly $6^{1 / 2} a, 2^{1 / 2} a$ and $6^{1 / 2} a$. The [011], [100] and [011] vectors of $2 O$ become [100], [010] and [001] of $2 M$. The lattice parameter difference between $2 M, 4 M, 5 M, 6 M$ and $7 M$ is mainly on the c axis. The lattice parameters for $n M(n=2,4,5$ and 7$)$ are approximately $6^{1 / 2} a, 2^{1 / 2} a$ and $\left[n(6)^{1 / 2} / 2\right] a$ and they are nearly $2^{1 / 2} a, 6^{1 / 2} a$ and $3(6)^{1 / 2} / a$ for $6 M$ (Grey et al., 1999, 2001, 2003; Grey \& Roth, 2000). The $8 O$ weberite is closely related to a monoclinic variant rather than $2 O$ in both the orientation of the $A B_{3}$ and $A_{3} B$ layers and the lattice parameters. The lattice parameters are nearly $2^{1 / 2} a, 6^{1 / 2} a$ and $4(6)^{1 / 2} / a$. As for $3 T$, the [100], [$-0.5,-0.5,0.5$] and [012] vectors in $2 O$ are transformed into the basal vectors. The resulting lattice parameters are approximately $2^{1 / 2} a, 2^{1 / 2} a$ and $2(3)^{1 / 2} a$. The relationship of $2 O$, $2 M$ and $3 T$ weberites is shown in Fig. 10. Meanwhile, the lattice parameters of $6 T$ are approximately $2^{1 / 2} a, 2^{1 / 2} a$ and $4(3)^{1 / 2} a$, just double the length of the basal vector in the c axis.

For $2 O$ weberites there are two special types in which the body-center symmetry is lost. The first case is when Cu^{2+} is introduced into $\mathrm{Na}_{2} B^{2+} B^{3+} \mathrm{F}_{7}$ at $B-1$ sites such as $\mathrm{Na}_{2} \mathrm{CuCrF}_{7}$ and $\mathrm{Na}_{2} \mathrm{CuInF}_{7}$ (Kummer et al., 1988; Ruchaud et al., 1992). The common Jahn-Teller distortion (the CuF_{6} octahedra are

Table 5
List of $A_{2} B_{2} \mathrm{~F}_{7}$ weberites.

Type		Space group	Z	Lattice parameters				$R_{A}(\AA)$	$R_{B}(\mathrm{~A})$	R_{A} / R_{B}	Properties investigated
				$a(\AA)$	b (${ }_{\text {(}}$)	$c(\AA)$	$\beta\left({ }^{\circ}\right)$				
2 O	$\mathrm{Na}_{2} \mathrm{MgCrF}_{7}$ (Chassain, 1969)	Imma	4	7.39	7.15	10.20		1.18	0.667	1.768	
2 O	$\mathrm{Na}_{2} \mathrm{MgGaF}_{7}$ (Chassain, 1969)	Imma	4	7.42	7.16	10.16		1.18	0.67	1.761	
2 O	$\mathrm{Na}_{2} \mathrm{MgScF}_{7}$ (Chassain, 1969)	Imma	4	7.55	7.34	10.43		1.18	0.733	1.611	
2 O	$\mathrm{Na}_{2} \mathrm{MgVF}_{7}$ (Chassain, 1969)	Imma	4	7.45	7.24	10.30		1.18	0.68	1.735	
2 O	$\mathrm{Na}_{2} \mathrm{NiFeF}_{7}$ (Cosier et al., 1970; Laligant et al., 1989; Thompson et al., 1992)	Imma	4	7.2338 (3)	10.3050 (3)	7.4529 (3)		1.18	0.62	1.903	Magnetic
2 O	$\mathrm{Na}_{2} \mathrm{NiAlF}_{7}$ (Tressaud et al., 1974; Heger, 1973)	Imma	4	7.31 (2)	7.07 (2)	10.04 (2)		1.18	0.603	1.959	Magnetic
2 O	$\mathrm{Na}_{2} \mathrm{NiCoF}_{7}$ (Tressaud et al., 1974; Cosier et al., 1970)	Imma	4	7.40 (2)	7.20 (2)	10.24 (2)		1.18	0.618	1.911	Magnetic
2 O	$\mathrm{Na}_{2} \mathrm{NiCrF}_{7}$ (Hansler \& Rudorff, 1970; Laligant, Ferey et al., 1987)	Imma	4	7.183 (1)	10.224 (1)	7.414 (1)		1.18	0.653	1.808	Magnetic
2 O	$\mathrm{Na}_{2} \mathrm{CoGaF}_{7}$ (Koch \& Hebecker, 1988)	Imma	4	7.3011 (6)	10.5436 (9)	7.3845 (7)		1.18	0.645	1.829	
2 O	$\mathrm{Na}_{2} \mathrm{CoInF} \mathrm{F}_{7}$ (Koch \& Hebecker, 1988)	Imma	4	7.4032 (6)	10.3892 (8)	7.5302 (9)		1.18	0.745	1.5849	
2 O	$\mathrm{Na}_{2} \mathrm{CoScF}_{7}$ (Koch \& Hebecker, 1988)	Imma	4	7.431 (1)	10.546 (1)	7.544 (1)		1.18	0.718	1.645	
2 O	$\mathrm{Na}_{2} \mathrm{MnTIF}_{7}$ (Koch \& Hebecker, 1988)	Imma	4	7.371 (1)	10.369 (3)	7.603 (1)		1.18	0.67	1.761	
2 O	$\mathrm{Na}_{2} \mathrm{NiGaF}_{7}$ (Koch \& Hebecker, 1988; Dahlke et al., 1998)	Imma	4	7.1805 (7)	10.2433 (9)	7.4256 (7)		1.18	0.655	1.802	
2 O	$\mathrm{Na}_{2} \mathrm{NiInF}_{7}$ (Koch \& Hebecker, 1988)	Imma	4	7.3632 (5)	10.3490 (7)	7.5274 (6)		1.18	0.745	1.584	
2 O	$\mathrm{Na}_{2} \mathrm{NiScF}_{7}$ (Koch \& Hebecker, 1988)	Imma	4	7.3116 (7)	10.3278 (9)	7.4779 (7)		1.18	0.718	1.645	
2 O	$\mathrm{Na}_{2} \mathrm{MgTIF}_{7}$ (Koch \& Hebecker, 1988)	Imma	4	7.3756 (8)	10.418 (1)	7.5496 (8)		1.18	0.695	1.698	
2 O	$\mathrm{Na}_{2} \mathrm{ZnFeF}_{7}$ (Koch \& Hebecker, 1988)	Imma	4	7.281 (1)	10.446 (2)	7.459 (1)		1.18	0.645	1.829	
	$\mathrm{Na}_{2} \mathrm{ZnGaF}_{7}$ (Koch \& Hebecker, 1988)	Imma	4	7.2494 (7)	10.3283 (8)	7.3582 (6)		1.18	0.68	1.735	
2 O	$\mathrm{Na}_{2} \mathrm{ZnInF}_{7}$ (Koch \& Hebecker, 1988)	Imma	4	7.4077 (6)	10.4759 (9)	7.5732 (6)		1.18	0.77	1.532	
2 O	$\mathrm{Na}_{2} \mathrm{ZnTIF}_{7}$ (Koch \& Hebecker, 1988)	Imma	4	7.338 (1)	10.300 (2)	7.539 (1)		1.18	0.705	1.674	
2 O	$\mathrm{Na}_{2} \mathrm{MgFeF}_{7}$ (Pankhurst et al., 1991; Chassain, 1969)	Imma	4	7.49	7.25	10.26		1.18	0.635	1.858	Magnetic
2 O	$\mathrm{Na}_{2} \mathrm{MgAlF}_{7}$ (Byström, 1944; Knop et al., 1982)	Imma	4	7.501 (1)	9.968 (2)	7.285 (1)		1.18	0.618	1.911	
2 O	$\mathrm{Na}_{2} \mathrm{ZnAlF}_{7}$ (Dahlke \& Babel, 1994)	Imma	4	7.092 (1)	10.092 (1)	7.337 (1)		1.18	0.6375	1.851	
2 O	$\mathrm{Ag}_{2} \mathrm{CuMnF}_{7}$ (Koch \& Hebecker, 1988)	Imma	4	7.5006 (9)	10.5025 (9)	7.6452 (8)		1.28	0.655	1.954	
2 O	$\mathrm{Ag}_{2} \mathrm{CoAlF}_{7}$ (Koch et al., 1982)	Imma	4	7.252	10.16	7.601		1.28	0.603	2.124	
2 O	$\mathrm{Ag}_{2} \mathrm{CoGaF}_{7}$ (Koch et al., 1982)	Imma	4	7.313	10.35	7.678		1.28	0.655	1.954	
2 O	$\mathrm{Ag}_{2} \mathrm{CoInF}_{7}($ Koch et al., 1982)	Imma	4	7.544	10.72	7.851		1.28	0.745	1.718	
2 O	$\mathrm{Ag}_{2} \mathrm{CoScF}_{7}$ (Koch et al., 1982)	Imma	4	7.497	10.64	7.789		1.28	0.718	1.784	
2 O	$\mathrm{Ag}_{2} \mathrm{MnAlF}_{7}$ (Koch et al., 1982)	Imma	4	7.360	10.32	7.601		1.28	0.593	2.160	
2 O	$\mathrm{Ag}_{2} \mathrm{MnGaF}_{7}$ (Koch et al., 1982)	Imma	4	7.465	10.62	7.787		1.28	0.645	1.986	
2 O	$\mathrm{Ag}_{2} \mathrm{MnScF}_{7}$ (Koch et al., 1982)	Imma	4	7.634	10.78	7.802		1.28	0.708	1.809	
2 O	$\mathrm{Ag}_{2} \mathrm{NiGaF}_{7}$ (Koch et al., 1982)	Imma	4	7.255	10.28	7.650		1.28	0.655	1.954	
2 O	$\mathrm{Ag}_{2} \mathrm{NiScF}_{7}$ (Koch et al., 1982)	Imma	4	7.463	10.54	7.771		1.28	0.718	1.785	
2 O	$\mathrm{Ag}_{2} \mathrm{MgAlF}_{7}$ (Koch et al., 1982)	Imma	4	7.197	10.01	7.571		1.28	0.618	2.073	
2 O	$\mathrm{Ag}_{2} \mathrm{MgGaF}_{7}$ (Koch et al., 1982)	Imma	4	7.257	10.21	7.664		1.28	0.67	1.910	
2 O	$\mathrm{Ag}_{2} \mathrm{MgInF}_{7}($ Koch et al., 1982)	Imma	4	7.495	10.62	7.832		1.28	0.76	1.684	
2 O	$\mathrm{Ag}_{2} \mathrm{MgScF}_{7}$ (Koch et al., 1982)	Imma	4	7.427	10.52	7.782		1.28	0.733	1.747	
2 O	$\mathrm{Ag}_{2} \mathrm{CuAlF}_{7}$ (Koch et al., 1982)	Imma	4	7.109	10.22	7.684		1.28	0.623	2.056	
2 O	$\mathrm{Ag}_{2} \mathrm{CuGaF}_{7}$ (Koch et al., 1982)	Imma	4	7.200	10.34	7.755		1.28	0.675	1.896	
2 O	$\mathrm{Ag}_{2} \mathrm{ZnAlF}_{7}$ (Koch et al., 1982)	Imma	4	7.237	10.14	7.590		1.28	0.6375	2.008	
2 O	$\mathrm{Ag}_{2} \mathrm{ZnGaF}_{7}$ (Koch et al., 1982)	Imma	4	7.303	10.32	7.688		1.28	0.68	1.882	
2 O	$\mathrm{Ag}_{2} \mathrm{ZnInF}_{7}$ (Koch et al., 1982)	Imma	4	7.531	10.71	7.841		1.28	0.77	1.662	
2 O	$\mathrm{Ag}_{2} \mathrm{CoCrF}_{7}$ (Koch \& Hebecker, 1988)	Imma	4	7.349 (1)	10.376 (1)	7.683 (1)		1.28	0.653	1.962	
2 O	$\mathrm{Ag}_{2} \mathrm{CoFeF}_{7}$ (Koch \& Hebecker, 1988)	Imma	4	7.3711 (8)	10.437 (1)	7.7145 (8)		1.28	0.62	2.065	
2 O	$\mathrm{Ag}_{2} \mathrm{MnFeF}_{7}$ (Koch \& Hebecker, 1988)	Imma	4	7.490 (1)	10.612 (2)	7.731(1)		1.28	0.61	2.098	

Table 5 (continued)

Type		Space group	Z	Lattice parameters				$R_{A}(\AA)$	$R_{B}(\AA)$	R_{A} / R_{B}	Properties investigated
				a (A$)$	$b(\AA)$	$c(\AA)$	$\beta\left({ }^{\circ}\right)$				
2 O	$\mathrm{Ag}_{2} \mathrm{MnInF}_{7}$ (Koch \& Hebecker, 1988)	Imma	4	7.6747 (8)	10.856 (1)	7.8641 (7)		1.28	0.735	1.742	
2 O	$\mathrm{Ag}_{2} \mathrm{MgCrF}_{7}$ (Koch \& Hebecker, 1988)	Imma	4	7.2746 (6)	10.3128 (9)	7.7060 (7)		1.28	0.668	1.918	
2 O	$\mathrm{Ag}_{2} \mathrm{MgFeF}_{7}$ (Koch \& Hebecker, 1988)	Imma	4	7.3100 (7)	10.335 (1)	7.6972 (9)		1.28	0.635	2.016	
2 O	$\mathrm{Ag}_{2} \mathrm{MgTIF}_{7}$ (Koch \& Hebecker, 1988)	Imma	4	7.2506 (9)	10.362 (2)	7.497 (1)		1.28	0.695	1.842	
2 O	$\mathrm{Ag}_{2} \mathrm{CuCrF}_{7}$ (Koch \& Hebecker, 1988)	Imma	4	7.2103 (6)	10.454 (1)	7.7871 (8)		1.28	0.673	1.903	
2 O	$\mathrm{Ag}_{2} \mathrm{CuFeF}_{7}$ (Koch \& Hebecker, 1988)	Imma	4	7.2435 (9)	10.474 (2)	7.769 (1)		1.28	0.64	2	
2 O	$\mathrm{Ag}_{2} \mathrm{CuInF}_{7}$ (Koch \& Hebecker, 1988)	Imma	4	7.3461 (6)	10.7501 (9)	7.9098 (6)		1.28	0.765	1.673	
2 O	$\mathrm{Ag}_{2} \mathrm{ZnCrF}_{7}$ (Koch \& Hebecker, 1988)	Imma	4	7.3165 (7)	10.362 (1)	7.6877 (8)		1.28	0.678	1.889	
2 O	$\mathrm{Ag}_{2} \mathrm{ZnFeF}_{7}$ (Koch \& Hebecker, 1988)	Imma	4	7.359 (1)	10.409 (2)	7.706 (1)		1.28	0.645	1.985	
2 O	$\mathrm{Ag}_{2} \mathrm{ZnMnF}_{7}$ (Koch \& Hebecker, 1988)	Imma	4	7.408 (1)	10.503 (1)	7.6972 (9)		1.28	0.66	1.939	
2 O	$\mathrm{Ag}_{2} \mathrm{NiAlF}_{7}$ (Dance et al., 1974)	Imma	4	7.564 (6)	7.210 (6)	10.139 (15)		1.28	0.603	2.124	Magnetic
2 O	$\mathrm{Ag}_{2} \mathrm{NiCrF}_{7}$ (Dance et al., 1974)	Imma	4	7.673 (6)	7.305 (6)	10.285 (9)		1.28	0.653	1.962	Magnetic
2 O	$\mathrm{Ag}_{2} \mathrm{NiFeF}_{7}$ (Dance et al., 1974)	Imma	4	7.692 (6)	7.345 (6)	10.345 (9)		1.28	0.62	2.065	Magnetic
2 O	$\mathrm{Ag}_{2} \mathrm{NiInF}_{7}$ (Dance et al., 1974)	Imma	4	7.822 (6)	7.499 (6)	10.622 (9)		1.28	0.745	1.718	Magnetic
2O-II	$\mathrm{Na}_{2} \mathrm{CuInF}_{7}$ (Ruchaud et al., 1992)	Pmnb	4	7.318	10.602	7.712		1.18	0.765	1.542	Magnetic
2 O -II	$\mathrm{Na}_{2} \mathrm{CuCrF}_{7}$ (Kummer et al., 1988; Koch \& Hebecker, 1985)	Pmnb	4	7.100 (1)	10.338 (1)	7.518 (1)		1.18	0.673	1.755	
2O-II	$\mathrm{Na}_{2} \mathrm{CuScF}_{7}$ (Dahlke \& Babel, 1994)	Pmnb	4	7.260 (1)	10.534 (1)	7.658 (1)		1.18	0.7375	1.6	
2O-III	$\mathrm{Na}_{2} \mathrm{NiInF}_{7}$ (Frenzen et al., 1992)	Pmnb	4	7.356	10.334	7.523		1.18	0.745	1.584	Magnetic
2O-III	$\mathrm{Na}_{2} \mathrm{MgInF}_{7}$ (Caramanian et al.,	Pnma	4	10.435 (1)	7.345 (1)	7.533 (1)		1.18	0.76	1.553	Magnetic
$2 M$	$\mathrm{Na}_{2} \mathrm{CuGaF}_{7}$ (Ruchaud et al., 1992)	C2/c	8	12.325 (5)	7.318 (1)	12.780 (5)	109.29 (2)	1.18	0.675	1.748	Magnetic
$2 M$ and	$\mathrm{Na}_{2} \mathrm{CuFeF}_{7}$ (Welsch \& Babel, 1992;	C2/c	8	12.46 (1)	7.363 (8)	12.93 (1)	109.36 (7)	1.18	0.64	1.844	
$4 M$	Yakubovich et al., 1990; Kummer et al., 1988)	C2/c	16	12.444 (2)	7.343 (1)	24.672 (5)	99.27 (3)				
$3 T$	$\mathrm{Na}_{2} \mathrm{MnAlF}_{7}$ (Koch \& Hebecker, 1988)		6	7.2854 (4)		17.844 (1)		1.18	0.593	1.992	
$3 T$	$\mathrm{Na}_{2} \mathrm{MnInF}_{7}$ (Koch \& Hebecker, 1988)		6	7.6006 (3)		18.617 (1)		1.18	0.735	1.605	
$3 T$	$\mathrm{Na}_{2} \mathrm{MnScF}_{7}$ (Koch \& Hebecker, 1988)		6	7.5442 (4)		18.479 (1)		1.18	0.708	1.668	
$3 T$	$\mathrm{Na}_{2} \mathrm{MnGaF}_{7}$ (Courbion et al., 1988)	$P 3_{1} 21$	6	7.421 (3)		18.166 (6)		1.18	0.645	1.829	
$3 T$	$\mathrm{Na}_{2} \mathrm{MnCrF}_{7}$ (Courbion et al., 1988)	$P 3_{1} 21$	6	7.401 (1)		18.091 (2)		1.18	0.6425	1.837	
$3 T$	$\mathrm{Na}_{2} \mathrm{MnVF}_{7}$ (Peschel \& Babel, 1997)	$P 3_{1} 21$	6	7.467		18.216		1.18	0.655	1.802	
$3 T$	$\mathrm{Na}_{2} \mathrm{MnFeF}_{7}$ (Verscharen \& Babel, 1978; Cosier et al., 1970; Boireau et al., 1993)	$P 3_{1} 21$	6	7.488 (2)		18.257 (6)		1.18	0.61	1.934	Magnetic
$3 T$	$\mathrm{Ag}_{2} \mathrm{MnInF}_{7}$ (Koch \& Hebecker, 1988)		6	7.751 (1)		18.838 (4)		1.28	0.735	1.741	
$4 M$	$\mathrm{Na}_{2} \mathrm{CoAlF}_{7}$ (Boireau et al., 1993; Gravereau et al., 1992)	C2/c	16	12.378 (4)	7.210 (3)	24.019 (9)	99.67 (2)	1.18	0.613	1.927	Magnetic
4 M	$\mathrm{Na}_{2} \mathrm{ZnGaF}_{7}$ (Dahlke et al., 1998)	C2/c	16	12.519	7.303	24.353	99.74	1.18	0.68	1.735	
$4 M$	$\mathrm{Na}_{2} \mathrm{ZnFeF}_{7}$ (Dahlke et al., 1998)	C2/c	16	12.610	7.359	24.538	99.70	1.18	0.645	1.829	
4 M	$\mathrm{Na}_{2} \mathrm{FeVF}_{7}$ (Peschel et al., 1995)	C2/c	16	12.710 (3)	7.429 (1)	24.716 (5)	100.03 (3)	1.18	0.625	1.888	
$4 M$	$\mathrm{Na}_{2} \mathrm{CoVF}_{7}$ (Peschel et al., 1995)	C2/c	16	12.703 (5)	7.391 (3)	24.651 (5)	100.02 (3)	1.18	0.645	1.829	
$4 M$	$\mathrm{Na}_{2} \mathrm{FeCrF}_{7}$ (Peschel et al., 1995)	C2/c	16	12.625 (3)	7.391 (1)	24.695 (5)	99.93 (3)	1.18	0.6125	1.927	
$4 M$	$\mathrm{Na}_{2} \mathrm{Fe}_{2} \mathrm{~F}_{7}$ (Yakubovich et al., 1993; Cosier et al., 1970; Tressaud et al., 1974)	C2/c	16	12.676 (3)	7.422 (1)	24.710 (5)	99.97 (3)	1.18	0.58	2.034	Magnetic
$4 M$	$\mathrm{Na}_{2} \mathrm{CoFeF}_{7}$ (Welsch \& Babel, 1992; Cosier et al., 1970; Tressaud et al., 1974; Boireau et al., 1993)	C2/c	16	12.622 (10)	7.360 (4)	24.516 (20)	99.71 (5)	1.18	0.62	1.903	Magnetic
$4 M$	$\mathrm{Na}_{2} \mathrm{CoCrF}_{7}$ (Boireau et al., 1993; Peschel et al., 1995)	C2/c	16	12.578 (3)	7.335 (1)	24.415 (5)	99.64 (3)	1.18	0.653	1.808	Magnetic
$4 M$	$\mathrm{Na}_{2} \mathrm{FeAlF}_{7}$ (Dahlke et al., 1998; Tressaud et al., 1974)	C2/c	16	12.426	7.278	24.206	99.99	1.18	0.563	2.098	Magnetic

Table 6
List of weberite oxides with R_{A} / R_{B} and the relative ionicity of the $A-\mathrm{O}$ bond.

Type		Lattice parameters				$R_{A}(\AA)$	$R_{B}(\AA)$	R_{A} / R_{B}	$I_{A} /\left(I_{B}+I_{A}\right)$	Properties investigated
		a (A)	b (()	$c(\AA)$	$\beta\left({ }^{\circ}\right)$					
2 O	$\mathrm{Ca}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}$ (Bystrom, 1945; Ivanov	7.28	7.44	10.18		1.12	0.6	1.86667	0.60636	Ferroelectric
	et al., 1998; Sato et al., 2002; Lin	7.3060	7.4627	10.2263						and
	et al., 2006)	7.2900	10.2000	7.4500						photocatalytic
2 O	$\mathrm{Cd}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}$ (Brisse et al., 1972; Bystrom, 1945)	7.21	7.33	10.14		0.9	0.6	1.5	0.56093	
2 O	$\mathrm{Sr}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}$ (Knop et al., 1980; Groen	7.452	7.687	10.381		1.26	0.6	2.1	0.61038	Ferroelectric
	\& Ijdo, 1988; Lin et al., 2006;	7.4557 (2)	10.3708 (3)	7.6860 (1)						and
	Sato et al., 2002)	7.4557	10.3708	7.6860						photocatalytic
2 O	$\mathrm{Pb}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}$ (Ivanov \& Zavodnik,	7.484 (1)	7.857 (1)	$10.426 \text { (2) }$		1.29	0.6	2.15	0.54792	Ferroelectric
	1990; Ivanov et al., 1998)	7.4774	7.8549	10.4250		1.29	0.6	2.15	0.54792	Ferroelectric
2 O	$\mathrm{Ca}_{2} \mathrm{Os}_{2} \mathrm{O}_{7}$ (Reading et al., 2002; Weller et al., 2003)	7.2104 (2)	10.1211 (3)	7.3813 (2)		1.12	0.575	1.94783	0.55518	Electronic
2 O	$\mathrm{Sr}_{2} \mathrm{Bi}_{2} \mathrm{O}_{7}$ (Knop et al., 1980)	7.70	7.91	10.58		1.26	0.76	1.65789	0.58305	
2 O	$\mathrm{Ba}_{2} \mathrm{U}_{2} \mathrm{O}_{7}$ (Cordfunke \& Ijdo, 1988)	8.1665 (15)	11.3081 (21)	8.1943 (16)		1.42	0.76	1.86842	0.5232	
2 O	$\mathrm{Na}_{2} \mathrm{Te}_{2} \mathrm{O}_{7}$ (Knop \& Demazeau, 1981)	7.233 (5)	10.104 (7)	7.454 (5)		1.18	0.56	2.10714	0.64905	
2 O	$\mathrm{Ag}_{2} \mathrm{Te}_{2} \mathrm{O}_{7}$ (Klein et al., 2006)	7.266 (2)	10.1430 (9)	7.6021 (17)		1.28	0.56	2.28571	0.60811	
2 O	$\mathrm{CaPbSb}_{2} \mathrm{O}_{7}$ (Ivanov et al., 1998)	7.3577	7.5362	10.3521		1.205	0.6	2.00833	0.59219	Ferroelectric
2 O	$\mathrm{DyNaSb}_{2} \mathrm{O}_{7}$ (Desgardin et al., 1977)	7.26 (6)	7.41 (5)	10.20 (6)		1.1035	0.6	1.83917	0.6051	
2 O	$\mathrm{GdNaSb}_{2} \mathrm{O}_{7}$ (Desgardin et al., 1977)	7.29 (1)	7.47 (0)	10.20 (7)		1.1165	0.6	1.86083	0.60468	
2 O	$\mathrm{EuNaSb}_{2} \mathrm{O}_{7}$ (Desgardin et al., 1977)	7.30 (0)	7.47 (2)	10.21 (4)		1.123	0.6	1.87167	0.6088	
2 O	$\begin{aligned} & \mathrm{SmNaSb}_{2} \mathrm{O} 7 \text { (Desgardin et al., } \end{aligned}$	7.30 (8)	7.45 (7)	10.22 (7)		1.1295	0.6	1.8825	0.60636	
2 O	$\mathrm{NdNaSb}_{2} \mathrm{O} 7$ (Desgardin et al., 1977)	7.32 (7)	7.49 (2)	10.24 (2)		1.1445	0.6	1.9075	0.60636	
2 O	$\mathrm{PrNaSb}_{2} \mathrm{O}_{7}$ (Desgardin et al., 1977)	7.33 (7)	7.50 (6)	10.25 (5)		1.153	0.6	1.92167	0.58322	
2 O	$\mathrm{LaNaSb}_{2} \mathrm{O}_{7}$ (Desgardin et al., 1977)	7.37 (8)	7.50 (1)	10.28 (8)		1.17	0.6	1.95	0.60594	
2 O	$\mathrm{KLuSb}_{2} \mathrm{O}_{7}$ (Klein et al., 2006; Sych, Kabanova \& Andreeva, 1988; Sych, Kabanova, Garbuz \& Kovalenko, 1988)	7.23	10.23	7.39		1.2435	0.6	2.0725	0.60759	
2 O	$\mathrm{KYbSb}_{2} \mathrm{O}_{7}$ (Klein et al., 2006; Sych, Kabanova \& Andreeva, 1988; Sych, Kabanova, Garbuz \& Kovalenko, 1988)	7.24	10.25	7.40		1.2475	0.6	2.07917	0.61077	
2 O	$\mathrm{KErSb}_{2} \mathrm{O}_{7}$ (Klein et al., 2006; Sych, Kabanova \& Andreeva, 1988; Sych, Kabanova, Garbuz \& Kovalenko, 1988)	7.26	10.25	7.41		1.257	0.6	2.095	0.6088	
2 O	$\mathrm{KHoSb}_{2} \mathrm{O}_{7}$ (Klein et al., 2006; Sych, Kabanova \& Andreeva, 1988; Sych, Kabanova, Garbuz \& Kovalenko, 1988)	7.26	10.25	7.42		1.2625	0.6	2.10417	0.6092	
2 O	$\mathrm{KYSb}_{2} \mathrm{O}_{7}$ (Klein et al., 2006; Sych, Kabanova \& Andreeva, 1988; Sych, Kabanova, Garbuz \& Kovalenko, 1988)	7.26	10.25	7.43		1.2645	0.6	2.1075	0.6088	
2 O	$\mathrm{KYTa}_{2} \mathrm{O}_{7}$ (Gade \& Chincholkar, 1979)	7.78	10.82	7.50		1.2645	0.64	1.97578	0.5324	
2 O	$\mathrm{KDyTa}_{2} \mathrm{O}_{7}$ (Gade \& Chincholkar, 1979)	7.80	10.88	7.70		1.2685	0.64	1.98203	0.53282	
2 O	$\mathrm{KGdTa}_{2} \mathrm{O}_{7}$ (Gade \& Chincholkar, 1979)	7.84	10.86	7.72		1.2815	0.64	2.00234	0.5324	
2 O	$\mathrm{KSmTa}_{2} \mathrm{O}_{7}$ (Gade \& Chincholkar, 1979)	7.86	10.82	7.76		1.2945	0.64	2.02266	0.53405	
2 O	$\mathrm{NaDyV}_{2} \mathrm{O}_{7}$ (Gade \& Chincholkar, 1979)	7.53	10.94	7.44		1.1035	0.54	2.04352	0.53496	
2 O	$\mathrm{NaGdV}_{2} \mathrm{O}_{7}$ (Gade \& Chincholkar, 1979)	7.56	10.88	7.46		1.1165	0.54	2.06759	0.54352	
2 O	$\mathrm{NaSmV}_{2} \mathrm{O}_{7}$ (Gade \& Chincholkar, 1979)	7.58	10.86	7.48		1.1295	0.54	2.09167	0.54526	
2 O	$\mathrm{NaNdV}_{2} \mathrm{O}_{7}$ (Gade \& Chincholkar, 1979)	7.62	10.82	7.50		1.1445	0.54	2.11944	0.54526	
2 O	NaSrSbTeO 77 (Burchard \& Rudorff, 1979)	Not report				1.22	0.58	2.10345	0.62891	

Table 6 (continued)

Type		Lattice parameters				$R_{A}(\AA)$	$R_{B}(\AA)$	R_{A} / R_{B}	$I_{A} /\left(I_{B}+I_{A}\right)$	Properties investigated
		a (A)	b (${ }_{\text {¢ }}$)	$c(\AA)$	$\beta\left({ }^{\circ}\right)$					
2 O	$\mathrm{NaCdSbTeO}{ }_{7}$ (Burchard \& Rudorff, 1979)	Not reported				1.04	0.58	1.7931	0.60778	
2 O	$\mathrm{NdCaSbTeO}{ }_{7}$ (Burchard \& Rudorff, 1979)	Not reported				1.15	0.58	1.9828	0.62694	
2 O	$\mathrm{Na}_{0.5} \mathrm{Cd}_{1.5}\left(\mathrm{Fe}_{0.5} \mathrm{Te}_{1.5}\right) \mathrm{O}_{7}$ (Burchard \& Rudorff, 1979)	7.131	7.317	10.183		1.12	0.5575	2.00897	0.59584	
2 O	$\mathrm{Na}_{0.5} \mathrm{Ca}_{1.5}\left(\mathrm{Fe}_{0.5} \mathrm{Te}_{1.5}\right) \mathrm{O}_{7}$ (Burchard \& Rudorff, 1979)	Not reported				1.135	0.5575	2.0358744	0.626874	
2 O	$\begin{aligned} & \mathrm{Ba}_{0.5} \mathrm{Ca}_{1.5}\left(\mathrm{Fe}_{0.5} \mathrm{Te}_{1.5}\right) \mathrm{O}_{7} \text { (Burchard } \\ & \quad \text { \& Rudorff, 1979) } \end{aligned}$	7.176	7.464	10.140		1.195	0.5725	2.08734	0.627674	
$2 M$	$\mathrm{CaLa}_{1.5} \mathrm{Sb}_{1.5} \mathrm{O}_{7}(\mathrm{Au}$ et al., 2007)	7.5753 (3)	10.6870 (5)	7.5482 (3)	90.346 (3)	1.15	0.7	1.6428571	0.57329	
$2 M$	$\mathrm{CaPr}_{1.5} \mathrm{Sb}_{1.5} \mathrm{O}_{7}$ (Au et al., 2007)	7.5188 (3)	10.6111 (4)	7.4952 (2)	90.315 (2)	1.1245	0.7	1.6064286	0.569502	
$2 M$	$\mathrm{CaNd}_{1.5} \mathrm{Sb}_{1.5} \mathrm{O}_{7}$ (Au et al., 2007)	7.5019 (2)	10.5890 (3)	7.4770 (2)	90.298 (2)	1.11175	0.7	1.5882143	0.569502	
$2 M$	$\mathrm{CaY}_{1.5} \mathrm{Sb}_{1.5} \mathrm{O}_{7}$ (Au et al., 2007)	7.3905 (1)	10.4563 (2)	7.3894 (1)	90.049 (1)	1.04425	0.7	1.4917857	0.55821	
$3 T$	$\mathrm{Ca}_{1.5} \mathrm{Mn}_{0.5} \mathrm{Sb}_{2} \mathrm{O}_{7}$ (Bonazzi \& Bindi, 2007)	7.282 (2)		17.604 (4)		1.04	0.6	1.73333	0.59369	
$3 T$	$\mathrm{Mn}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}$ (Scott, 1990)	7.191		17.402		0.96	0.6	1.6	0.540094	
$3 T$	$\mathrm{Ca}_{1.92} \mathrm{Ta}_{1.92} \mathrm{Nd}_{0.08} \mathrm{Zr}_{0.08} \mathrm{O}_{7}$ (Grey et al., 2003)	7.356 (1)		18.116 (1)		1.11956	0.61728	1.8136988	0.529853	
$3 T$	$\mathrm{Ca}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7}$ (Cava et al., 1998; Grey et al., 1999)	7.355 (1)		18.09 (1)		1.12	0.64	1.75	0.52985	Dielectric
$4 M$	$\begin{aligned} & \mathrm{Ca}_{1.92} \mathrm{Ta}_{1.92} \mathrm{Nd}_{0.08} \mathrm{Zr}_{0.08} \mathrm{O}_{7} \text { (Grey et } \\ & \text { al., 2003) } \end{aligned}$	12.761 (1)	7.358 (1)	24.565 (1)	100.17	1.12	0.64	1.75	0.52922	
$5 M$	$\mathrm{Ca}_{1.8} \mathrm{Ta}_{1.8} \mathrm{Sm}_{0.24} \mathrm{Ti}_{0.17} \mathrm{O}_{7}(\text { Grey \& }$ Roth, 2000)	12.763 (1)	7.130 (1)	30.190 (1)	94.09 (1)	1.13635	0.62743	1.81113	0.52523	
$5 M$	$\mathrm{Ca}_{2} \mathrm{Ta}_{1.8} \mathrm{Nb}_{0.2} \mathrm{O}_{7}$ (Grey et al., 2001)	12.749 (1)	7.347 (1)	30.23 (1)	94.23 (1)	1.12	0.64	1.75	0.52866	Dielectric
$6 M$	$\mathrm{Ca}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7}$ (Grey et al., 1999)	7.348 (3)	12.727 (3)	36.44 (5)	95.9 (1)	1.12	0.64	1.75	0.52985	
$6 T$	$\mathrm{Ca}_{1.89} \mathrm{Ta}_{1.86} \mathrm{Sm}_{0.16} \mathrm{Ti}_{0.1} \mathrm{O}_{7} \text { (Grey \& }$ Roth, 2000)	7.353 (1)		36.264 (1)		1.1792	0.63505	1.85686	0.52649	
7 M	$\mathrm{Ca}_{2} \mathrm{Ta}_{1.9} \mathrm{Nb}_{0.1} \mathrm{O}_{7}$ (Grey et al., 2001)	12.714 (1)	7.370 (1)	42.45 (1)	95.75 (1)	1.12	0.64	1.75	0.52925	Dielectric
80	$\mathrm{Ca}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7}$ (Ebbinghaus et al., 2005)	7.3690 (2)	12.7296 (3)	48.263 (1)		1.12	0.64	1.75	0.52985	Dielectric and optical

R is the ionic radius from Shannon (1976), χ is the electronegativity from Allred \& Rochow (1958), I is the bond ionicity.
elongated perpendicular to the $B-1$ chains) in CuF_{6} octahedra leads to the lowering of symmetry, while maintaining the orthorhombic lattice. The space group is reduced to Pmnb, a subgroup of Imma (Yakubovich et al., 1993). Another case of losing I-centering symmetry happens when the ionic radius of $B-2$ is larger than that of $B-1$. In a classic $2 O$ weberite structure the ionic radius of $B-2$ is equal to or smaller than that of $B-1$. When a larger $B-2$ ion appears in a weberite compound, the anions, which are shared by two $B-1$ octahedral neighbors, distort toward $B-2$ ions. As a result, the $A-2$ ions cannot hold eight-coordination and change to seven-coordination. The $B-2$ ion keeps octahedral coordination with a seventh anion relatively close to it. As in the case of $\mathrm{Na}_{2} \mathrm{NiInF}_{7}$, the distance between the distorted anion and $B-2\left(\mathrm{In}^{3+}\right)$ is only 1.3 times larger than the shortest $\mathrm{In}-\mathrm{F}$ bond length in $B-2$ octahedra (Frenzen et al., 1992). In a $2 O$ weberite structure, the ratio of the two distances is higher, such as 1.97 in $\mathrm{Na}_{2} \mathrm{MgAlF}_{7}$ or 1.83 in $\mathrm{Ca}_{2} \mathrm{Os}_{2} \mathrm{O}_{7}$ (Wyckoff, 1963; Reading et al., 2002). The distortion of the anion excludes the I-centering of the structure and results in the space group Pnmb (Yakubovich et al., 1993). The notation of 2 O -II and 2 O -III is used for the first and the second condition, respectively.

One extreme case for $2 O$-III is $\mathrm{Ln}_{2}(\mathrm{~B}, \mathrm{Ln}) \mathrm{O}_{7}$ (or $\mathrm{Ln}_{3} B \mathrm{O}_{7}$, where Ln^{3+} is a rare-earth element, and B is $\mathrm{Os}^{5+}, \mathrm{Re}^{5+}, \mathrm{Ru}^{5+}$, $\mathrm{Re}^{5+}, \mathrm{Mo}^{5+}, \mathrm{Ir}^{5+}, \mathrm{Sb}^{5+}, \mathrm{Nb}^{5+}$ or $\left.\mathrm{Ta}^{5+}\right) . B-2$ ions are the same as A ions. As a result, the $B-2$ sites and $A-2$ sites are indistinguishable. The structure has an arrangement of $\mathrm{BO}_{6}-\mathrm{LnO}_{8}$
layers (much like weberites), but a different cation configuration with VII coordination between the layers (Fig. 11). Due to the fact that this type of structure does not maintain the three-dimensional BO_{6} octahedral network, it is considered a weberite-type structure rather than the weberite structure, or sometimes it is reported as a $\mathrm{La}_{3} \mathrm{NbO}_{7}$-type structure (Rossell, 1979; Allpress \& Rossell, 1979; Rooksby \& White, 1964; Abe et al., 2004, 2006; Cai \& Nino, 2007; Cai et al., 2007; Wakeshima et al., 2004; Groen et al., 1987; Wakeshima \& Hinatsu, 2006; Nishimine et al., 2007; Gemmill et al., 2007; Khalifah et al., 1999, 2000; Wiss et al., 2000; Bontchev et al., 2000; Harada \& Hinatsu, 2001; Harada et al., 2001; Nishimine et al., 2005; Gemmill et al., 2004, 2005; Vanberkel \& Ijdo, 1986; Kahnharari et al., 1995; Wltschek et al., 1996; Greedan et al., 1997; Lam et al., 2002; Plaisier et al., 2002; Lam et al., 2003; Barrier \& Gougeon, 2003; Hinatsu et al., 2004; Vente \& Ijdo, 1991). Table 7 lists examples of $\operatorname{Ln}_{3} B \mathrm{O}_{7}$ and their properties that have been investigated. Details on the dielectric properties of $\mathrm{Ln}_{3} \mathrm{NbO}_{7}$ have been reported and will be covered in §3.2.2.

There is a special type of weberite $\left(B^{+2} B^{+3} \mathrm{~F}_{5} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ named inverse weberite (please see Table 7 for examples). In this structure A cations are missing. In order to maintain charge neutrality, two $\mathrm{H}_{2} \mathrm{O}$ molecules take the place of two F^{-}ions. This structure has the same characteristic B octahedral network, just like the $2 O$ weberite structure. The space group and Wyckoff positions of B cations and anions are the same as
in the $2 O$ weberite. However, B^{2+} ions take $B-2$ sites while B^{3+} cations lie at $B-1$ sites in this structure, which is opposite to the classic weberite structure (Laligant, Calage et al., 1986; Laligant, Leblanc et al., 1986; Laligant, Pannetier et al., 1986; Laligant, Pannetier et al., 1987; Weil \& Werner, 2001; Leroux et al., 1995; Subramanian et al., 2006).

The investigation of $\mathrm{Na}_{2} B^{2+} B^{3+} \mathrm{F}_{7}$ weberites indicates that the resulting structure type is determined by the size of the B^{2+}

Figure 10
(a) Relationship between $2 O, 2 M$ and $3 T$ weberites (origin at the $A 2$ site); large spheres: A ions; small spheres: B ions; blue solid lines: multiple unit cells of $2 O$; red dotted lines: the unit cell of $2 M$; green dashed lines: the unit cell of $3 T$. (b) (001) plane of $3 T$ (green dashed lines) and $2 M$ [red dotted lines, also indicating (011) of $2 O$].
cations. With increasing ionic radius of B^{2+}, the structure changes from $2 O$ to $2 M, 4 M$ and to $3 T$, gradually (Yakubovich et al., 1993). As for oxide weberites, it is clear that the A cation still plays an important role, for example, $2 O \mathrm{Ca}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}, 3 T$ $\mathrm{Ca}_{1.5} \mathrm{Mn}_{0.5} \mathrm{Sb}_{2} \mathrm{O}_{7}$ and $3 T \mathrm{Mn}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}$ (Ivanov et al., 1998; Bonazzi \& Bindi, 2007; Scott, 1990; Butler et al., 1950; Bystrom, 1945). The occurrence of the monoclinic and trigonal variants may be closely related to the ionic radius ratio of the A and B cations. However, due to the limited number of compounds reported in each weberite-like structure, it is difficult to define the factors that determine when the variants occur.

As discussed before, the unpaired vertex (terminal anions) of $B-2$ octahedra are in trans configurations in $2 O$ weberites. The trigonal and monoclinic variants produce another type of $B-2$ octahedra with the cis configuration (see Figs. $2 b$ and c). Grey and co-workers (Grey \& Roth, 2000; Grey et al., 2003) figured out that the relative position of the terminal anions is a characteristic of weberite polytypes. In $2 M$ and $3 T$ polytypes cis- $B 2$ are only in $A_{3} B$ layers, while trans- $B 2$ are only in $A B_{3}$ layers (Grey et al., 2003; Yakubovich et al., 1993). The $4 M$ and $6 T$ weberites have alternative cis and trans configurations in successive $A_{3} B$ layers (Grey \& Roth, 2000; Grey et al., 2003).

Several research groups (Yakubovich et al., 1993, 1990; Dahlke et al., 1998; Verscharen \& Babel, 1978; Welsch \& Babel, 1992) proposed that the formation of $B-1$ chains is a characteristic of $\mathrm{Na}_{2} B^{2+} B^{3+} \mathrm{F}_{7}$ weberite polytypes. The detailed description about the different stacking sequence and the orientation of $B-1$ chains in $2 O, 2 M, 3 T$ and $4 M$ variants has been reported by Yakubovich et al. (1993). Here, the discussion is expanded to include all $2 O, 2 M, 3 T, 4 M, 5 M, 6 M$, $6 T, 7 M$ and $8 O$ variants. There are three different orientations for $B-1$ chains: type α, type β and type γ. These three orientations are correlated with each other by a threefold rotation.

Figure 11
Weberite-type $\operatorname{Ln}_{3} B \mathrm{O}_{7}$, viewed in the $[0.05,0.05,1]$ direction. The layers of LnO_{8} and BO_{6} lines are parallel to the (001) plane. Between the layers are Ln with a coordination number of 7 .

Table 7
Examples of weberite-type $\mathrm{Ln}_{3} \mathrm{BO}_{7}$ and inverse weberites.

Type	Compounds	Space group	Z	Lattice parameters			Properties investigated
				a ()	b (()	$c(\AA)$	
Weberite type	$\mathrm{La}_{3} \mathrm{NbO}_{7}$ (Abe et al., 2004, 2006; Allpress \& Rossell, 1979)	Cmcm	4	11.167 (1)	7.629 (1)	7.753 (1)	Dielectric and photocatalytic
Weberite type	$\mathrm{La}_{3} \mathrm{TaO}_{7}$ (Allpress \& Rossell, 1979; Abe et al., 2004, 2006)	Cmcm	4	11.1863 (4)	7.6152 (3)	7.7556 (3)	Catalytic and magnetic
Weberite type	$\mathrm{Pr}_{3} \mathrm{NbO}_{7}$ (Vente et al., 1994)	Cmcm	4	10.959 (1)	7.5240 (7)	7.6676 (7)	Magnetic
Weberite type	$\mathrm{Pr}_{3} \mathrm{TaO}_{7}$ (Vente et al., 1994)	Cmcm	4	10.973 (1)	7.5230 (7)	7.6721 (7)	Magnetic
Weberite type	$\mathrm{Nd}_{3} \mathrm{NbO}_{7}$ (Cai et al., 2007; Allpress \& Rossell, 1979)	Cmcm	4	10.905 (2)	7.517 (2)	7.624 (1)	Dielectric
Weberite type	$\mathrm{Gd}_{3} \mathrm{NbO}_{7}$ (Cai et al., 2007; Allpress \& Rossell, 1979; Astafyev et al., 1985)	$C 222_{1}$	4	10.610 (1)	7.521 (1)	7.550 (1)	Dielectric
Weberite type	$\mathrm{Gd}_{3} \mathrm{TaO}_{7}$ (Wakeshima et al., 2004)	C2211	4	10.6259 (4)	7.5234 (3)	7.5446 (3)	Magnetic
Weberite type	$\mathrm{Dy}_{3} \mathrm{TaO}_{7}$ (Wakeshima et al., 2004)	C222 ${ }_{1}$	4	10.5332 (3)	7.4447 (2)	7.4816 (2)	Magnetic
Weberite type	$\mathrm{Ho}_{3} \mathrm{TaO}_{7}$ (Wakeshima et al., 2004)	C222 ${ }_{1}$	4	10.4873 (4)	7.4292 (3)	7.4499 (3)	Magnetic
Inverse	$\mathrm{Fe}_{2} \mathrm{~F}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ (Laligant, Pannetier et al., 1986; Greneche et al., 1988; Hall et al., 1977)	Imma	4	7.447 (1)	10.8623 (2)	6.652 (1)	Magnetic
Inverse	$\mathrm{ZnFeF}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ (Laligant, Calage et al., 1986)	Imma	4	7.475 (1)	10.766 (1)	6.594 (1)	Magnetic
Inverse	$\mathrm{MnFeF}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ (Laligant, Calage et al., 1986; Laligant, Pannetier et al., 1987; Greneche et al., 1988)	Imma	4	7.5635 (2)	10.901 (1)	6.7319 (3)	Magnetic
Inverse	$\mathrm{MnAlF}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ (Subramanian et al., 2006)	Imma	4	7.229 (2)	10.487 (4)	6.816 (2)	
Inverse	$\mathrm{MgAlF}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ (Subramanian et al., 2006; Weil \& Werner, 2001)	Imma	4	7.057 (2)	10.125 (4)	6.798 (2)	Electrical resistivity
Inverse	$\mathrm{MnVF}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ (Subramanian et al., 2006; Leroux et al., 1995)	Imma	4	7.607 (2)	10.912 (4)	6.728 (2)	Magnetic

For 2 O weberites (including 2 O -II and 2 O -III), the stacking sequence of $B-1$ chains is $\alpha \alpha \alpha \ldots$ (the orientation is parallel to the [100] direction). The same applies for pseudo- $2 \mathrm{O} \mathrm{NaCu}_{3} \mathrm{~F} 7$ and $\mathrm{CaLn}_{1.5} \mathrm{Sb}_{1.5} \mathrm{O}_{7}(\mathrm{Ln}=\mathrm{La}, \mathrm{Pr}, \mathrm{Nd}$ and Y$)$, special cases of $2 M$ (Renaudin et al., 1988; Au et al., 2007). The directions of the $B-1$ chains for $2 M$ (except $\mathrm{NaCu}_{3} \mathrm{~F}_{7}$ and $\mathrm{CaLn}_{1.5} \mathrm{Sb}_{1.5} \mathrm{O}_{7}$) and $4 M$ weberites are either nearly parallel to [110] (type β) or [110] (type γ). The stacking array for $2 M$ is $\beta \gamma \beta \gamma$, while it is $\beta \beta \gamma \gamma \beta \beta \gamma \gamma$ for the $4 M$ polytype. As for $3 T$ and $6 T$, the directions of the $B-1$ chains are nearly parallel to [010], [100] or [110]. The sequence of $B-1$ chains is $\alpha \beta \gamma$ in $3 T$ and $\alpha \alpha \beta \beta \gamma \gamma \alpha \alpha \beta \gamma \gamma$ in $6 T$ weberites.

It is important to note that the close-packed cation layers are stacked the same as f.c.c. (face-centered cubic: cubic stacking in which the stacking sequence is $A B C A B C \ldots$) in $2 O, 2 M, 3 T, 4 M$ and $6 T$ polytypes. The cation layers in $5 M$, $6 M, 7 M$ and $8 O$ polytypes $\left(\mathrm{Ca}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7}\right.$-based compounds) are a mixture of cubic stacking and hexagonal stacking. The hexagonal stacking layers act as mirror glide planes for the cations, for example, the stacking sequence of $5 M$ is $A B C \underline{A C B A} \underline{C} A B$ in a unit cell (the underline letters indicate a hexagonal stacking; Grey et al., 1999, 2001). Therefore, $5 M, 6 M, 7 M$ and $8 O$ polytypes are not pure weberite. The weberite blocks are separated by h-stacking layers. A simpler approach is to describe the stacking of c as cubic and h as hexagonal. The stacking sequence is ccchccchcc for $5 M$ [simplified as $(3 c) h(3 c) h(2 c)$, the integers indicating the number of c stacking layers], $(5 c) h(5 c) h$ for $6 M,(5 c) h(7 c) h$ for $7 M$ and $(4 c) h(7 c) h(3 c)$ for $8 O$ (Ebbinghaus et al., 2005; Grey et al.,

1999, 2001, 2003; Grey \& Roth, 2000). There are several structural features resulting from the introduction of h stacking:
(i) h stacking only occurs in the CaTa_{3} cation layers;
(ii) h stacking causes the appearance of $B-3$ octahedra on the CaTa_{3} cation layers and the neighboring $\mathrm{Ca}_{3} \mathrm{Ta}$ cation layers, which have only one unpaired vertex ($B-1$ octahedra have no unpaired vertex and $B-2$ have two);
(iii) in h stacking layers $B-3$ chains are formed, but no $B-1$ chains.
In these cases type α is nearly parallel to [100] for $8 O$ or [010] for $5 M$ and $7 M$. Type β is nearly parallel to [110] and type γ is nearly parallel to [110]. The directions of the B chains are $\beta \underline{\beta} \alpha \underline{\gamma} \gamma$ for $5 M, \underline{\gamma} \beta \gamma \underline{\beta} \gamma \beta$ for $6 M, \gamma \underline{\alpha} \gamma \alpha \beta \underline{\alpha} \beta$ for $7 M$ and $\alpha \bar{\beta} \underline{\alpha} \gamma \alpha \beta \underline{\alpha} \gamma$ for $8 O$ ($B-3$ chains are underlined). In summary, the stacking sequence of B chains changes with different weberite variants (see Fig. 12) and the formation of B chains is a characteristic of all weberites.

2.4. Stability field

Both pyrochlores and weberites have $B X_{6}$ octahedral networks. Owing to the fact that $B-2$ octahedra have two unpaired vertices, the $B X_{6}$ octahedral network in weberite is typically less compact. Therefore, weberite has more potential to permit larger radii of A ions. Fig. 13 shows a diagram of R_{A} versus R_{B} for 159 pyrochlore oxides and 131 weberite compounds (83 weberite fluorides and 48 weberite oxides, see Tables 5 and 6 for a complete list and references). The 159
pyrochlore oxides are taken from two articles (Subramanian et al., 1983; Isupov, 2000). Fig. 13 indicates that the majority of pyrochlores have R_{A} ranging from 0.97 to $1.13 \AA$, while most weberites have R_{A} values ranging from 1.10 to $1.30 \AA$.

Weberite $\mathrm{Ba}_{2} \mathrm{U}_{2} \mathrm{O}_{7}$ has the highest R_{A} value of $1.42 \AA$ (Cordfunke \& Ijdo, 1988; Shannon, 1976). This clearly shows that larger R_{A} values prefer the formation of the weberite (Brisse et al., 1972). The ratio of R_{A} / R_{B} for the weberite is

Figure 12
B chains in different weberite-like structures. The vectors across the octahedra indicate the orientations of the B chains. (a) $2 O$, (b) $2 M$, (c) $3 T$, (d) $4 M$, (e) $5 M,(f) 6 T$, (g) $6 M$, (h) $7 M$ and (i) $8 O$.
between 1.5 and 2. The two end-members are $\mathrm{Cd}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}$ and $\mathrm{Ag}_{2} \mathrm{Te}_{2} \mathrm{O}_{7}$. However, the range of R_{A} / R_{B} for weberite greatly overlaps with the stability field for pyrochlore: 1.46-1.8 for $A_{2}^{3+} B_{2}^{4+} \mathrm{O}_{7}$ and 1.4-2.2 for $A_{2}^{2+} B_{2}^{5+} \mathrm{O}_{7}$ (Subramanian et al., 1983). Therefore, the ionic radius ratio is not the only determining factor in the structural stability.

Electronegativity (χ) is another important factor in the field of existence, because the formation of weberites is closely related to the covalent character of the bonds (Sych, Kabanova, Garbuz et al., 1988; Lopatin et al., 1985; Weller et al., 2003; Burchard \& Rudorff, 1979). Weller et al. (2003) used only χ_{A} and χ_{B} to picture the stability field of the weberite, but their study only included a limited number of compounds. Lopatin et al. $(1982,1985)$ successfully utilized χ_{A} and R_{A} / R_{B} to distinguish pyrochlores and weberites, and χ_{B} and R_{A} / R_{B} to determine the different regions of the weberite and the layered perovskite. They chose Allred-Rochow (Allred \& Rochow, 1958) electronegativities (which were completed by Little \& Jones, 1960) because Allred-Rochow electronegativities are more precise when measuring the degree of covalent character of the bonds. Sych et al. (Sych, Kabanova, Garbuz et al., 1988) introduced R_{A} / R_{B} versus the relative ionicity of the $A-\mathrm{O}$ bond, which is the ratio of the ionicity of the $A-\mathrm{O}$ bond to the sum of the ionicity of the $A-\mathrm{O}$ and $B-$ O bonds. The ionicity of the $A-\mathrm{O}$ bond is calculated as

$$
\begin{equation*}
I_{A-\mathrm{O}}=1-\exp \left[-0.25\left(\chi_{A}-\chi_{\mathrm{O}}\right)^{2}\right] \tag{4}
\end{equation*}
$$

They used the electronegativities for the crystalline state calculated by Batanov (1975). The advantage of relative ionicity is that it contains the information for both $A-\mathrm{O}$ and $B-\mathrm{O}$ bonds. Therefore, the relative ionicity of $A-\mathrm{O}$ versus R_{A} / R_{B} is used to determine the stability field in this study, as shown in Fig. 14. Here, the electronegativities of AllredRochow (Allred \& Rochow, 1958) and Little-Jones (Little \& Jones, 1960) were used in calculating the ionicity. In Fig. 14(a) there is no obvious separation between weberites and pyrochlores. The reason for this may be that both $A_{2}^{2+} B_{2}^{5+} \mathrm{O}_{7}$ and $A_{2}^{3+} B_{2}^{4+} \mathrm{O}_{7}$ pyrochlore compounds are plotted. There are very

Figure 13
Summary of R_{A} versus R_{B} for weberites (including oxide and fluorine) and pyrochlore oxides.
few, if any, $A_{2}^{3+} B_{2}^{4+} \mathrm{O}_{7}$ weberites reported. Most weberites are $A_{2}^{2+} B_{2}^{5+} \mathrm{O}_{7}$ or $\left(A, A^{\prime}\right)_{2}^{2+}\left(B, B^{\prime}\right)_{2}^{5+} \mathrm{O}_{7}$ and several $A_{2}^{1+} B_{2}^{6+} \mathrm{O}_{7}$ $\left(\mathrm{Na}_{2} \mathrm{Te}_{2} \mathrm{O}_{7}\right.$ and $\left.\mathrm{Ag}_{2} \mathrm{Te}_{2} \mathrm{O}_{7}\right)$. The inclusion of $A_{2}^{3+} B_{2}^{4+} \mathrm{O}_{7}$, particularly high-pressure phases, complicates the stability field, therefore, Fig. $14(b)$ only contains $A_{2}^{2+} B_{2}^{5+} \mathrm{O}_{7},(A$, $\left.A^{\prime}\right)_{2}^{2+}\left(B, B^{\prime}\right)_{2}^{5+} \mathrm{O}_{7}$ compounds $\mathrm{Na}_{2} \mathrm{Te}_{2} \mathrm{O}_{7}$ and $\mathrm{Ag}_{2} \mathrm{Te}_{2} \mathrm{O}_{7}$ (all weberites points in Fig. $14 b$ are listed in Table 6). Observing the plotted data in Fig. 14(b), there is a clear separation between weberites and pyrochlores. The dashed line is for visual effect - above the line is the weberite region. Weberites prefer a higher ratio of $I_{A-\mathrm{O}} /\left(I_{A-\mathrm{O}}+I_{B-\mathrm{O}}\right)$ and a higher ratio of R_{A} / R_{B} than pyrochlores.

It is worth mentioning four specific compounds: $\mathrm{Cd}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}$ ($R_{\mathrm{Cd}^{2+}}=0.9 \AA$) in the pyrochlore region, and $\mathrm{Ca}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}$, $\mathrm{Ca}_{2} \mathrm{Os}_{2} \mathrm{O} 7\left(R_{\mathrm{Ca}^{2+}}=1.12 \AA\right)$ and $\mathrm{Pb}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}\left(R_{\mathrm{Pb}^{2+}}=1.29 \AA\right)$ in the weberite region (Shannon, 1976). A high-pressure study has been performed on the first three compounds to investigate the transformation of the pyrochlore and weberite phases. $\mathrm{Cd}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}$ can form a metastable phase of weberite, which can be fully converted to pyrochlore under high pressure. $\mathrm{Ca}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}$ weberite is more stable than $\mathrm{Cd}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}$ weberite. The same high-pressure condition only results in mixed phases of $\mathrm{Ca}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}$ pyrochlore and weberite (Knop et al., 1980). At one atmosphere, $\mathrm{Ca}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}$ crystallizes as a pyrochlore below 973 K , above which it transforms to a weberite (Brisse et al., 1972). Meanwhile, $\mathrm{Ca}_{2} \mathrm{Os}_{2} \mathrm{O}_{7}$ weberite is stable and the synthesis of pyrochlore $\mathrm{Ca}_{2} \mathrm{Os}_{2} \mathrm{O}_{7}$ under pressure leads to calcium-deficient $\mathrm{Ca}_{1.7} \mathrm{Os}_{2} \mathrm{O}_{7}$ (Reading et al., 2002; Weller et al., 2003). The reported crystal structure of $\mathrm{Pb}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}$ also strongly depends on the synthesis conditions. Low-temperature firing or wet chemical synthesis resulted in a

Figure 14
Stability field for weberite.
cubic pyrochlore phase. The cubic phase was metastable and readily transformed into weberite or rhombohedrally distorted pyrochlore (Ivanov et al., 1998; Brisse et al., 1972). These four compounds can crystallize as different polymorphs depending on the processing history, as presented in Fig. $14(b)$. It is worth noting that although the ionic radii ratio and bond ionicity are two major factors, there may be some additional crystallochemical characteristics or parameters that play a role in determining the prevalence of weberite over pyrochlore or vice versa. It would be interesting to perform some computational calculations (e.g. density functional theory) to shed light on the comparative lattice energy and stability field of pyrochlore and weberite.

3. Interesting properties and potential applications

For fluorine-based weberites, the magnetic properties attract most of the attention. The triangular network formed by B^{2+} and B^{3+} cations in the HTB-like planes generally support three different magnetically ordered systems:
(i) the diamagnetic B^{3+} ions separate linear chains of paramagnetic B^{2+} ions, for example, antiferromagnetic $\mathrm{Na}_{2} \mathrm{NiAlF}_{7}, \mathrm{Na}_{2} \mathrm{FeAlF}_{7}$ and $\mathrm{Na}_{2} \mathrm{NiInF}_{7}$ (Frenzen et al., 1992; Heger, 1973);
(ii) both B^{2+} and B^{3+} are paramagnetic ions, like ferromagnetic $\mathrm{Na}_{2} \mathrm{NiFeF}_{7}$ and antiferromagnetic $\mathrm{Na}_{2} \mathrm{NiCrF}_{7}$ (Laligant et al., 1989; Thompson et al., 1992; Heger, 1973; Frenzen et al., 1992);
(iii) diamagnetic B^{2+} forming linear chains which isolate the paramagnetic B^{3+} such as antiferromagnetic $\mathrm{Na}_{2} \mathrm{MgFeF}_{7}$ (Pankhurst et al., 1991).

As for weberite oxide, various properties have been investigated including the photocatalytic properites (Abe et al., 2004, 2006; Sato et al., 2002; Lin et al., 2006), the resistivity of $\mathrm{Ca}_{2} \mathrm{Os}_{2} \mathrm{O}_{7}$ weberite (Reading et al., 2002), magnetic properties (Khalifah et al., 1999; Wakeshima et al., 2004; Wakeshima \& Hinatsu, 2006), ferroelectric properties (Ivanov et al., 1998; Astafev et al., 1985) and dielectric properties (Cai \& Nino, 2007; Cava et al., 1998; Grey et al., 2001). The interest in the properties is first due to the fact that the weberite structure is considered more favorable for the realisation of a ferroelectric state than the pyrochlore structure (Astafev et al., 1985). The Sb -based compounds are the most investigated weberites for ferroelectric properties. Ten years ago, Cava et al. (1998) found that the temperature coefficients of the dielectric constant ($T C \varepsilon_{r}$) of the $\mathrm{Ca}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7}-\mathrm{Ca}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$ system can be close to zero. A series of investigations on $\mathrm{Ca}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7}$-based weberites have followed (Grey et al., 1999, 2001, 2003; Grey \& Roth, 2000; Ebbinghaus et al., 2005). $\mathrm{Ln}_{3} B \mathrm{O}_{7}$ (where $\mathrm{Ln}=$ rare-earth elements and B is Nb or Ta) are also interesting weberite-type compounds. The crystal structure is related to the ionic radius of Ln^{3+}, which provides a stage for the study of structuredielectric properties relationships. This section will focus on the ferroelectric properties and dielectric properties of weberite oxides.

3.1. Ferroelectric properties

$A_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}\left(A=\mathrm{Ca}^{2+}, \mathrm{Pb}^{2+}\right.$ and $\left.\mathrm{Sr}^{2+}\right)$ are perhaps the most studied weberites owing to their ferroelectric properties. Second-harmonic generation and heat-capacity measurements indicated a possible ferroelectric phase transition in $\mathrm{Pb}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}$. Dielectric constants showed a thermal hysteresis around the Curie temperature (T_{c}) in $\mathrm{Pb}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}$ (Astafev et al., 1985; Milyan \& Semrad, 2005). Single-crystal X-ray and powder neutron diffraction were performed in detailed crystallographic studies (Ivanov \& Zavodnik, 1990; Astafev et al., 1985). Below T_{c}, there is a slight distortion from a centrosymmetric structure and ionic displacements cause spontaneous polarization in this structure. The results indicated a non-centrosymmetric (space group $I 2 \mathrm{~cm}$) to centrosymmetric (space group Imam, another setting of Imma) phase transition (Astafev et al., 1985; Ivanov et al., 1998; Ivanov \& Zavodnik, 1990). T_{c} depends on the A cation: 510 K for $\mathrm{Pb}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}, 110 \mathrm{~K}$ for $\mathrm{Ca}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}$ and 90 K for $\mathrm{Sr}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}$. The substitution of Ca by Pb in $\mathrm{Ca}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}$ causes a shift of T_{c} towards a higher temperature: 200 K for $\mathrm{CaPbSb}_{2} \mathrm{O}_{7}$ weberite. Therefore, the A sublattice seems more likely to be the ferroelectrically active one.

It is worth noting that $\mathrm{Pb}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}$ can also form rhombohedrally distorted pyrochlore (Brisse et al., 1972). The pyrochlore phase is paraelectric even at room temperature. Actually, $\mathrm{Pb}_{2} \mathrm{Sb}_{2} \mathrm{O} 7$ weberite has a higher T_{c} than most $\mathrm{Pb}-$ based pyrochlores. These facts may serve as evidence that the weberite structure is more suitable for the appearance of the ferroelectric state (Astafev et al., 1985; Isupov, 2000).

3.2. Dielectric properties

3.2.1. $\mathrm{Ca}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7}$-based compounds. According to Grey and co-workers (Grey et al., 1999) the structure of pure $\mathrm{Ca}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7}$ is $3 T$ weberite up to 1673 K , where it transforms to the $7 M$ polytype. The structure can be easily modified by doping and different synthesis routines (Grey et al., 1999, 2001, 2003; Grey \& Roth, 2000; Ebbinghaus et al., 2005). One of the most interesting dielectric properties of $\mathrm{Ca}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7}$ is that the temperature coefficient of the dielectric constant $\left(T C \varepsilon_{r}\right)$ is 0 when mixing with $18 \mathrm{~mol} \%$ of $\mathrm{Ca}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$, meeting the requirement for the application of microwave dielectrics (Cava et al., 1998). $T C \varepsilon_{r} \simeq 0$ can be easily understood because $T C \varepsilon_{r}$ is negative for $\mathrm{Ca}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7}\left(-444\right.$ p.p.m. K^{-1} at 295 K$)$ and positive for $\mathrm{Ca}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$ (231 p.p.m. K^{-1} at 295 K). Extensive studies on the structure of the $(1-x) \mathrm{Ca}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7-x} \mathrm{Ca}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$ system have been performed by powder and single-crystal Xray diffraction, and powder neutron diffraction (Grey et al., 2001). The system forms $7 M$ weberite solid solutions up to $x=$ 0.1 and $\mathrm{Ca}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$-type solid solutions from $x=0.2-1$. When x $=0.1$, the structure transforms into $5 M$. The solubility limit is reached when the substitution of $\mathrm{Ca}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$ increases to $15 \mathrm{~mol} \%$ and $\mathrm{Ca}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$ forms as a second phase. The presence of $\mathrm{Ca}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$ thus results in $T C \varepsilon_{r}$ compensation, making it approximately zero.

Another interesting aspect is that most of the $(1-x) \mathrm{Ca}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7-x} \mathrm{Ca}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$ compounds have higher dielec-

Table 8
Structural comparison of three weberite-type structures (Allpress \& Rossell, 1979; Rossell, 1979).

	$\mathrm{La}_{3} \mathrm{NbO}_{7}$	$\mathrm{Nd}_{3} \mathrm{NbO}_{7}$	$\mathrm{Gd}_{3} \mathrm{NbO}_{7}$
$\Delta d_{\mathrm{Ln}-\mathrm{O}} /\left(d_{\mathrm{Ln}-\mathrm{O})_{\mathrm{av}}}\right.$ in LnO_{8} cube	13.33	7.14	13.06
$(\%)$	$-9.87-6.46$	$-2.37-2.47$	$-5.77-8.88$
Deviation of $\mathrm{O}-\mathrm{Ln}-\mathrm{O}$ angle from perfect cube $\left.{ }^{\circ}\right)$	1.64	0.41	4.86
$\Delta d_{\mathrm{Nb}-\mathrm{O}} /\left(d_{\mathrm{Nb}-\mathrm{O}}\right)_{\mathrm{av}}$ in NbO_{6} octa-		$0.27-0.42$	$-5.63-5.63$
hedra $(\%)$			
Deviation of $\mathrm{O}-\mathrm{Nb}-\mathrm{O}$ angle from perfect octahedra	$-1.58-1.58$	0	

$d_{\mathrm{Ln}-\mathrm{O}}$ and $d_{\mathrm{Nb}-\mathrm{O}}$ represents the bond length between Ln^{3+} and O^{2-} and the bond length between Nb^{5+} and O^{2-}, respectively. $\Delta d_{\mathrm{Ln}-\mathrm{O}}$ means the difference of longest and shortest bond length between Ln^{3+} and O^{2-} in LnO_{8} distorted cubes. $\Delta d_{\mathrm{Nb}-\mathrm{O}}$ is the difference of the longest and shortest bond length between Nb^{5+} and O^{2-} in NbO_{6} distorted octahedra. $\left(d_{\mathrm{Ln}-\mathrm{O}}\right)_{\mathrm{av}}$ is the average bond length between Ln^{3+} and O^{2-} in LnO_{8} distorted cubes. $\left(d_{\mathrm{Nb}-\mathrm{O}}\right)_{\mathrm{av}}$ is the average bond length between Nb^{5+} and O^{2-} in NbO_{6} distorted octahedra.
tric constants (above 30) than pure $\mathrm{Ca}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7}$ and $\mathrm{Ca}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$ at 1 MHz (Cava et al., 1998). However, another set of published dielectric constants of $5 M \quad \mathrm{Ca}_{2} \mathrm{Ta}_{1.8} \mathrm{Nb}_{0.2} \mathrm{O}_{7}$ and $7 M$ $\mathrm{Ca}_{2} \mathrm{Ta}_{1.9} \mathrm{Nb}_{0.1} \mathrm{O}_{7}$ are approximately 18 and 20 at 1 MHz , respectively, which are lower than the previous publication (Grey et al., 2001). It is not clear what causes the discrepancy in dielectric constant measurement. It may be due to different firing conditions and measurement methods. Dielectric properties at radio frequency have also been investigated. The dielectric constants of $3 T \quad \mathrm{Ca}_{1.6} \mathrm{Nd}_{0.4} \mathrm{Ta}_{1.6} \mathrm{Zr}_{0.4} \mathrm{O}_{7}, \quad 5 M$ $\mathrm{Ca}_{2} \mathrm{Ta}_{1.8} \mathrm{Nb}_{0.2} \mathrm{O}_{7}$ and $7 M \mathrm{Ca}_{2} \mathrm{Ta}_{1.9} \mathrm{Nb}_{0.1} \mathrm{O}_{7}$ are approximately stable (18-19) from 100 kHz up to 5 GHz and reach a maximum ($22,24.5$ and 26.1 , respectively) at $\sim 8 \mathrm{GHz}$. The dielectric constant is comparable for some important microwave dielectrics, such as $\mathrm{BaMg}_{1 / 3} \mathrm{Ta}_{2 / 3} \mathrm{O}_{3}(\sim 24$; Reaney \& Iddles, 2006). However, the problem with these systems is that they have low quality factors $(Q \simeq 200)$ for technical applications (Grey et al., 2001).

It is interesting to see that $8 O \mathrm{Ca}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7}$, which is synthesized by the optical floating zone melting method from $3 T$ $\mathrm{Ca}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7}$ powder, has a relatively high dielectric constant (~ 60) at room temperature (Ebbinghaus et al., 2005). And ε_{r} increases to 90 at 50 K . The high dielectric constant may result from a net dipole created by the off-center Ta^{5+} in the TaO_{6} octahedra of the $\mathrm{Ca}_{3} \mathrm{Ta}$ layers. The shifting of Ta^{5+} also produces two short $\mathrm{Ta}-\mathrm{O}$ bonds and two long $\mathrm{Ta}-\mathrm{O}$ bonds, leading to the distortion of TaO_{6} octahedra. The high dielectric constant and the ability to tailor it are interesting for scientific study and possible electronic applications.

In addition, the crystallographic study of $\mathrm{Nd}_{2} \mathrm{Zr}_{2} \mathrm{O}_{7}$ and $\mathrm{Sm}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}$ doping $\mathrm{Ca}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7}$ has been conducted by Grey et al. (Grey et al., 2003; Grey \& Roth, 2000). The resulting phases include $3 T, 4 M, 5 M$ and $6 T$ weberites. The great structural flexibility of $\mathrm{Ca}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7}$-based compounds is interesting in a crystallographic study and may have potentials in technical applications.
3.2.2. Weberite-type $\mathbf{L n}_{3} \mathbf{N b O}_{7}$. As stated in $\S 2.3$, $\mathrm{Ln}_{2}(\mathrm{Nb}, \mathrm{Ln}) \mathrm{O}_{7}\left(\right.$ or $\mathrm{Ln}_{3} \mathrm{NbO}_{7}$, where Ln is $\mathrm{La}^{3+}, \mathrm{Pr}^{3+}, \mathrm{Nd}^{3+}$ and Gd^{3+}) is a weberite-type structure. It is an extreme case of $2 \mathrm{O}-$

III weberite structure, in which $A-2$ and $B-2$ are the same. Our recent study on the dielectric properties of $\mathrm{Ln}_{3} \mathrm{NbO}_{7}(\mathrm{Ln}=$ $\mathrm{La}^{3+}, \mathrm{Nd}^{3+}$ and Gd^{3+}) showed some interesting results (Cai et al., 2007; Cai \& Nino, 2007). As shown in Fig. 15, all three compounds exhibited a dielectric relaxation behavior similar to that observed in pyrochlore compounds (Roth et al., 2008; Nino et al., 2001). The permittivity increases sharply with increasing temperature until a maximum is reached. After that, the permittivity decreases slightly with an increase in temperature. The permittivity is between 35 and 60 for $\mathrm{La}_{3} \mathrm{NbO}_{7}$ and $34-47$ for $\mathrm{Gd}_{3} \mathrm{NbO}_{7}$ from 113 to 473 K , and is between 34 and 62 for $\mathrm{Nd}_{3} \mathrm{NbO}_{7}$ from 113 to 673 K at 1 MHz . These three compounds have close permittivity at 113 K . The relaxation temperatures are different, 183, 473 and 323 K for $\mathrm{La}_{3} \mathrm{NbO}_{7}, \mathrm{Nd}_{3} \mathrm{NbO}_{7}$ and $\mathrm{Gd}_{3} \mathrm{NbO}_{7}$, respectively. The difference in relaxation temperature indicates the possibility of tailoring the temperature at which dielectric relaxation occurs through variations in compositions. As for the origin of different dielectric relaxation temperatures, a possible explanation is provided by comparing the structure. The main difference between the structure is that in $\mathrm{Gd}_{3} \mathrm{NbO}_{7}$ the polyhedra are more distorted (Wakeshima et al., 2004; Allpress \& Rossell, 1979; Rossell, 1979). In Table 8 polyhedral distortions are quantified in the deviation of bond length and bond angle. The calculation is based on the atomic positions after Rossell (1979). $\mathrm{Nd}_{3} \mathrm{NbO}_{7}$ has nearly perfect NbO_{6} octahedra, while $\mathrm{Gd}_{3} \mathrm{NbO}_{7}$ has the most distorted octahedra. The LnO_{8} cube in $\mathrm{Nd}_{3} \mathrm{NbO}_{7}$ is the least distorted while LaO_{8} and GdO_{8} cubes have comparable distortion. These distortions are attributed to the 'openness' of the structure which causes an easier polarization of the material and results in a lower relaxation temperature (Astafyev et al., 1985). Additional details on the relationship of dielectric relaxation and polyhedral distortions are ongoing and will be a matter for future publications.

Owing to the interesting dielectric loss behavior observed in $\mathrm{Gd}_{3} \mathrm{NbO}_{7}$ its characterization includes more frequencies (1, 4, $6,10,30,80,100,300,800 \mathrm{kHz}$ and 1 MHz), as shown in Fig. $15(c)$. The temperature $\left(T_{\mathrm{m}}\right)$, at which the loss peak occurs increases with increasing measuring frequency. To better understand the phenomena, the Arrhenius function is used to model the relaxation behaviour of $\mathrm{Gd}_{3} \mathrm{NbO}_{7}$

$$
\begin{equation*}
v=v_{0} \exp \left(-\frac{E_{\mathrm{a}}}{k_{\mathrm{B}} T_{\mathrm{m}}}\right), \tag{5}
\end{equation*}
$$

where v is the measuring frequency, the pre-exponential v_{0} is the attempt-jump frequency, E_{a} is the activation energy and k_{B} is Boltzmann's constant. T_{m} is determined for each measuring frequency by fitting the loss peak to a Gaussian function. The non-symmetric tails of loss peaks are cut off during fitting. The resulting Arrhenius plot is presented in Fig. 15(d). From the linear fit, $v_{0}=1.51 \times 10^{11} \mathrm{~Hz}$, and the activation energy E_{a} is 0.45 eV , which is larger than typical values observed in Nb based pyrochlores, for example 0.32 eV in $\mathrm{Ca}-\mathrm{Ti}-\mathrm{Nb}-\mathrm{O}$ pyrochlore and 0.14 eV in $\mathrm{Bi}-\mathrm{Zn}-\mathrm{Nb}-\mathrm{O}$ pyrochlore (Roth et al., 2008; Nino, 2002). However, other ionic and dipolar compounds systems have even higher activation energies; for
example, 0.53 eV for CaF_{2}-doped NaF and 1.02 eV for $\left(\mathrm{Ba}_{0.8} \mathrm{Sr}_{0.2}\right)\left(\mathrm{Ti}_{1-x} \mathrm{Zr}_{x}\right) \mathrm{O}_{3}$ (Johnson et al., 1969; Cheng et al., 2004). Thus, the calculated E_{a} is acceptable.

The dielectric study of $\mathrm{Ln}_{3} \mathrm{NbO}_{7}$ compounds points to the possibility of tailoring the dielectric relaxation and develop further a paradigm for the compositional design of fluoriterelated ceramics with optimized dielectric properties.

4. Conclusions

There are a considerable number of weberite compounds $\left(A_{2} B_{2} X_{7}\right)$ that have been studied to date. Here the stability field in terms of the ratio of R_{A} and R_{B}, and the relative bond ionicity has been established. This structure can be interpreted in different ways. As an anion-deficient fluorite structure, it has similar close-packed cationic networks as fluorite and pyrochlore. It is presented here that the cation sublattices of the weberite and the pyrochlore structures are correlated by an axial transformation and that the different stacking inside
an $A B_{3}$ and $A_{3} B$ cation slab leads to a different coordination environment of anions in weberite and pyrochlore. There are various types of weberite-like structures. They can be distinguished by the number of $A B_{3}$ and $A_{3} B$ slabs and the crystal system. B chains are a characteristic of all weberite structures even for weberite polytypes with $N>4$. The stacking sequence and the orientation of B-chains changes with respect to monoclinic and trigonal variants.

So far, investigations have primarily focused on the crystallographic aspects of weberites and some weberite compounds are reported to have interesting properties. It is clear that they are of great scientific interest. However, few studies have concentrated on the properties and possible applications. There is no doubt that weberite compounds possess various useful properties that can be tailored owing to the fact that many metal cations can be introduced into this structure as well as that a large diversity of variants exist in this structure. The realisation of the potential of weberites for electrical applications will grow as more extensive studies are conducted and knowledge of the structures increases.

Figure 15
Dielectric properties between 1 kHz and 1 MHz of (a) $\mathrm{La}_{3} \mathrm{NbO}_{7},(b) \mathrm{Nd}_{3} \mathrm{NbO}_{7},(c) \mathrm{Gd}_{3} \mathrm{NbO}_{7}$ and (d) Arrhenius analysis of $\mathrm{Gd}_{3} \mathrm{NbO}_{7}$.

The authors would like to thank the financial support by the US National Science Foundation for funding CAREER grant (DMR-0449710).

References

Abe, R., Higashi, M., Sayama, K., Abe, Y. \& Sugihara, H. (2006). J. Phys. Chem. B, 110, 2219-2226.
Abe, R., Higashi, M., Zou, Z. G., Sayama, K., Abe, Y. \& Arakawa, H. (2004). J. Phys. Chem. B, 108, 811-814.

Aia, M. A., Mooney, R. W. \& Hoffman, C. W. W. (1963). J. Electrochem. Soc. 110, 1048-1054.
Aleshin, E. \& Roy, R. (1962). J. Am. Ceram. Soc. 45, 18-25.
Allpress, J. G. \& Rossell, H. J. (1979). J. Solid State Chem. 27, 105-114. Allred, A. L. \& Rochow, E. G. (1958). J. Inorg. Nucl. Chem. 5, $264-$ 268.

Astafev, A. V., Bush, A. A., Stefanovich, S. Y. \& Venevtsev, Y. N. (1985). Inorg. Mater. 21, 560-563.

Astafyev, A. V., Sirotinkin, V. P. \& Stefanovich, S. Y. (1985). Kristallografiya, 30, 603-604.
$\mathrm{Au}, \mathrm{Y} . \mathrm{S} ., \mathrm{Fu}, \mathrm{W} . \mathrm{T} . \& \mathrm{Ijdo}, \mathrm{D} . \mathrm{J} . \mathrm{W} .(2007) . ~ J . ~ S o l i d ~ S t a t e ~ C h e m . ~ 180, ~$ 3166-3171.
Barrier, N. \& Gougeon, P. (2003). Acta Cryst. E59, i22-i24.
Batanov, S. S. (1975). Zh. Neorg. Khim. 20, 2595-2600.
Bayliss, P., Mazzi, F., Munno, R. \& White, T. J. (1989). Mineral. Mag. 53, 565-569.
Bogvad, R. (1938). Meddelelser om Grønland, 119, 1-11.
Boireau, A., Gravereau, P., Dance, J. M., Tressaud, A., Hagenmuller, P., Soubeyroux, J. L., Welsch, M. \& Babel, D. (1993). Mater. Res. Bull. 28, 27-38.
Bonazzi, P. \& Bindi, L. (2007). Am. Mineral. 92, 947-953.
Bontchev, R. P., Jacobson, A. J., Gospodinov, M. M., Skumryev, V., Popov, V. N., Lorenz, B., Meng, R. L., Litvinchuk, A. P. \& Iliev, M. N. (2000). Phys. Rev. B, 62, 12235-12240.

Brese, N. E. \& O’Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Brisse, F., Stewart, D. J., Seidl, V. \& Knop, O. (1972). Can. J. Chem. 50, 3648.

Brown, D. I. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.
Burchard, G. \& Rudorff, W. (1979). Z. Anorg. Allg. Chem. 454, 107112.

Butler, K. H., Bergin, M. J. \& Hannaford, V. M. B. (1950). J. Electrochem. Soc. 97, 117-122.
Byström, A. (1944). Ark. Kemi Miner. Och Geol. B, 18, 1-7.
Bystrom, A. (1945). Ark. Kemi Miner. Och Geol. A, 18, 1-8.
Cai, L., Guzman, J., Perez, L. \& Nino, J. C. (2007). Solid-State Chemistry of Inorganic Materials VI, Materials Research Society Symposium Proceeding, 998E, 0988-qq0901-0904.
Cai, L. \& Nino, J. C. (2007). J. Eur. Ceram. Soc. 27, 3971-3976.
Caramanian, A., Souron, J. P., Gredin, P. \& de Kozak, A. (2001). J. Solid State Chem. 159, 234-238.
Cava, R. J., Krajewski, J. J. \& Roth, R. S. (1998). Mater. Res. Bull. 33, 527-532.
Chassain, J. (1969). C. R. Hebd. Seances Acad. Sci. C, 268, 2188.
Cheng, B. L., Wang, C., Wang, S. Y., Button, T. W., Lu, H. B., Zhou, Y. L., Chen, Z. H. \& Yang, G. Z. (2004). Appl. Phys. Lett. 84, 54315433.

Coelho, A. A., Cheary, R. W. \& Smith, K. L. (1997). J. Solid State Chem. 129, 346-359.
Cordfunke, E. H. P. \& Ijdo, D. J. W. (1988). J. Phys. Chem. Solids, 49, 551-554.
Cosier, R., Wise, A., Tressaud, A., Grannec, J., Olazcuag, R. \& Portier, J. (1970). C. R. Hebd. Seances Acad. Sci. C, 271, 142-145.
Courbion, G., Ferey, G., Holler, H. \& Babel, D. (1988). Eur. J. Solid State Inorg. Chem. 25, 435-447.
Dahlke, P. \& Babel, D. (1994). Z. Anorg. Allg. Chem. 620, 1692-1697.

Dahlke, P., Peschel, B. \& Babel, D. (1998). Z. Anorg. Allg. Chem. 624, 1003-1010.
Dance, J. M., Grannec, J., Jacoboni, C. \& Tressaud, A. (1974). C. R. Hebd. Seances Acad. Sci. C, 279, 601-604.
Desgardin, G., Robert, C. \& Raveau, B. (1976). Can. J. Chem. 54, 1665-1671.
Desgardin, G., Robert, C. \& Raveau, B. (1977). J. Inorg. Nucl. Chem. 39, 907-908.
Ebbinghaus, S. G., Kalytta, A., Kopf, J., Weidenkaff, A. \& Reller, A. (2005). Z. Kristallogr. 220, 269-276.

Frenzen, G., Massa, W., Babel, D., Ruchaud, N., Grannec, J., Tressaud, A. \& Hagenmuller, P. (1992). J. Solid State Chem. 98, 121-127.

Gade, K. \& Chincholkar, V. S. (1979). J. Chem. Soc. Dalton Trans. p. 1959.

Gemmill, W. R., Smith, M. D. \& zur Loye, H. C. (2004). Inorg. Chem. 43, 4254-4261.
Gemmill, W. R., Smith, M. D. \& zur Loye, H. C. (2007). J. Chem. Cryst. 37, 793-795.
Gemmill, W. R., Smith, M. D., Mozharivsky, Y. A., Miller, G. J. \& zur Loye, H. C. (2005). Inorg. Chem. 44, 7047-7055.
Giuseppetti, G. \& Tadini, C. (1978). Tschermaks Min. Petr. Mitt. 25, 57-62.
Gravereau, P., Boireau, A., Dance, J. M., Trut, L. \& Tressaud, A. (1992). Acta Cryst. C48, 2108-2111.

Greedan, J. E., Raju, N. P., Wegner, A., Gougeon, P. \& Padiou, J. (1997). J. Solid State Chem. 129, 320-327.

Greneche, J. M., Linares, J., Varret, F., Laligant, Y. \& Ferey, G. (1988). J. Magn. Magn. Mater. 73, 115-122.

Grey, I. E., Mumme, W. G., Ness, T. J., Roth, R. S. \& Smith, K. L. (2003). J. Solid State Chem. 174, 285-295.

Grey, I. E. \& Roth, R. S. (2000). J. Solid State Chem. 150, 167-177.
Grey, I. E., Roth, R. S., Mumme, G., Bendersky, L. \& Minor, D. (1999). Solid State Chemistry of Inorganic Materials II, Materials Research Society Symposium Proceedings, Vol. 547, pp. 127-138. Boston, MA: Materials Research Society.
Grey, I. E., Roth, R. S., Mumme, W. G., Planes, J., Bendersky, L., Li, C. \& Chenavas, J. (2001). J. Solid State Chem. 161, 274-287.
Groen, W. A. \& IJdo, D. J. W. (1988). Acta Cryst. C44, 782-784.
Groen, W. A., van Berkel, F. P. F. \& IJdo, D. J. W. (1987). Acta Cryst. C43, 2262-2264.
Haegele, R., Verscharen, W., Babel, D., Dance, J. M. \& Tressaud, A. (1978). J. Solid State Chem. 24, 77-84.

Hall, W., Kim, S., Zubieta, J., Walton, E. G. \& Brown, D. B. (1977). Inorg. Chem. 16, 1884-1887.
Hansler, R. \& Rudorff, W. (1970). Z. Naturforsch. B, 25, 1306.
Harada, D. \& Hinatsu, Y. (2001). J. Solid State Chem. 158, 245-253.
Harada, D. \& Hinatsu, Y. (2002). J. Solid State Chem. 164, 163-168.
Harada, D., Hinatsu, Y. \& Ishii, Y. (2001). J. Phys. Condens. Matter, 13, 10825-10836.
Heger, G. (1973). Int. J. Magn. 5, 119-124.
Hinatsu, Y., Wakeshima, M., Kawabuchi, N. \& Taira, N. (2004). J. Alloys Compd, 374, 79-83.
Isupov, V. A. (2000). Ferroelectr. Rev. 2, 115-168.
Ivanov, S., Tellgren, R. \& Rundlof, H. (1998). European Powder Diffraction Conference 5, Pts 1 and 2 278-2, pp. 768-772.
Ivanov, S. A. \& Zavodnik, V. E. (1990). Kristallografiya, 35, 842-846.
Johnson, H. B., Tolar, N. J., Miller, G. R. \& Cutler, I. B. (1969). J. Phys. Chem. Solids, 30, 31-42.
Kahnharari, A., Mazerolles, L., Michel, D. \& Robert, F. (1995). J. Solid State Chem. 116, 103-106.
Khalifah, P., Erwin, R. W., Lynn, J. W., Huang, Q., Batlogg, B. \& Cava, R. J. (1999). Phys. Rev. B, 60, 9573-9578.

Khalifah, P., Huang, Q., Lynn, J. W., Erwin, R. W. \& Cava, R. J. (2000). Mater. Res. Bull. 35, 1-7.
Klein, W., Curda, J., Peters, E. M. \& Jansen, M. (2006). Z. Anorg. Allg. Chem. 632, 1508-1513.
Knop, O., Cameron, T. S. \& Jochem, K. (1982). J. Solid State Chem. 43, 213-221.

Knop, O. \& Demazeau, G. (1981). J. Solid State Chem. 39, 94-99.
Knop, O., Demazeau, G. \& Hagenmuller, P. (1980). Can. J. Chem. Rev. 58, 2221-2224.
Koch, J. \& Hebecker, C. (1985). Naturwissenschaften, 72, 431-432.
Koch, J. \& Hebecker, C. (1988). Naturwissenschaften, 75, 360.
Koch, J., Hebecker, C. \& John, H. (1982). Z. Naturforsch. B, 37, 16591660.

Kummer, S., Massa, W. \& Babel, D. (1988). Z. Naturforsch. B, 43, 694701.

Laligant, Y., Calage, Y., Heger, G., Pannetier, J. \& Ferey, G. (1989). J. Solid State Chem. 78, 66-77.
Laligant, Y., Calage, Y., Torrestapia, E., Greneche, J. M., Varret, F. \& Ferey, G. (1986). J. Magn. Magn. Mater. 61, 283-290.
Laligant, Y., Ferey, G., Heger, G. \& Pannetier, J. (1987). Z. Anorg. Allg. Chem. 553, 163-171.
Laligant, Y., Leblanc, M., Pannetier, J. \& Ferey, G. (1986). J. Phys. C, 19, 1081-1095.
Laligant, Y., Pannetier, J., Labbe, P. \& Ferey, G. (1986). J. Solid State Chem. 62, 274-277.
Laligant, Y., Pannetier, J., Leblanc, M., Labbe, P., Heger, G. \& Ferey, G. (1987). Z. Kristallogr. 181, 1-10.

Lam, R., Langet, T. \& Greedan, J. E. (2003). J. Solid State Chem. 171, 317-323.
Lam, R., Wiss, F. \& Greedan, J. E. (2002). J. Solid State Chem. 167, 182-187.
Leroux, F., Mar, A., Guyomard, D. \& Piffard, Y. (1995). C. R. Acad. Sci. 320, 147-153.
Lin, X. P., Huang, F. Q., Wang, W. D., Wang, Y. M., Xia, Y. J. \& Shi, J. L. (2006). Appl. Catal. Gen. 313, 218-223.

Little, E. J. \& Jones, M. M. (1960). J. Chem. Educ. 37, 231-233.
Lopatin, S. S., Averyanova, L. N. \& Belyaev, I. N. (1985). Zh. Neorg. Khim. 30, 867-872.
Lopatin, S. S., Averyanova, L. N., Belyaev, I. N., Zvyagintsev, B. I. \& Dyatlov, E. V. (1982). Zh. Neorg. Khim. 27, 2751-2755.
Mekata, M. (2003). Phys. Today, 56, 12-13.
Milyan, P. M. \& Semrad, E. E. (2005). Russ. J. Inorg. Chem. 50, 15991604.

Nino, J. C. (2002). PhD dissertation. The Pennsylvania State University.
Nino, J. C., Lanagan, M. T. \& Randall, C. A. (2001). J. Appl. Phys. 89, 4512-4516.
Nishimine, H., Doi, Y., Hinatsu, Y. \& Sato, M. (2007). J. Ceram. Soc. Jpn, 115, 577-581.
Nishimine, H., Wakeshima, M. \& Hinatsu, Y. (2004). J. Solid State Chem. 177, 739-744.
Nishimine, H., Wakeshima, M. \& Hinatsu, Y. (2005). J. Solid State Chem. 178, 1221-1229.
Pankhurst, Q. A., Johnson, C. E. \& Wanklyn, B. M. (1991). J. Magn. Magn. Mater. 97, 126-130.
Peschel, B. \& Babel, D. (1997). Z. Anorg. Allg. Chem. 623, 1614-1620.
Peschel, B., Molinier, M. \& Babel, D. (1995). Z. Anorg. Allg. Chem. 621, 1573-1581.
Plaisier, J. R., Drost, R. J. \& IJdo, D. J. W. (2002). J. Solid State Chem. 169, 189-198.
Reading, J., Knee, C. S. \& Weller, M. T. (2002). J. Mater. Chem. 12, 2376-2382.

Reaney, I. M. \& Iddles, D. (2006). J. Am. Ceram. Soc. 89, 2063-2072.
Renaudin, J., Leblanc, M., Ferey, G., Dekozak, A. \& Samouel, M. (1988). J. Solid State Chem. 73, 603-609.

Rooksby, H. P. \& White, E. A. D. (1964). J. Am. Ceram. Soc. 47, 9496.

Rossell, H. J. (1979). J. Solid State Chem. 27, 115-122.
Roth, R. S., Vanderah, T. A., Bordet, P., Grey, I. E., Mumme, W. G., Cai, L. \& Nino, J. C. (2008). J. Solid State Chem. 181, 406-414.
Ruchaud, N., Grannec, J., Gravereau, P., Nunez, P., Tressaud, A., Massa, W., Frenzen, G. \& Babel, D. (1992). Z. Anorg. Allg. Chem. 610, 67-74.
Sato, J., Saito, N., Nishiyama, H. \& Inoue, Y. (2002). J. Photochem. Photobiol. A, 148, 85-89.
Schmidt, R. E., Massa, W. \& Babel, D. (1992). Z. Anorg. Allg. Chem. 615, 11-15.
Scott, H. G. (1990). Z. Kristallogr. 190, 41-46.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Subramanian, M. A., Aravamudan, G. \& Rao, G. V. S. (1983). Prog. Solid State Chem. 15, 55-143.
Subramanian, M. A., Marshall, W. J., Hoffmann, R. D. \& Sleight, A. W. (2006). Z. Naturforsch. B, 61, 808-812.

Sych, A. M., Kabanova, M. I. \& Andreeva, S. G. (1988). Zh. Neorg. Khim. 33, 2756-2760.
Sych, A. M., Kabanova, M. I., Garbuz, V. V. \& Kovalenko, E. N. (1988). Inorg. Mater. 24, 1316-1320.

Syozi, I. (1951). Prog. Theor. Phys. 6, 306-308.
Thompson, G. R., Pankhurst, Q. A. \& Johnson, C. E. (1992). J. Magn. Magn. Mater. 104, 893-894.
Tressaud, A., Dance, J. M., Portier, J. \& Hagenmul, P. (1974). Mater. Res. Bull. 9, 1219-1226.
Vanberkel, F. P. F. \& Ijdo, D. J. W. (1986). Mater. Res. Bull. 21, 11031106.

Vente, J. F., Helmholdt, R. B. \& Ijdo, D. J. W. (1994). J. Solid State Chem. 108, 18-23.
Vente, J. F. \& Ijdo, D. J. W. (1991). Mater. Res. Bull. 26, 1255-1262.
Verscharen, W. \& Babel, D. (1978). J. Solid State Chem. 24, 405421.

Wakeshima, M. \& Hinatsu, Y. (2006). J. Solid State Chem. 179, 35753581.

Wakeshima, M., Nishimine, H. \& Hinatsu, Y. (2004). J. Phys. Condens. Matter, 16, 4103-4120.
Weil, M. \& Werner, F. (2001). Monatsh. Chem. 132, 769-777.
Weller, M. T., Reading, J. \& Knee, C. S. (2003). Solid State Chem. 9091, 201-205.
Welsch, M. \& Babel, D. (1992). Z. Naturforsch. B, 47, 685-692.
White, T. J. (1984). Am. Mineral. 69, 1156-1172.
Wiss, F., Raju, N. P., Wills, A. S. \& Greedan, J. E. (2000). Int. J. Inorg. Mater. 2, 53-59.
Wltschek, G., Paulus, H., Svoboda, I., Ehrenberg, H. \& Fuess, H. (1996). J. Solid State Chem. 125, 1-4.

Wyckoff, R. W. G. (1963). Crystal Structures. New York: Interscience Publishers.
Yakubovich, O., Urusov, V., Massa, W., Frenzen, G. \& Babel, D. (1993). Z. Anorg. Allg. Chem. 619, 1909-1919.

Yakubovich, O. V., Urusov, V. S., Frenzen, G., Massa, W. \& Babel, D. (1990). Eur. J. Solid State Inorg. Chem. 27, 467-475.

[^0]: (C) 2009 International Union of Crystallography Printed in Singapore - all rights reserved

