addenda and errata\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Charge-density analysis of 1-nitroindoline: refinement quality using free R factors and restraints. Corrigendum

aFaculty of Chemistry, University of Opole, ul. Oleska 48, Opole 45-052, Poland, and bLaboratoire de Cristallographie, Résonance Magnétique et Modélisations (CRM2) CNRS, UMR 7036, Institut Jean Barriol, Faculté des Sciences et Technologies, Nancy University, BP 70239, 54506 Vandoeuvre-lès-Nancy CEDEX, France
*Correspondence e-mail: christian.jelsch@crm2.uhp-nancy.fr

(Received 20 May 2011; accepted 23 May 2011; online 9 June 2011)

The De (dissociation energy) values in Table 6 of the article by Zarychta et al. [(2011). Acta Cryst. B67, 250–262 ] are corrected.

The De (dissociation energy) values in the last column of Table 6[link] of the article by Zarychta et al. (2011[Zarychta, B., Zaleski, J., Kyzioł, J., Daszkiewicz, Z. & Jelsch, C. (2011). Acta Cryst. B67, 250-262.]) were incorrectly given as negative values; they should all be positive. The correct table is given below.

Table 6
Topological characteristics of the electron density at all the hydrogen BCPs and O2⋯O2iii short contact in 1-nitroindoline

GCP, VCP and ECP are the kinetic, potential and total electronic energies (Abramov, 1997) at CPs; De is the dissociation energy. See Table 5 for a detailed description. Values in italics are from theoretical data.

Bond d (Å) r1 (Å) r2 (Å) ρ (e Å−3) 2ρcp (e Å−5) λ λ2 (e Å−5) λ3 GCP VCP (kJ mol−1 bohr −3) ECP De (kJ mol−1)
H6⋯O1 2.3057 1.3160 1.0047 0.1007 1.53 2.28 −0.37 −0.37 0.00 34.60 −27.50 7.10 13.75
  2.3325 1.3189 1.0402 0.0990 1.54 2.28 −0.36 −0.38 0.04 34.60 −27.20 7.40 13.60
H5⋯O1i 2.6557 1.5091 1.1644 0.0363 0.60 0.83 −0.12 −0.12 0.04 12.10 −7.90 4.20 3.95
  2.7912 1.5538 1.2768 0.0291 0.51 0.67 −0.08 −0.09 0.04 10.00 −6.30 3.70 3.15
H6⋯O1i 2.8520 1.5801 1.2841 0.0266 0.42 0.56 −0.06 −0.07 0.19 8.50 −5.30 3.20 2.65
  2.7264 1.5348 1.2421 0.0301 0.55 0.74 −0.09 −0.10 0.09 10.80 −6.80 4.00 3.40
H7B⋯O1ii 2.4531 1.3985 1.0856 0.0662 0.94 1.42 −0.23 −0.25 0.08 20.40 −15.30 5.10 7.65
  2.5209 1.4065 1.1287 0.0690 0.94 1.39 −0.23 −0.23 0.00 20.70 −15.80 4.90 7.90
H3⋯O2iii 2.4990 1.4470 1.0638 0.0502 0.81 1.16 −0.17 −0.18 0.02 16.80 −11.60 5.20 5.80
  2.6036 1.4614 1.1879 0.0388 0.80 1.09 −0.14 −0.15 0.02 15.90 −10.00 5.90 5.00
O2⋯O2iv 2.8304 1.4153 1.4151 0.0732 1.21 1.59 −0.13 −0.25 0.49 26.00 −19.00 7.00 9.50
  2.8708 1.4355 1.4353 0.0677 1.13 1.48 −0.13 −0.22 0.42 24.00 −17.30 6.70 8.65
Symmetry transformations used to generate equivalent atoms: (i) 1-x, 2-y, -z; (ii) 1+x, y, z; (iii) x, -1+y, -1+z; (iv) 2-x, 2-y, 1-z.

References

First citationZarychta, B., Zaleski, J., Kyzioł, J., Daszkiewicz, Z. & Jelsch, C. (2011). Acta Cryst. B67, 250–262.  Web of Science CSD CrossRef CAS IUCr Journals

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds