research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Relation between photochromic properties and molecular structures in salicylideneaniline crystals

aDepartment of Chemistry and Material Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 153-8902, Japan, and bIbaraki Quantum Beam Research Center, Shirakata, Tokai, Ibaraki 319-1106, Japan
*Correspondence e-mail: johmoto@chem.titech.ac.jp

(Received 10 January 2012; accepted 13 March 2012; online 4 May 2012)

The crystal structures of the salicylideneaniline derivatives N-salicylidene-4-tert-butyl-aniline (1), N-3,5-di-tert-butyl-salicylidene-3-methoxyaniline (2), N-3,5-di-tert-butyl-salicylidene-3-bromoaniline (3), N-3,5-di-tert-butyl-salicylidene-3-chloro­aniline (4), N-3,5-di-tert-butyl-salicylidene-4-bromoaniline (5), N-3,5-di-tert-butyl-salicylidene-aniline (6), N-3,5-di-tert-butyl-salicylidene-4-carboxyaniline (7) and N-salicylidene-2-chloro­aniline (8) were analyzed by X-ray diffraction analysis at ambient temperature to investigate the relationship between their photochromic properties and molecular structures. A clear correlation between photochromism and the dihedral angle of the two benzene rings in the salicylideneaniline derivatives was observed. Crystals with dihedral angles less than 20° were non-photochromic, whereas those with dihedral angles greater than 30° were photochromic. Crystals with dihedral angles between 20 and 30° could be either photochromic or non-photochromic. Inhibition of the pedal motion by intra- or intermolecular steric hindrance, however, can result in non-photochromic behaviour even if the dihedral angle is larger than 30°.

1. Introduction

Photochromic compounds undergo reversible colour changes upon photoirradiation as a consequence of an associated chemical transformation. This in turn leads to changes in the physicochemical properties of such compounds including absorption, fluorescence, refraction index and electric permittivity (Duerr & Bouas-Laurent, 1990[Duerr, H. & Bouas-Laurent, H. (1990). Photochromism Molecules and Systems. Amsterdam: Elsevier.]; Crano & Guglielmetti, 1999[Crano, J. C. & Guglielmetti, R. J. (1999). Organic Photochromic and Thermochromic Compounds. New York, London: Plenum Press.]). Photochromic compounds have attracted considerable attention because of their application in a variety of areas including photochromic lenses (Armistead & Stookey, 1964[Armistead, W. H. & Stookey, S. D. (1964). Science, 144, 150-154.]), rewritable papers (Sousa & Kashnow, 1969[Sousa, J. A. & Kashnow, R. A. (1969). Rev. Sci. Instrum. 40, 966-967.]), photo-switching materials (Fukaminato et al., 2004[Fukaminato, T., Sasaki, T., Kawai, T., Tamai, N. & Irie, M. (2004). J. Am. Chem. Soc. 126, 14843-14849.]), optical data storages (Kawata & Kawata, 2000[Kawata, S. & Kawata, Y. (2000). Chem. Rev. 100, 1777-1788.]) and biological sensors (Mizuno et al., 2008[Mizuno, H., Mal, T. K., Wälchli, M., Kikuchi, A., Fukano, T., Ando, R., Jeyakanthan, J., Taka, J. Shiro, Y., Ikura, M. & Miyawaki, A. (2008). Proc. Natl Acad. Sci. USA, 105, 9927-9932.]).

Salicylideneaniline (SA) derivatives are well known as photochromic compounds, undergoing a colour change from yellow to red upon irradiation with UV light and the reverse colour change upon exposure to visible light or heat (thermal fading). These compounds can be readily synthesized according to a procedure first reported in 1909, involving the condensation reaction of salicylaldehydes and anilines (Senir & Shepheard, 1909[Senir, A. & Shepheard, F. G. (1909). J. Chem. Soc. Trans. 95, 1943-1955.]; Senir et al., 1912[Senir, A., Shepheard, F. G. & Clarke, R. (1912). J. Chem. Soc. Trans. 101, 1950-1958.]). Furthermore, SA derivatives have demonstrated a high resistance to fatigue and this is an important property for any prospective photochromic compound to have (Andes & Manikowski, 1968[Andes, R. V. & Manikowski, D. M. (1968). Appl. Opt. 7, 1179-1183.]). Following a systematic investigation into the relationship between the structural and physical properties of SA derivatives, it was proposed that crystals with a non-planar molecular conformation would exhibit photochromic properties and that those with a planar molecular conformation would be non-photochromic and exhibit thermochromic properties (Cohen & Schmidt, 1962[Cohen, M. D. & Schmidt, G. M. (1962). J. Chem. Phys. 66, 2442-2447.]). Further consideration later led to the assertion that photochromic and thermochromic properties were mutually exclusive (Cohen, Hirshberg & Schmidt, 1964[Cohen, M. D., Hirshberg, Y. & Schmidt, G. M. (1964). J. Chem. Soc. pp. 2051-2059.]; Cohen, Schmidt & Flavian, 1964[Cohen, M. D., Schmidt, G. M. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051.]; Bregman et al., 1964[Bregman, J., Leiserowitz, L. & Schmidt, G. M. (1964). J. Chem. Soc. pp. 2068-2085.]; refcode CHILSAN). More recently, however, it was revealed that, as a consequence of tautomerization between the enol and cis-keto forms, the majority of SA derivatives have thermochromic properties, regardless of their photochromic properties (Ogawa et al., 1998[Ogawa, K., Kasahara, Y., Ohtani, Y. & Harada, J. (1998). J. Am. Chem. Soc. 120, 7107-7108.]; Fujiwara et al., 2004[Fujiwara, T., Harada, J. & Ogawa, K. (2004). J. Phys. Chem. B, 108, 4035-4038.]; Harada et al., 2007[Harada, J., Fujiwara, T. & Ogawa, K. (2007). J. Am. Chem. Soc. 129, 16216-16221.]).

In light of the many controversies surrounding the understanding of photochromic properties (Duerr & Bouas-Laurent, 1990[Duerr, H. & Bouas-Laurent, H. (1990). Photochromism Molecules and Systems. Amsterdam: Elsevier.]), we clearly demonstrated that the metastable red-coloured species in photo-irradiated SA crystals takes the trans-keto form (Harada et al., 1999[Harada, J., Uekusa, H. & Ohashi, Y. (1999). J. Am. Chem. Soc. 121, 5809-5810.]) by X-ray crystal structure analysis using two-photon excitation. Thus, from a mechanistic perspective, this provided an illustration that photochromism involves the transfer of a proton from the phenolic OH group of the enol form to the N atom of the imine group, generating the cis-keto form that is subsequently converted into the red-coloured trans-keto form, as shown in Scheme 1[link]. Since the photochromic molecular transformation from enol to trans-keto forms occurs without destroying the single-crystal form, it was assumed that the transformation occurs via pedal motion in a manner similar to the thermal motion of azobenzene crystals (Harada et al., 1997[Harada, J., Ogawa, K. & Tomoda, S. (1997). Acta Cryst. B53, 662-672.]; Harada & Ogawa, 2009[Harada, J. & Ogawa, K. (2009). Chem. Soc. Rev. 38, 2244-2252.]), which is known as a space-efficient motion in crystals.

[Scheme 1]

Furthermore, there is no consistency in the thermal fading reaction rates of SA derivatives from the red-coloured trans-keto form to the original pale-yellow enol form. In a recent publication, we clearly demonstrated using keto-form structures of polymorphic crystals that thermal fading reaction rates were dependent upon intermolecular hydrogen bonding between the NH group of the trans-keto form and hydrogen-bond acceptors on neighbouring molecules (Johmoto et al., 2009[Johmoto, K., Sekine, A., Uekusa, H. & Ohashi, Y. (2009). Bull. Chem. Soc. Jpn, 82, 50-57.]). These results were in good agreement with the ab initio calculation (Mikami & Nakamura, 2004[Mikami, M. & Nakamura, S. (2004). Phys. Rev. B, 69, 134205.]).

Although it has long been accepted that molecular planarity plays an important role in photochromic reactions, there have been few reports investigating threshold values for the planarity (Haneda et al., 2007[Haneda, T., Kawano, M., Kojima, T. & Fujita, M. (2007). Angew. Chem. Int. Ed. 46, 6643-6645.]). Furthermore, several SA derivatives with dihedral angles of approximately 90° have recently been reported that did not exhibit photochromism (Fukuda et al., 2003[Fukuda, H., Amimoto, K., Koyama, H. & Kawato, T. (2003). Org. Biomol. Chem. 1, 1578-1583.]). Given the range of conflicting experimental information and opinion, further investigation into the relationship between the planar conformations of SA derivatives and their photochromic properties is required. In this study we report the crystal structures of eight SA derivatives to obtain a quantitative threshold value relating the non-planarity of SA crystals to the occurrence of photochromic and non-photochromic behaviour. The SA crystals reported so far in the literature were also included in the study.

2. Experimental

2.1. Preparation of salicylideneaniline derivatives

Salicylaldehyde (1.0 mmol) and aniline (1.0 mmol) were dissolved in methanol (50 ml) at 298 K. The resulting solution was stirred for 10 min and evaporated under reduced pressure until the crude condensation product was precipitated from solution and collected by filtration. Pure crystals were obtained by recrystallization from ethanol at 298 K. The salicylideneanilines (1)–(8) were obtained according to the same methodology by condensation of the corresponding salicylaldehydes and anilines, which have the substituents corresponding to the final products (Scheme 2[link]).

[Scheme 2]

2.2. Identification of photochromism by UV–vis spectrum

The UV–vis spectra of the SA crystals were measured at 298 K with a JASCO V-560 spectrometer equipped with the option (ISV-469) for diffuse reflectance spectroscopy. Analytical samples were prepared by mixing the SA crystals (7 mg) with BaSO4 powder (350 mg). Photoirradiation was carried out through a glass filter (HOYA UV360) at 298 K with a high-pressure Hg lamp transmitting at a wavelength of 365 nm. Measurements were taken before and after photoirradiation.

2.3. Single-crystal X-ray diffraction analysis

Single-crystal X-ray diffraction data were collected at ambient temperature in ω-scan mode with R-AXIS RAPID and R-AXIS RAPID II imaging plate cameras (Rigaku) using graphite-monochromated Mo Kα radiation (λ = 0.71075 Å) obtained from a rotating anode source and Cu Kα radiation (λ = 1.54186 Å) from a rotating anode source with a confocal multilayer mirror. The data were collected at ambient temperature to correspond with the conditions of the photochromic reaction. The integrated and scaled data were empirically corrected for absorption effects with ABSCOR (Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]). The initial structures were solved by direct methods with SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and refined on F02 with SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]). With the exception of the disordered C atoms of the tert-butyl group, the non-H atoms were refined anisotropically, and all of the H atoms were obtained geometrically and included in the calculations using the riding atom model. The dihedral angles between the two benzene rings of SA molecules were calculated using SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]). Although a crystal structure for (6) had already been reported at 223 K (Ahmad et al., 2011[Ahmad, J. U., Nieger, M., Sundberg, M. R., Leskela, M. & Repo, T. (2011). J. Mol. Struct. 995, 9-19.]), in the interest of consistency and direct comparison the structure was also analysed at ambient temperature. The crystallographic data and experimental details are summarized in Table 1[link].

Table 1
Experimental details

For all structures: Z = 4. H-atom parameters were constrained.

  (1) (2) (3) (4)
Crystal data
Chemical formula C17.12H19.35NO C22H29NO2 C21H26BrNO C21H26ClNO
Mr 255.13 339.46 388.34 343.88
Crystal system, space group Monoclinic, P21/c Triclinic, [P\bar 1] Triclinic, [P\bar 1] Triclinic, [P\bar 1]
Temperature (K) 296 293 296 296
a, b, c (Å) 14.3711 (8), 6.4227 (4), 17.9938 (9) 10.814 (2), 12.011 (2), 15.727 (3) 10.7505 (6), 11.5008 (7), 16.3284 (8) 10.7392 (12), 11.5369 (15), 16.1292 (19)
α, β, γ (°) 90, 116.819 (4), 90 89.25 (3), 81.21 (3), 89.97 (3) 87.9590 (10), 83.166 (2), 89.536 (2) 88.032 (3), 82.446 (3), 89.642 (3)
V3) 1482.20 (14) 2018.7 (7) 2003.20 (19) 1979.8 (4)
F(000) 544 736 808 7364
Dx (Mg m−3) 1.135 1.117 1.288 1.154
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.07 0.07 2.06 0.20
Crystal size (mm) 0.34 × 0.30 × 0.18 0.34 × 0.26 × 0.06 0.18 × 0.17 × 0.04 0.15 × 0.07 × 0.03
         
Data collection
Diffractometer Rigaku R-AXIS RAPID IP area detector Bruker SMART CCD area detector Rigaku R-AXIS RAPID IP area detector Rigaku R-AXIS RAPID IP area detector
Absorption correction Multi-scan, absorption was corrected by ABSCOR Multi-scan, absorption was corrected by SADABS Multi-scan, absorption was corrected by ABSCOR Multi-scan, absorption was corrected by ABSCOR
Tmin, Tmax 0.885, 0.988 0.976, 0.996 0.189, 0.928 0.729, 0.994
No. of measured, independent and observed [I > 2σ(I)] reflections 23 765, 3381, 2187 29 048, 10 049, 5423 19 830, 9015, 4719 16 014, 7172, 2946
Rint 0.036 0.036 0.054 0.079
θ values (°) θmax = 27.5, θmin = 3.0 θmax = 28.4, θmin = 1.3 θmax = 27.4, θmin = 3.0 θmax = 25.3, θmin = 3.0
(sin θ/λ)max−1) 0.649 0.668 0.648 0.602
Completeness to θ 99.5% for 27.48° 99.5% for 28.35° 98.9% for 27.43° 99.1% for 25.34°
         
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.190, 1.13 0.044, 0.128, 0.92 0.043, 0.143, 1.08 0.064, 0.164, 1.02
No. of reflections 3381 10 049 9015 7172
No. of parameters 194 482 445 461
No. of restraints 0 0 0 0
Δρmax, Δρmin (e Å−3) 0.22, −0.21 0.24, −0.16 0.87, −0.78 0.20, −0.19
Extinction method SHELXL SHELXL None None
Extinction coefficient 0.023 (4) 0.0230 (19)
  (5) (6) (7) (8)
Crystal data
Chemical formula C21.05H26.14BrNO C21H27NO C22H27NO3 C13H10ClNO
Mr 388.34 309.44 353.45 231.67
Crystal system, space group Monoclinic, P21/c Orthorhombic, Pna21 Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 296 296 293 293
a, b, c (Å) 18.0699 (14), 10.5997 (10), 10.3838 (9) 12.4043 (6), 8.9918 (5), 16.6903 (7) 6.1482 (4), 19.5491 (13), 17.0976 (13) 4.6868 (1), 18.9497 (4), 12.8231 (2)
β (°) 92.858 (2) 90 109.453 (3) 105.9680 (10)
V3) 1986.4 (3) 1861.59 (16) 1937.7 (2) 1094.92 (4)
F(000) 808 672 760 480
Dx (Mg m−3) 1.299 1.104 1.212 1.405
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 2.08 0.07 0.08 2.88
Crystal size (mm) 0.20 × 0.14 × 0.06 0.50 × 0.35 × 0.15 0.40 × 0.30 × 0.02 0.33 × 0.10 × 0.06
         
Data collection
Diffractometer Rigaku R-AXIS RAPID IP area detector Rigaku R-AXIS RAPID IP area detector Rigaku R-AXIS RAPID IP area detector Rigaku VM-SPIDER IP area detector
Absorption correction Multi-scan, absorption was corrected by ABSCOR Multi-scan, absorption was corrected by ABSCOR Multi-scan, absorption was corrected by ABSCOR Multi-scan, absorption was corrected by ABSCOR
Tmin, Tmax 0.559, 0.884 0.798, 0.990 0.627, 0.998 0.340, 0.837
No. of measured, independent and observed [I > 2σ(I)] reflections 18 792, 4500, 1915 17 422, 2193, 1955 17 354, 4410, 2938 12 241, 1976, 1565
Rint 0.109 0.032 0.087 0.046
θ values (°) θmax = 27.5, θmin = 3.0 θmax = 27.4, θmin = 3.1 θmax = 27.5, θmin = 2.1 θmax = 68.2, θmin = 4.3
(sin θ/λ)max−1) 0.649 0.648 0.649 0.602
Completeness to θ 99.0% for 27.46° 99.8% for 27.42° 98.9% for 27.43° 98.3% for 68.22°
         
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.147, 1.02 0.039, 0.101, 1.06 0.072, 0.206, 1.03 0.056, 0.170, 1.08
No. of reflections 4500 2193 4410 1976
No. of parameters 241 214 272 145
No. of restraints 1 1 0 0
Δρmax, Δρmin (e Å−3) 0.30, −0.38 0.22, −0.14 0.33, −0.27 0.33, −0.21
Computer programs used: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), SMART (Siemens, 1996[Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]), SAINT (Siemens, 1994a[Siemens (1994a). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]), SADABS (Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]), SHELXL97, SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP3 (Farrugia, 2008[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), SHELXTL (Siemens, 1994b[Siemens (1994b). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]).

3. Results

3.1. Crystal and molecular structures before photoirradiation

The molecular and crystal structures of (1) are shown in Figs. 1[link] and 2[link]. The tert-butyl group of (1) is disordered and can exist in three different conformations. The conformation with the largest occupancy is depicted. There is a strong intramolecular hydrogen bond of O1—H⋯N1, occurring over a short O1⋯N1 distance of 2.612 (2) Å. This leads to the observed planar conformation in the O1—C2—C1—C7—N1 moiety. The torsion angles of the C2—C1—C7—N1 and C1—C7—N1—C8 moieties are 5.7 (3) and −178.8 (2)°. However, the torsion angle of C7—N1—C8—C9 is significantly large, 43.5 (3)°, leading to the large observed dihedral angle of 49.12 (7)° between the two terminal benzene rings. No unusually short contacts were observed in the crystal structure and the loose contacts between the tert-butyl groups of neighbouring molecules led to the disordered structure of the group. The crystals of (2)–(4) were composed of two crystallographically independent molecules, A and B, in their unit cells. The molecular structures of (2A), (2B), (3A), (3B), (4A), (4B) and (5) were found to be similar to that of (1), with the corresponding dihedral angles between the two benzene rings observed to be 48.44 (6), 46.40 (6), 45.07 (12), 45.29 (12), 44.37 (15), 44.66 (14) and 27.25 (19)°. The molecular structure of (6) is shown in Fig. 3[link]. The bond distances and angles, the intramolecular hydrogen-bond distance and the torsion angles of the C2—C1—C7—N1 and C1—C7—N1—C8 moieties were found to be similar to those observed in the crystal structures of (1)–(5). Both the torsion angle of the C7—N1—C8—C9 moiety and the dihedral angle between the two terminal benzene rings, however, were found to be smaller at 25.0 (3) and 21.56 (12)°.

[Figure 1]
Figure 1
Molecular structure of N-salicylidene-4-tert-butylaniline (1). The displacement ellipsoids are drawn at the 50% probability level. The hydrogen bond is drawn in a dotted line. The tert-butyl group with the highest occupancy is shown.
[Figure 2]
Figure 2
Crystal structure of N-salicylidene-4-tert-butylaniline (1) viewed along the b axis. H atoms are omitted for clarity.
[Figure 3]
Figure 3
Molecular structure of N-3,5-di-tert-butylsalicylideneaniline (6). The displacement ellipsoids are drawn at the 50% probability level. The hydrogen bond is drawn as a dotted line.

The molecular and crystal structures of (8) are shown in Figs. 4[link] and 5[link]. The bond distances and angles were found to be as anticipated. A strong intramolecular hydrogen bond of O1—H⋯N1 was observed over a short O1⋯N1 distance of 2.621 (3) Å. Compound (8) was found to be whole planar. The torsion angles of the C2—C1—C7—N1, C1—C7—N1—C8 and C7—N1—C8—C9 moieties were −3.3 (5), −178.3 (3) and 2.0 (5)°, and the dihedral angle between the two benzene rings was found to be 2.82 (20)°. These planar molecules are stacked as a sheet along the a and b axes and the sheets themselves are stacked alternately along the c axis. The crystals of (7) were also revealed to be whole planar in structure, in a similar manner to that observed in (8). It has been reported that (8) can exist in another polymorphic form, (8′) (Bregman et al., 1964[Bregman, J., Leiserowitz, L. & Schmidt, G. M. (1964). J. Chem. Soc. pp. 2068-2085.]; refcode CHILSAN). Whilst the reported crystal of (8′) reveals that the bond distances, bond angles and torsion angles of the C2—C1—C7—N1 and C1—C7—N1—C8 moieties are similar to those observed in (8), the aniline moiety of (8′) is twisted out of the plane resulting in the larger dihedral angle between the two terminal benzene rings of 51.1°. It is known that the ortho position atom of the aniline ring has an influence on the planarity in SA derivative molecules such as N-salicylidene-2-aminopyridine (Moustakali-Mavridis et al., 1978[Moustakali-Mavridis, I., Hadjoudis, E. & Mavridis, A. (1978). Acta Cryst. B34, 3709-3715.], 1980[Moustakali-Mavridis, I., Hadjoudis, B. & Mavridis, A. (1980). Acta Cryst. B36, 1126-1130.]), which is caused by the absence or presence of steric hindrance between azomethine H and the aniline ring. Similar hindrance would occur when the ortho-substituent is situated near the azomethine H. However, in this work the ortho-substituent of the aniline ring of (8) directs to the opposite direction to azomethine H. The only possible intramolecular interaction is between aniline and azomethine H atoms, which is expected for all ortho-, meta- and para- substituted SA molecules. Thus, it has almost equal influence on the molecular conformation among all mono-substituted SAs. The different dihedral angles in polymorphic crystals of (8) and (8′), as described above, clearly indicate that the molecular conformation is determined by the molecular packing and intermolecular interactions. The eight SA crystals with various dihedral angles in this study may be a good choice to discuss the relationship between the structures and photochromic characters, although the intramolecular hindrance may be an important factor to govern the relationship for the di-ortho-substituted SA crystals, which will be discussed in the following section.

[Figure 4]
Figure 4
Molecular structure of N-salicylidene-2-chloroaniline (8). The displacement ellipsoids are drawn at the 50% probability level. The hydrogen bond is drawn as a dotted line.
[Figure 5]
Figure 5
Crystal structure of N-salicylidene-2-chloroaniline (8) viewed along the c axis. H atoms are omitted for clarity.

3.2. Photochromic reactivity

The UV–vis absorption spectra for crystals of (1) and (8) are shown in Figs. 6[link](a) and (b). Following the photoirradiation of (1), a significant difference was observed in the spectrum between 400 and 600 nm. Spectral changes similar to those observed in (1) also occurred for crystals of (2)–(5) in the range 450–550 nm. In contrast to these observations, photoirradiation of (8) did not result in any discernible difference and the spectrum remained unchanged. Crystals of (6) and (7) also behaved in the same way as (8). This indicated that the crystals of (1)–(5) were photochromic and that those of (6)–(8) were non-photochromic. Interestingly, crystals of (8′), another polymorphic form of (8), were reported to be photochromic (Bregman et al., 1964[Bregman, J., Leiserowitz, L. & Schmidt, G. M. (1964). J. Chem. Soc. pp. 2068-2085.]; refcode CHILSAN).

[Figure 6]
Figure 6
Reflectance spectra (a) for (1) and (b) for (8). Dashed and full curves indicate before and after photoirradiation.

4. Discussion

The selected bond distances, bond angles, intramolecular hydrogen-bond lengths, torsion angles of the C2—C1—C7—N1, C1—C7—N1—C8 and C7—N1—C8—C9 moieties and the dihedral angles of the two benzene rings of (1)–(8) are summarized in Table 2[link]. Each parameter is averaged across the 11 molecules except for the torsion angle of the C7—N1—C8—C9 moiety and the dihedral angle. The corresponding distances and angles are in good agreement with one another. The relation between the dihedral angles of the two terminal benzene rings and the photochromic properties is shown in Fig. 7[link]. There are two polymorphic crystal forms, (8) and (8′), which are non-photochromic and photochromic, respectively. Previously we reported that the compound N-3,5-di-tert-butyl-salicylideneaniline-3-carboxyaniline (9) could exist in one of three polymorphic crystal forms, α, β and γ. The crystals of (9α) and (9β) exhibit photochromism and had dihedral angles of 60.95 (4) and 37.34 (6)°, respectively, whereas crystals of (9γ) were non-photochromic and had a dihedral angle of 28.90 (4)°. From Fig. 7[link] it is clear that the threshold value of the dihedral angle in relation to the occurrence of photochromic behaviour is 20 to 30°.

Table 2
Selected bond distances (Å), angles, torsion angles and dihedral angles (°) of the SA derivatives (1)–(8) and (8′)

  (1) (2A) (2B) (3A) (3B) (4A) (4B)
O1—C2 1.350 (3) 1.357 (2) 1.358 (2) 1.359 (4) 1.350 (4) 1.358 (4) 1.360 (4)
C2—C1 1.408 (3) 1.410 (2) 1.412 (2) 1.413 (4) 1.406 (5) 1.415 (5) 1.412 (5)
C1—C7 1.450 (3) 1.450 (2) 1.453 (2) 1.452 (5) 1.457 (5) 1.449 (5) 1.447 (5)
C7—N1 1.280 (3) 1.284 (2) 1.283 (2) 1.278 (5) 1.271 (4) 1.281 (4) 1.280 (4)
N1—C8 1.421 (3) 1.420 (2) 1.424 (2) 1.420 (4) 1.420 (4) 1.429 (4) 1.424 (5)
N1⋯O1 2.612 (2) 2.582 (2) 2.608 (2) 2.580 (4) 2.596 (3) 2.599 (4) 2.578 (4)
C1—C7—N1 121.8 (2) 122.5 (1) 123.2 (1) 122.1 (3) 122.8 (3) 122.8 (3) 122.8 (3)
C7—N1—C8 120.4 (2) 121.1 (1) 119.9 (1) 121.0 (3) 120.6 (3) 119.8 (3) 120.8 (3)
C2—C1—C7—N1 5.7 (3) −1.8 (2) 0.8 (2) 0.3 (5) 0.5 (5) −0.3 (6) 1.5 (5)
C1—C7—N1—C8 −178.8 (2) 173.6 (1) −173.1 (1) −178.0 (3) −177.4 (3) 178.5 (3) −179.5 (3)
C7—N1—C8—C9 43.5 (3) −46.2 (2) 45.4 (2) 45.4 (5) 46.1 (5) −46.5 (5) 45.5 (5)
Dihedral angle (φ) 49.12 (7) 48.44 (6) 46.40 (6) 45.07 (12) 45.29 (12) 44.37 (15) 44.66 (14)
  (5) (6) (7) (8) (8′) Average (1)–(8)
O1—C2 1.361 (5) 1.352 (2) 1.344 (2) 1.354 (3) 1.3709 1.356 (5)
C2—C1 1.394 (6) 1.409 (3) 1.401 (3) 1.402 (4) 1.3960 1.407 (6)
C1—C7 1.464 (6) 1.457 (3) 1.444 (3) 1.452 (5) 1.4563 1.453 (6)
C7—N1 1.278 (5) 1.279 (3) 1.266 (3) 1.276 (4) 1.2812 1.278 (5)
N1—C8 1.432 (5) 1.422 (2) 1.421 (3) 1.412 (4) 1.4272 1.423 (5)
N1⋯O1 2.621 (5) 2.563 (2) 2.610 (2) 2.621 (3) 2.614 2.599 (5)
C1—C7—N1 123.5 (4) 121.7 (2) 123.5 (2) 121.4 (3) 121.46 122.5 (4)
C7—N1—C8 119.6 (4) 123.4 (2) 121.0 (2) 121.8 (3) 118.62 120.7 (4)
C2—C1—C7—N1 −0.4 (7) −2.5 (3) −2.2 (4) −3.3 (5) −3.84
C1—C7—N1—C8 179.0 (4) −179.9 (2) −175.6 (2) −178.3 (3) 175.07
C7—N1—C8—C9 27.5 (6) 25.0 (3) 7.7 (4) 2.0 (5) −46.99
Dihedral angle (φ) 27.25 (19) 21.56 (12) 8.74 (12) 2.82 (20) 51.1
†(2A), (2B), (3A), (3B), (4A) and (4B) are crystallographically independent molecules.
[Figure 7]
Figure 7
The relationship between photochromic properties and dihedral angles of SA derivatives. Each SA derivative corresponds to an open circle that indicates the photochromic property and the intramolecular dihedral angle between two benzene rings. The dihedral angles of SA derivative crystals are classified into photochromic (upper row) and non-photochromic (lower row) ones. Both types of photochromic and non-photochromic crystals are observed between 20 and 30°.

Recently it was reported that the twisted SA derivatives substituted with either methyl or tert-butyl groups at both ortho positions of the aniline ring were non-photochromic in spite of their large dihedral angles of 63.5 and 82.9°. In contrast, it was also reported in the same publication that SA derivatives substituted with either ethyl or isopropyl groups at the two ortho positions of the aniline ring exhibited photochromism and had dihedral angles of 82.3 and 73.6° (Fukuda et al., 2003[Fukuda, H., Amimoto, K., Koyama, H. & Kawato, T. (2003). Org. Biomol. Chem. 1, 1578-1583.]). Based upon these observations, the authors claimed that crystal packing was responsible for the observed photochromic behaviour rather than the non-planarity of the molecules.

As discussed in the previous paper (Johmoto et al., 2009[Johmoto, K., Sekine, A., Uekusa, H. & Ohashi, Y. (2009). Bull. Chem. Soc. Jpn, 82, 50-57.]), photochromism occurs as a consequence of a structural change between enol and trans-keto forms (Cohen & Schmidt, 1962[Cohen, M. D. & Schmidt, G. M. (1962). J. Chem. Phys. 66, 2442-2447.]; Cohen et al., 1964[Cohen, M. D., Hirshberg, Y. & Schmidt, G. M. (1964). J. Chem. Soc. pp. 2051-2059.]; Harada et al., 1999[Harada, J., Uekusa, H. & Ohashi, Y. (1999). J. Am. Chem. Soc. 121, 5809-5810.]), which is schematically depicted in Fig. 8[link]. During the transformation from the enol to the trans-keto form, the H atom bonded to the OH group is transferred to the N atom and the cis-keto form is produced. The central single —(H)N—C(H)— bond of the cis-keto form rotates by 180° around an axis connecting the two benzene rings. The benzene rings slide up and down maintaining the conformation. Given that this pedal-like motion does not lead to large movements in the peripheral atoms of the molecule, the crystal structure is sustained in the photochromic reaction. However, if both of the ortho positions of the aniline rings are substituted with tert-butyl groups, it is impossible for the conformation to change from the cis-keto to the trans-keto form due to steric repulsion between the tert-butyl groups and the H atoms of the methine and imino groups, as depicted in Fig. 9[link](a) in which the distances between the N atom and four methyl C atoms of the tert-butyl group close to the N atom were 2.870 (6) Å for N1⋯C28, 3.000 (7) Å for N1⋯C12, 3.224 (8) Å for N1⋯C11 and 3.509 (7) Å for N1⋯C27, respectively. In contrast, for SA derivatives substituted at both ortho positions of the aniline ring with isopropyl and ethyl groups, the pedal motion can still occur without intramolecular steric hindrance, as shown in Fig. 9[link](b), in which the distances between the N atom and four methyl C atoms of the iso-propyl group were 3.715 (7) Å for N2⋯C38, 3.838 (6) Å for N2⋯C31, 4.043 (5) Å for N2⋯C30 and 4.137 (5) Å for N2⋯C37. For SA derivatives substituted at both ortho positions of the aniline ring with methyl groups, there are both photochromic and non-photochromic crystals. For the photochromic crystals, pedal motion can easily occur as observed in the crystals with diisopropyl and diethyl groups. For the non-photochromic crystals, on the other hand, pedal motion appears to be restricted by the close contact of neighbouring molecules, as shown in Fig. 9[link](c). The slide motion of the benzene ring is hindered by the short intermolecular contact distance between the OH and CH3 groups, where O⋯C is 3.204 (3) Å. Such a short contact is not observed in the crystal structures of (1)–(5) (the shortest intermolecular C⋯C, C⋯O, C⋯N distances being greater than 3.5 Å).

[Figure 8]
Figure 8
A schematic drawing of the pedal motion. Two benzene rings only move as pedals of a bicycle as the central NH—CH plane turns upside down in the transformation from enol to the trans-keto form.
[Figure 9]
Figure 9
Schematic drawings of intramolecular steric hindrances for the SA molecules with (a) ortho-di-tert-butyl groups and (b) ortho-diisopropyl groups in the aniline rings. The distance ranges between the N atom and the nearest methyl C atoms of iPr/tBu were included (Fukuda et al., 2003[Fukuda, H., Amimoto, K., Koyama, H. & Kawato, T. (2003). Org. Biomol. Chem. 1, 1578-1583.]). (c) Steric hindrance between the methyl group at the ortho position and the phenol group of the neighbouring molecule. There is an unusually short contact between the OH and the CH3 groups in a non-photochromic crystal with ortho-dimethyl groups in the aniline rings, the C⋯O distance being 3.204 (3) Å (Fukuda et al., 2003[Fukuda, H., Amimoto, K., Koyama, H. & Kawato, T. (2003). Org. Biomol. Chem. 1, 1578-1583.]).

These observations clearly indicate that the non-planarity of the SA derivatives is necessary to initiate pedal motion; localizing the π-electrons into the two terminal benzene rings and the central CH=NH group. The threshold value for non-planarity resulting in photochromic behaviour is a dihedral angle of at least 30° between the two terminal benzene rings. However, the impact of intra- and intermolecular steric hindrance upon pedal motion inhibition represents an important factor in determining photochromism.

Supporting information


Computing details top

Data collection: Bruker SMART for (2); PROCESS-AUTO (Rigaku, 1998) for (3), (4), (5), (6), (7), (8), (1). Cell refinement: Bruker SAINT for (2); PROCESS-AUTO (Rigaku, 1998) for (3), (4), (5), (6), (7), (8), (1). Data reduction: Bruker SAINT & SADABS for (2); PROCESS-AUTO (Rigaku, 1998) for (3), (4), (5), (6), (7), (8), (1). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: Siemens SHELXTL for (2); ORTEP-3 (Farrugia, 2008) for (3), (4), (5), (6), (7), (8), (1). Software used to prepare material for publication: Siemens SHELXTL for (2); SHELXL97 (Sheldrick, 1997) for (3), (4), (5), (6), (7), (8), (1).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
(2) top
Crystal data top
C22H29NO2V = 2018.7 (7) Å3
Mr = 339.46Z = 4
Triclinic, P1F(000) = 736
a = 10.814 (2) ÅDx = 1.117 Mg m3
b = 12.011 (2) ÅMo Kα radiation, λ = 0.71073 Å
c = 15.727 (3) ŵ = 0.07 mm1
α = 89.25 (3)°T = 293 K
β = 81.21 (3)°0.34 × 0.26 × 0.06 mm
γ = 89.97 (3)°
Data collection top
Bruker SMART CCD area detector system
diffractometer
10049 independent reflections
Radiation source: rotating anode X-ray tube5423 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 28.4°, θmin = 1.3°
Absorption correction: multi-scan
Absorption was corrected by SADABS
h = 1414
Tmin = 0.976, Tmax = 0.996k = 1616
29048 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.070P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max < 0.001
10049 reflectionsΔρmax = 0.24 e Å3
482 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0230 (19)
Crystal data top
C22H29NO2γ = 89.97 (3)°
Mr = 339.46V = 2018.7 (7) Å3
Triclinic, P1Z = 4
a = 10.814 (2) ÅMo Kα radiation
b = 12.011 (2) ŵ = 0.07 mm1
c = 15.727 (3) ÅT = 293 K
α = 89.25 (3)°0.34 × 0.26 × 0.06 mm
β = 81.21 (3)°
Data collection top
Bruker SMART CCD area detector system
diffractometer
10049 independent reflections
Absorption correction: multi-scan
Absorption was corrected by SADABS
5423 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.996Rint = 0.036
29048 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 0.92Δρmax = 0.24 e Å3
10049 reflectionsΔρmin = 0.16 e Å3
482 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.26160 (9)0.91706 (9)0.30225 (6)0.0575 (3)
H1A0.22890.87740.34230.086*
O2A0.11999 (10)0.50309 (9)0.59327 (6)0.0615 (3)
N1A0.08533 (11)0.82448 (10)0.40939 (7)0.0493 (3)
C1A0.04400 (12)0.94569 (11)0.29462 (9)0.0436 (3)
C2A0.17138 (12)0.96591 (11)0.26341 (8)0.0426 (3)
C3A0.20680 (12)1.03807 (10)0.19246 (8)0.0409 (3)
C4A0.11019 (13)1.08733 (11)0.15609 (9)0.0463 (3)
H4A0.13201.13470.10890.056*
C5A0.01745 (13)1.07052 (11)0.18561 (9)0.0473 (3)
C6A0.04779 (13)0.99881 (11)0.25485 (9)0.0489 (3)
H6A0.13170.98530.27580.059*
C7A0.00611 (13)0.87464 (11)0.36927 (9)0.0478 (3)
H7A0.07880.86500.38890.057*
C8A0.04573 (12)0.76462 (11)0.48721 (8)0.0447 (3)
C9A0.03946 (14)0.80885 (13)0.55320 (10)0.0531 (4)
H9A0.07660.87750.54600.064*
C10A0.06840 (15)0.74973 (13)0.62976 (10)0.0567 (4)
H10A0.12550.77900.67400.068*
C11A0.01413 (14)0.64866 (13)0.64124 (9)0.0533 (4)
H11A0.03450.60970.69300.064*
C12A0.07160 (12)0.60438 (12)0.57536 (9)0.0452 (3)
C13A0.10287 (12)0.66291 (11)0.49848 (8)0.0450 (3)
H13A0.16160.63430.45480.054*
C14A0.34548 (12)1.06197 (11)0.15895 (9)0.0454 (3)
C15A0.41406 (15)0.95337 (13)0.13126 (11)0.0615 (4)
H15A0.50060.96920.11080.092*
H15B0.37670.92010.08620.092*
H15C0.40790.90290.17960.092*
C16A0.40614 (15)1.11831 (14)0.22982 (11)0.0663 (4)
H16A0.36621.18860.24370.099*
H16B0.49351.13020.20970.099*
H16C0.39651.07130.28020.099*
C17A0.36138 (15)1.13961 (14)0.07972 (11)0.0654 (5)
H17A0.32001.20900.09450.098*
H17B0.32531.10540.03440.098*
H17C0.44881.15300.06070.098*
C18A0.11994 (14)1.13033 (14)0.14451 (11)0.0604 (4)
C19A0.0694 (3)1.2127 (3)0.0753 (3)0.1221 (16)0.781 (3)
H19A0.13761.24760.05270.183*0.781 (3)
H19B0.01711.17480.02990.183*0.781 (3)
H19C0.02121.26830.09890.183*0.781 (3)
C20A0.2047 (2)1.1983 (2)0.21690 (18)0.0891 (9)0.781 (3)
H20A0.15401.25120.24120.134*0.781 (3)
H20B0.24271.14800.26120.134*0.781 (3)
H20C0.26871.23680.19220.134*0.781 (3)
C21A0.2069 (3)1.0478 (2)0.1134 (2)0.0994 (11)0.781 (3)
H21A0.27001.08690.08820.149*0.781 (3)
H21B0.24591.00310.16110.149*0.781 (3)
H21C0.16041.00080.07120.149*0.781 (3)
C19C0.0946 (9)1.0854 (8)0.0395 (5)0.077 (3)*0.219 (3)
H19G0.15661.11710.00880.115*0.219 (3)
H19H0.10031.00560.03890.115*0.219 (3)
H19I0.01291.10840.01240.115*0.219 (3)
C20C0.2449 (11)1.0963 (10)0.1751 (8)0.105 (4)*0.219 (3)
H20G0.26261.10630.23620.157*0.219 (3)
H20H0.25471.01920.16230.157*0.219 (3)
H20I0.30181.14040.14760.157*0.219 (3)
C21C0.0980 (11)1.2472 (9)0.1402 (8)0.098 (4)*0.219 (3)
H21G0.14931.28120.10250.148*0.219 (3)
H21H0.01151.26130.11860.148*0.219 (3)
H21I0.11851.27780.19670.148*0.219 (3)
C22A0.20307 (15)0.44936 (13)0.52776 (10)0.0614 (4)
H22A0.16360.44210.47740.092*
H22B0.22370.37690.54780.092*
H22C0.27800.49290.51380.092*
O1B0.32685 (9)0.41505 (9)0.30108 (7)0.0609 (3)
H1B0.33910.37490.34150.091*
O2B0.33447 (10)0.00283 (9)0.59826 (7)0.0653 (3)
N1B0.44893 (11)0.31879 (10)0.41261 (7)0.0504 (3)
C1B0.54690 (13)0.44130 (11)0.29978 (9)0.0448 (3)
C2B0.43631 (13)0.46334 (11)0.26513 (9)0.0464 (3)
C3B0.43825 (13)0.53654 (11)0.19456 (9)0.0466 (3)
C4B0.55188 (13)0.58686 (11)0.16310 (9)0.0486 (3)
H4B0.55430.63530.11630.058*
C5B0.66331 (13)0.56998 (11)0.19678 (9)0.0456 (3)
C6B0.65786 (13)0.49516 (11)0.26468 (9)0.0472 (3)
H6B0.73040.48010.28780.057*
C7B0.54721 (14)0.36846 (11)0.37421 (9)0.0488 (3)
H7B0.62230.35730.39500.059*
C8B0.45342 (12)0.25857 (11)0.49065 (9)0.0452 (3)
C9B0.50991 (14)0.30282 (13)0.55602 (10)0.0535 (4)
H9B0.55000.37150.54840.064*
C10B0.50633 (15)0.24424 (14)0.63257 (10)0.0576 (4)
H10B0.54410.27390.67650.069*
C11B0.44782 (14)0.14301 (13)0.64438 (9)0.0552 (4)
H11B0.44650.10410.69600.066*
C12B0.39044 (12)0.09817 (12)0.57931 (9)0.0467 (3)
C13B0.39176 (12)0.15650 (12)0.50226 (9)0.0466 (3)
H13B0.35190.12770.45900.056*
C14B0.31869 (15)0.56142 (13)0.15527 (11)0.0585 (4)
C15B0.26165 (17)0.45300 (14)0.12800 (12)0.0738 (5)
H15D0.32150.41610.08640.111*
H15E0.18800.46980.10310.111*
H15F0.23980.40530.17750.111*
C16B0.22373 (17)0.62104 (16)0.22195 (14)0.0878 (6)
H16D0.14750.63290.19890.132*
H16E0.25740.69150.23530.132*
H16F0.20690.57600.27330.132*
C17B0.34671 (19)0.63563 (16)0.07397 (13)0.0878 (6)
H17D0.40480.59840.03140.132*
H17E0.38230.70480.08830.132*
H17F0.27050.64990.05150.132*
C18B0.78544 (14)0.63148 (12)0.16191 (9)0.0525 (4)
C19B0.76534 (19)0.72396 (17)0.09788 (14)0.0935 (7)
H19D0.70260.77440.12440.140*
H19E0.73840.69200.04810.140*
H19F0.84240.76360.08080.140*
C20B0.88011 (19)0.54865 (17)0.11728 (14)0.0923 (6)
H20D0.95570.58720.09400.138*
H20E0.84590.51330.07160.138*
H20F0.89830.49330.15820.138*
C21B0.84038 (17)0.68501 (16)0.23530 (12)0.0770 (5)
H21D0.77890.73250.26700.116*
H21E0.91260.72830.21220.116*
H21F0.86420.62790.27290.116*
C22B0.28247 (15)0.05866 (13)0.53324 (11)0.0646 (4)
H22D0.21490.01540.51710.097*
H22E0.25150.13020.55460.097*
H22F0.34570.06830.48400.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0441 (6)0.0710 (7)0.0574 (6)0.0081 (5)0.0094 (5)0.0195 (5)
O2A0.0678 (7)0.0624 (7)0.0543 (6)0.0170 (5)0.0101 (5)0.0110 (5)
N1A0.0473 (7)0.0511 (7)0.0485 (7)0.0003 (5)0.0047 (5)0.0093 (6)
C1A0.0414 (7)0.0431 (7)0.0460 (8)0.0002 (6)0.0059 (6)0.0036 (6)
C2A0.0410 (7)0.0434 (7)0.0439 (8)0.0056 (6)0.0085 (6)0.0014 (6)
C3A0.0402 (7)0.0396 (7)0.0423 (7)0.0011 (6)0.0044 (6)0.0013 (6)
C4A0.0456 (8)0.0461 (8)0.0470 (8)0.0011 (6)0.0073 (6)0.0062 (6)
C5A0.0410 (8)0.0469 (8)0.0546 (9)0.0025 (6)0.0101 (6)0.0057 (7)
C6A0.0376 (7)0.0503 (8)0.0585 (9)0.0018 (6)0.0067 (6)0.0059 (7)
C7A0.0435 (8)0.0493 (8)0.0493 (8)0.0015 (6)0.0032 (6)0.0034 (7)
C8A0.0408 (7)0.0502 (8)0.0432 (8)0.0041 (6)0.0079 (6)0.0043 (6)
C9A0.0532 (9)0.0507 (8)0.0550 (9)0.0068 (7)0.0066 (7)0.0013 (7)
C10A0.0554 (9)0.0665 (10)0.0455 (8)0.0065 (8)0.0017 (7)0.0048 (7)
C11A0.0534 (9)0.0665 (10)0.0392 (8)0.0009 (7)0.0047 (6)0.0053 (7)
C12A0.0422 (7)0.0518 (8)0.0435 (8)0.0002 (6)0.0133 (6)0.0031 (6)
C13A0.0383 (7)0.0554 (8)0.0409 (8)0.0027 (6)0.0051 (6)0.0006 (6)
C14A0.0389 (7)0.0459 (8)0.0495 (8)0.0028 (6)0.0010 (6)0.0011 (6)
C15A0.0557 (9)0.0604 (10)0.0641 (10)0.0131 (8)0.0045 (7)0.0037 (8)
C16A0.0504 (9)0.0716 (11)0.0762 (11)0.0089 (8)0.0068 (8)0.0107 (9)
C17A0.0536 (9)0.0651 (10)0.0719 (11)0.0007 (8)0.0069 (8)0.0176 (9)
C18A0.0461 (9)0.0629 (10)0.0747 (11)0.0020 (7)0.0193 (8)0.0191 (8)
C19A0.0641 (16)0.158 (3)0.141 (3)0.0204 (18)0.0125 (17)0.105 (3)
C20A0.0744 (17)0.0896 (19)0.106 (2)0.0367 (14)0.0239 (15)0.0056 (15)
C21A0.092 (2)0.091 (2)0.132 (3)0.0083 (16)0.073 (2)0.0083 (18)
C22A0.0545 (9)0.0582 (9)0.0734 (11)0.0094 (8)0.0158 (8)0.0024 (8)
O1B0.0450 (6)0.0709 (7)0.0681 (7)0.0068 (5)0.0136 (5)0.0122 (6)
O2B0.0674 (7)0.0662 (7)0.0615 (7)0.0176 (6)0.0082 (5)0.0123 (6)
N1B0.0499 (7)0.0522 (7)0.0503 (7)0.0022 (6)0.0117 (6)0.0066 (6)
C1B0.0465 (8)0.0427 (7)0.0467 (8)0.0022 (6)0.0122 (6)0.0031 (6)
C2B0.0437 (8)0.0440 (8)0.0529 (8)0.0000 (6)0.0122 (6)0.0022 (7)
C3B0.0506 (8)0.0409 (7)0.0525 (8)0.0047 (6)0.0206 (6)0.0036 (6)
C4B0.0581 (9)0.0423 (8)0.0483 (8)0.0016 (7)0.0175 (7)0.0037 (6)
C5B0.0486 (8)0.0442 (8)0.0458 (8)0.0010 (6)0.0130 (6)0.0023 (6)
C6B0.0445 (8)0.0484 (8)0.0509 (8)0.0017 (6)0.0143 (6)0.0046 (7)
C7B0.0464 (8)0.0487 (8)0.0528 (8)0.0021 (7)0.0132 (7)0.0020 (7)
C8B0.0398 (7)0.0510 (8)0.0449 (8)0.0044 (6)0.0066 (6)0.0032 (6)
C9B0.0542 (9)0.0525 (9)0.0544 (9)0.0045 (7)0.0099 (7)0.0035 (7)
C10B0.0576 (9)0.0706 (10)0.0474 (9)0.0005 (8)0.0166 (7)0.0069 (8)
C11B0.0523 (9)0.0704 (10)0.0431 (8)0.0026 (8)0.0083 (7)0.0074 (7)
C12B0.0382 (7)0.0525 (8)0.0477 (8)0.0016 (6)0.0017 (6)0.0033 (7)
C13B0.0381 (7)0.0579 (9)0.0447 (8)0.0013 (6)0.0090 (6)0.0009 (7)
C14B0.0579 (9)0.0506 (9)0.0743 (11)0.0049 (7)0.0333 (8)0.0028 (8)
C15B0.0784 (12)0.0674 (11)0.0852 (13)0.0044 (9)0.0426 (10)0.0080 (9)
C16B0.0661 (12)0.0837 (13)0.1221 (17)0.0279 (10)0.0396 (11)0.0277 (12)
C17B0.0908 (14)0.0792 (13)0.1077 (15)0.0036 (10)0.0630 (12)0.0277 (11)
C18B0.0507 (8)0.0555 (9)0.0515 (9)0.0016 (7)0.0090 (7)0.0104 (7)
C19B0.0795 (13)0.0980 (15)0.1046 (16)0.0216 (11)0.0234 (11)0.0506 (13)
C20B0.0705 (13)0.0915 (14)0.1068 (16)0.0015 (11)0.0132 (11)0.0078 (12)
C21B0.0693 (11)0.0839 (13)0.0789 (12)0.0235 (10)0.0151 (9)0.0049 (10)
C22B0.0542 (9)0.0570 (10)0.0828 (12)0.0067 (8)0.0105 (8)0.0027 (9)
Geometric parameters (Å, º) top
O1A—C2A1.3569 (16)C18A—C19C1.726 (8)
O2A—C12A1.3669 (17)O1B—C2B1.3583 (17)
O2A—C22A1.4210 (19)O2B—C12B1.3649 (17)
N1A—C7A1.2843 (18)O2B—C22B1.4162 (19)
N1A—C8A1.4197 (17)N1B—C7B1.2827 (18)
C1A—C6A1.4008 (19)N1B—C8B1.4236 (17)
C1A—C2A1.4101 (19)C1B—C6B1.397 (2)
C1A—C7A1.4497 (19)C1B—C2B1.4114 (19)
C2A—C3A1.4098 (18)C1B—C7B1.4527 (19)
C3A—C4A1.3935 (19)C2B—C3B1.405 (2)
C3A—C14A1.5376 (19)C3B—C4B1.388 (2)
C4A—C5A1.4014 (19)C3B—C14B1.543 (2)
C5A—C6A1.379 (2)C4B—C5B1.4020 (19)
C5A—C18A1.539 (2)C5B—C6B1.3810 (19)
C8A—C9A1.389 (2)C5B—C18B1.536 (2)
C8A—C13A1.3901 (19)C8B—C9B1.385 (2)
C9A—C10A1.384 (2)C8B—C13B1.3924 (19)
C10A—C11A1.370 (2)C9B—C10B1.382 (2)
C11A—C12A1.391 (2)C10B—C11B1.368 (2)
C12A—C13A1.3870 (19)C11B—C12B1.390 (2)
C14A—C15A1.535 (2)C12B—C13B1.3900 (19)
C14A—C17A1.535 (2)C14B—C15B1.535 (2)
C14A—C16A1.541 (2)C14B—C16B1.535 (2)
C18A—C20C1.422 (11)C14B—C17B1.541 (2)
C18A—C21C1.422 (11)C18B—C21B1.526 (2)
C18A—C19A1.501 (3)C18B—C20B1.526 (2)
C18A—C21A1.503 (3)C18B—C19B1.527 (2)
C18A—C20A1.583 (3)
C12A—O2A—C22A118.76 (11)C5A—C18A—C20A108.34 (14)
C7A—N1A—C8A121.09 (12)C20C—C18A—C19C103.6 (6)
C6A—C1A—C2A119.36 (13)C21C—C18A—C19C105.9 (6)
C6A—C1A—C7A119.31 (13)C19A—C18A—C19C62.0 (3)
C2A—C1A—C7A121.29 (12)C21A—C18A—C19C59.3 (3)
O1A—C2A—C3A119.13 (12)C5A—C18A—C19C103.5 (3)
O1A—C2A—C1A120.20 (12)C20A—C18A—C19C148.0 (3)
C3A—C2A—C1A120.67 (12)C12B—O2B—C22B118.84 (12)
C4A—C3A—C2A116.61 (12)C7B—N1B—C8B119.95 (12)
C4A—C3A—C14A122.41 (12)C6B—C1B—C2B119.43 (13)
C2A—C3A—C14A120.97 (12)C6B—C1B—C7B118.81 (13)
C3A—C4A—C5A124.58 (13)C2B—C1B—C7B121.67 (13)
C6A—C5A—C4A116.82 (13)O1B—C2B—C3B119.70 (13)
C6A—C5A—C18A121.00 (13)O1B—C2B—C1B119.90 (13)
C4A—C5A—C18A122.17 (13)C3B—C2B—C1B120.39 (13)
C5A—C6A—C1A121.95 (13)C4B—C3B—C2B116.91 (13)
N1A—C7A—C1A122.54 (13)C4B—C3B—C14B121.76 (13)
C9A—C8A—C13A120.35 (13)C2B—C3B—C14B121.32 (13)
C9A—C8A—N1A121.88 (13)C3B—C4B—C5B124.78 (13)
C13A—C8A—N1A117.57 (12)C6B—C5B—C4B116.34 (13)
C10A—C9A—C8A119.30 (14)C6B—C5B—C18B120.94 (12)
C11A—C10A—C9A120.93 (14)C4B—C5B—C18B122.71 (12)
C10A—C11A—C12A119.89 (14)C5B—C6B—C1B122.11 (13)
O2A—C12A—C13A124.70 (13)N1B—C7B—C1B123.20 (13)
O2A—C12A—C11A115.24 (13)C9B—C8B—C13B120.35 (13)
C13A—C12A—C11A120.06 (13)C9B—C8B—N1B121.41 (13)
C12A—C13A—C8A119.46 (13)C13B—C8B—N1B118.10 (13)
C15A—C14A—C17A106.84 (12)C10B—C9B—C8B119.58 (14)
C15A—C14A—C3A110.18 (12)C11B—C10B—C9B120.71 (14)
C17A—C14A—C3A111.70 (12)C10B—C11B—C12B120.12 (14)
C15A—C14A—C16A110.33 (13)O2B—C12B—C11B115.11 (13)
C17A—C14A—C16A108.17 (13)O2B—C12B—C13B124.89 (13)
C3A—C14A—C16A109.56 (11)C11B—C12B—C13B119.99 (14)
C20C—C18A—C21C116.0 (7)C12B—C13B—C8B119.23 (13)
C20C—C18A—C19A130.7 (5)C15B—C14B—C16B109.89 (15)
C21C—C18A—C19A44.4 (5)C15B—C14B—C17B106.78 (14)
C20C—C18A—C21A46.5 (5)C16B—C14B—C17B108.87 (15)
C21C—C18A—C21A138.4 (5)C15B—C14B—C3B110.40 (12)
C19A—C18A—C21A111.8 (2)C16B—C14B—C3B109.25 (13)
C20C—C18A—C5A115.8 (5)C17B—C14B—C3B111.62 (14)
C21C—C18A—C5A110.4 (5)C21B—C18B—C20B108.68 (15)
C19A—C18A—C5A113.48 (15)C21B—C18B—C19B107.44 (15)
C21A—C18A—C5A110.93 (15)C20B—C18B—C19B108.81 (15)
C20C—C18A—C20A59.3 (5)C21B—C18B—C5B110.39 (12)
C21C—C18A—C20A65.8 (5)C20B—C18B—C5B109.30 (13)
C19A—C18A—C20A106.7 (2)C19B—C18B—C5B112.13 (13)
C21A—C18A—C20A105.05 (19)
C6A—C1A—C2A—O1A178.60 (12)C4A—C5A—C18A—C20A122.34 (18)
C7A—C1A—C2A—O1A1.2 (2)C6A—C5A—C18A—C19C120.2 (4)
C6A—C1A—C2A—C3A0.5 (2)C4A—C5A—C18A—C19C61.0 (4)
C7A—C1A—C2A—C3A177.92 (12)C6B—C1B—C2B—O1B177.22 (13)
O1A—C2A—C3A—C4A178.93 (12)C7B—C1B—C2B—O1B0.6 (2)
C1A—C2A—C3A—C4A0.20 (19)C6B—C1B—C2B—C3B1.6 (2)
O1A—C2A—C3A—C14A0.10 (19)C7B—C1B—C2B—C3B178.25 (12)
C1A—C2A—C3A—C14A179.03 (12)O1B—C2B—C3B—C4B177.30 (12)
C2A—C3A—C4A—C5A0.5 (2)C1B—C2B—C3B—C4B1.6 (2)
C14A—C3A—C4A—C5A178.29 (13)O1B—C2B—C3B—C14B1.5 (2)
C3A—C4A—C5A—C6A0.9 (2)C1B—C2B—C3B—C14B179.66 (12)
C3A—C4A—C5A—C18A177.99 (14)C2B—C3B—C4B—C5B0.2 (2)
C4A—C5A—C6A—C1A0.5 (2)C14B—C3B—C4B—C5B178.57 (13)
C18A—C5A—C6A—C1A178.36 (14)C3B—C4B—C5B—C6B1.8 (2)
C2A—C1A—C6A—C5A0.1 (2)C3B—C4B—C5B—C18B177.40 (14)
C7A—C1A—C6A—C5A177.59 (13)C4B—C5B—C6B—C1B1.7 (2)
C8A—N1A—C7A—C1A173.59 (12)C18B—C5B—C6B—C1B177.51 (13)
C6A—C1A—C7A—N1A179.19 (14)C2B—C1B—C6B—C5B0.1 (2)
C2A—C1A—C7A—N1A1.8 (2)C7B—C1B—C6B—C5B176.61 (13)
C7A—N1A—C8A—C9A46.2 (2)C8B—N1B—C7B—C1B173.09 (12)
C7A—N1A—C8A—C13A138.88 (14)C6B—C1B—C7B—N1B177.39 (14)
C13A—C8A—C9A—C10A1.1 (2)C2B—C1B—C7B—N1B0.8 (2)
N1A—C8A—C9A—C10A175.82 (14)C7B—N1B—C8B—C9B45.41 (19)
C8A—C9A—C10A—C11A0.1 (2)C7B—N1B—C8B—C13B138.92 (14)
C9A—C10A—C11A—C12A0.1 (2)C13B—C8B—C9B—C10B0.9 (2)
C22A—O2A—C12A—C13A3.8 (2)N1B—C8B—C9B—C10B176.51 (13)
C22A—O2A—C12A—C11A176.65 (13)C8B—C9B—C10B—C11B0.1 (2)
C10A—C11A—C12A—O2A179.83 (13)C9B—C10B—C11B—C12B0.4 (2)
C10A—C11A—C12A—C13A0.6 (2)C22B—O2B—C12B—C11B175.01 (13)
O2A—C12A—C13A—C8A178.93 (13)C22B—O2B—C12B—C13B5.8 (2)
C11A—C12A—C13A—C8A1.5 (2)C10B—C11B—C12B—O2B179.67 (13)
C9A—C8A—C13A—C12A1.8 (2)C10B—C11B—C12B—C13B0.4 (2)
N1A—C8A—C13A—C12A176.72 (12)O2B—C12B—C13B—C8B179.36 (12)
C4A—C3A—C14A—C15A121.68 (14)C11B—C12B—C13B—C8B1.4 (2)
C2A—C3A—C14A—C15A59.56 (17)C9B—C8B—C13B—C12B1.7 (2)
C4A—C3A—C14A—C17A3.09 (18)N1B—C8B—C13B—C12B177.42 (12)
C2A—C3A—C14A—C17A178.15 (12)C4B—C3B—C14B—C15B124.90 (16)
C4A—C3A—C14A—C16A116.75 (15)C2B—C3B—C14B—C15B56.38 (19)
C2A—C3A—C14A—C16A62.01 (16)C4B—C3B—C14B—C16B114.15 (17)
C6A—C5A—C18A—C20C7.6 (7)C2B—C3B—C14B—C16B64.57 (18)
C4A—C5A—C18A—C20C173.6 (6)C4B—C3B—C14B—C17B6.3 (2)
C6A—C5A—C18A—C21C126.8 (6)C2B—C3B—C14B—C17B174.98 (14)
C4A—C5A—C18A—C21C52.0 (6)C6B—C5B—C18B—C21B50.43 (19)
C6A—C5A—C18A—C19A174.8 (2)C4B—C5B—C18B—C21B128.77 (15)
C4A—C5A—C18A—C19A4.0 (3)C6B—C5B—C18B—C20B69.06 (18)
C6A—C5A—C18A—C21A58.3 (2)C4B—C5B—C18B—C20B111.74 (17)
C4A—C5A—C18A—C21A122.9 (2)C6B—C5B—C18B—C19B170.19 (15)
C6A—C5A—C18A—C20A56.5 (2)C4B—C5B—C18B—C19B9.0 (2)
(3) top
Crystal data top
C21H26BrNOZ = 4
Mr = 388.34F(000) = 808
Triclinic, P1Dx = 1.288 Mg m3
a = 10.7505 (6) ÅMo Kα radiation, λ = 0.71075 Å
b = 11.5008 (7) ÅCell parameters from 12241 reflections
c = 16.3284 (8) Åθ = 3.0–27.4°
α = 87.959 (1)°µ = 2.06 mm1
β = 83.166 (2)°T = 296 K
γ = 89.536 (2)°Block, yellow
V = 2003.20 (19) Å30.18 × 0.17 × 0.04 mm
Data collection top
Rigaku R-AXIS RAPID IP Area Detector System
diffractometer
9015 independent reflections
Radiation source: rotating anode X-ray tube4719 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω scansθmax = 27.4°, θmin = 3.0°
Absorption correction: multi-scan
Absorption was corrected by ABSCOR
h = 1313
Tmin = 0.189, Tmax = 0.928k = 1414
19830 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0608P)2]
where P = (Fo2 + 2Fc2)/3
9015 reflections(Δ/σ)max = 0.001
445 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.78 e Å3
Crystal data top
C21H26BrNOγ = 89.536 (2)°
Mr = 388.34V = 2003.20 (19) Å3
Triclinic, P1Z = 4
a = 10.7505 (6) ÅMo Kα radiation
b = 11.5008 (7) ŵ = 2.06 mm1
c = 16.3284 (8) ÅT = 296 K
α = 87.959 (1)°0.18 × 0.17 × 0.04 mm
β = 83.166 (2)°
Data collection top
Rigaku R-AXIS RAPID IP Area Detector System
diffractometer
9015 independent reflections
Absorption correction: multi-scan
Absorption was corrected by ABSCOR
4719 reflections with I > 2σ(I)
Tmin = 0.189, Tmax = 0.928Rint = 0.054
19830 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.08Δρmax = 0.87 e Å3
9015 reflectionsΔρmin = 0.78 e Å3
445 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1A0.67859 (4)0.53468 (3)0.56212 (2)0.06671 (15)
O1A0.7848 (2)0.0614 (2)0.30884 (14)0.0556 (6)
H1A0.75180.09950.34710.083*
N1A0.6084 (3)0.1570 (2)0.40508 (16)0.0492 (7)
C1A0.5672 (3)0.0401 (3)0.29328 (19)0.0433 (8)
C2A0.6949 (3)0.0180 (3)0.26676 (19)0.0429 (8)
C3A0.7301 (3)0.0490 (3)0.19788 (19)0.0427 (7)
C4A0.6337 (3)0.0954 (3)0.1594 (2)0.0460 (8)
H4A0.65580.14120.11410.055*
C5A0.5057 (3)0.0779 (3)0.1842 (2)0.0465 (8)
C6A0.4758 (3)0.0084 (3)0.2507 (2)0.0482 (8)
H6A0.39190.00690.26790.058*
C7A0.5290 (3)0.1109 (3)0.36385 (19)0.0466 (8)
H7A0.44400.12320.37950.056*
C8A0.5685 (3)0.2228 (3)0.47549 (19)0.0457 (8)
C9A0.4735 (3)0.1848 (3)0.5362 (2)0.0519 (9)
H9A0.43190.11540.53070.062*
C10A0.4422 (4)0.2508 (3)0.6039 (2)0.0629 (10)
H10A0.37930.22510.64450.075*
C11A0.5023 (4)0.3554 (3)0.6134 (2)0.0584 (10)
H11A0.48000.40000.65940.070*
C12A0.5958 (3)0.3912 (3)0.5529 (2)0.0478 (8)
C13A0.6308 (3)0.3259 (3)0.48403 (19)0.0469 (8)
H13A0.69510.35100.44430.056*
C14A0.8681 (3)0.0719 (3)0.1666 (2)0.0469 (8)
C15A0.9312 (4)0.1404 (3)0.2339 (2)0.0656 (10)
H15A0.89150.21470.24480.098*
H15B0.92300.09730.28360.098*
H15C1.01840.15160.21510.098*
C16A0.9368 (4)0.0440 (3)0.1451 (2)0.0641 (10)
H16A1.02410.02900.12910.096*
H16B0.92740.09190.19240.096*
H16C0.90170.08340.10030.096*
C17A0.8844 (4)0.1430 (4)0.0897 (2)0.0709 (11)
H17A0.84690.21810.10180.106*
H17B0.97200.15240.07150.106*
H17C0.84450.10360.04690.106*
C18A0.4025 (3)0.1354 (3)0.1425 (2)0.0555 (9)
C19A0.4528 (4)0.2085 (4)0.0702 (3)0.0953 (15)
H19A0.49640.15940.02760.143*
H19B0.38440.24600.04900.143*
H19C0.50930.26640.08830.143*
C20A0.3134 (5)0.0438 (4)0.1133 (4)0.1050 (18)
H20A0.35880.00860.07360.157*
H20B0.27650.00100.15960.157*
H20C0.24850.08100.08830.157*
C21A0.3272 (5)0.2176 (4)0.2059 (3)0.0960 (16)
H21A0.26400.25590.18000.144*
H21B0.28810.17350.25080.144*
H21C0.38250.27470.22640.144*
Br1B0.20327 (4)0.04446 (3)0.43395 (3)0.06602 (15)
O1B0.2162 (2)0.4350 (2)0.68663 (14)0.0587 (6)
H1B0.19860.39640.64830.088*
N1B0.0774 (3)0.3360 (2)0.58981 (16)0.0481 (7)
C1B0.0066 (3)0.4563 (3)0.70015 (19)0.0439 (8)
C2B0.1102 (3)0.4790 (3)0.72681 (19)0.0431 (8)
C3B0.1178 (3)0.5481 (3)0.79514 (19)0.0434 (8)
C4B0.0063 (3)0.5959 (3)0.8311 (2)0.0476 (8)
H4B0.01020.64350.87560.057*
C5B0.1117 (3)0.5779 (3)0.80544 (19)0.0443 (8)
C6B0.1152 (3)0.5058 (3)0.74019 (19)0.0456 (8)
H6B0.19200.48960.72230.055*
C7B0.0169 (3)0.3834 (3)0.63013 (19)0.0461 (8)
H7B0.09580.37090.61430.055*
C8B0.0630 (3)0.2696 (3)0.51993 (19)0.0445 (8)
C9B0.0088 (3)0.3087 (3)0.4589 (2)0.0518 (9)
H9B0.05060.37970.46340.062*
C10B0.0177 (4)0.2414 (3)0.3914 (2)0.0588 (10)
H10B0.06650.26740.35100.071*
C11B0.0440 (3)0.1371 (3)0.3831 (2)0.0539 (9)
H11B0.03730.09210.33760.065*
C12B0.1166 (3)0.1001 (3)0.44353 (19)0.0471 (8)
C13B0.1276 (3)0.1650 (3)0.51120 (19)0.0463 (8)
H13B0.17790.13920.55080.056*
C14B0.2434 (3)0.5713 (3)0.8278 (2)0.0520 (9)
C15B0.3314 (4)0.6394 (3)0.7609 (3)0.0780 (13)
H15D0.34350.59580.71150.117*
H15E0.41090.65110.78070.117*
H15F0.29440.71350.74920.117*
C16B0.3061 (4)0.4560 (3)0.8500 (2)0.0643 (10)
H16D0.25210.41410.89180.096*
H16E0.38420.47160.87040.096*
H16F0.32110.41020.80180.096*
C17B0.2279 (4)0.6430 (4)0.9050 (3)0.0822 (13)
H17D0.19660.71890.89180.123*
H17E0.30750.65020.92540.123*
H17F0.16990.60500.94650.123*
C18B0.2322 (3)0.6349 (3)0.8461 (2)0.0513 (8)
C19B0.2088 (4)0.7085 (4)0.9189 (3)0.0830 (13)
H19D0.28720.73750.94490.125*
H19E0.15540.77260.89950.125*
H19F0.16920.66140.95820.125*
C20B0.3284 (4)0.5428 (4)0.8771 (3)0.0888 (14)
H20D0.40040.57920.90620.133*
H20E0.29250.48830.91360.133*
H20F0.35310.50270.83110.133*
C21B0.2858 (5)0.7152 (4)0.7821 (3)0.0907 (15)
H21D0.30670.67010.73730.136*
H21E0.22460.77260.76160.136*
H21F0.35980.75300.80740.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.0751 (3)0.0594 (2)0.0714 (3)0.0029 (2)0.0278 (2)0.01885 (19)
O1A0.0447 (14)0.0662 (15)0.0586 (14)0.0007 (12)0.0094 (11)0.0280 (12)
N1A0.0517 (18)0.0475 (16)0.0478 (16)0.0017 (14)0.0010 (13)0.0090 (13)
C1A0.041 (2)0.0419 (17)0.0467 (18)0.0031 (15)0.0002 (14)0.0104 (15)
C2A0.042 (2)0.0430 (17)0.0437 (17)0.0039 (15)0.0030 (14)0.0076 (14)
C3A0.0425 (19)0.0414 (17)0.0443 (17)0.0045 (15)0.0039 (14)0.0050 (14)
C4A0.046 (2)0.0461 (18)0.0454 (18)0.0034 (16)0.0021 (15)0.0103 (15)
C5A0.042 (2)0.0480 (18)0.0502 (19)0.0045 (15)0.0061 (15)0.0085 (16)
C6A0.0363 (19)0.0499 (19)0.058 (2)0.0022 (15)0.0018 (15)0.0102 (16)
C7A0.047 (2)0.0439 (18)0.0472 (18)0.0038 (16)0.0011 (16)0.0043 (15)
C8A0.047 (2)0.0495 (19)0.0406 (17)0.0109 (16)0.0049 (14)0.0084 (15)
C9A0.060 (2)0.0457 (19)0.0483 (19)0.0056 (17)0.0024 (16)0.0065 (16)
C10A0.064 (3)0.070 (3)0.050 (2)0.007 (2)0.0113 (18)0.0027 (19)
C11A0.064 (3)0.065 (2)0.046 (2)0.018 (2)0.0055 (18)0.0123 (18)
C12A0.043 (2)0.054 (2)0.0485 (19)0.0084 (16)0.0138 (15)0.0088 (16)
C13A0.047 (2)0.054 (2)0.0405 (17)0.0069 (16)0.0055 (14)0.0104 (15)
C14A0.041 (2)0.0513 (19)0.0478 (18)0.0033 (16)0.0002 (15)0.0098 (16)
C15A0.057 (2)0.066 (2)0.073 (3)0.013 (2)0.006 (2)0.001 (2)
C16A0.051 (2)0.060 (2)0.077 (3)0.0097 (18)0.0087 (19)0.007 (2)
C17A0.057 (3)0.083 (3)0.071 (3)0.001 (2)0.006 (2)0.030 (2)
C18A0.047 (2)0.056 (2)0.066 (2)0.0026 (18)0.0134 (17)0.0169 (18)
C19A0.072 (3)0.116 (4)0.106 (4)0.003 (3)0.027 (3)0.059 (3)
C20A0.096 (4)0.085 (3)0.149 (5)0.016 (3)0.071 (4)0.027 (3)
C21A0.090 (4)0.096 (3)0.105 (4)0.046 (3)0.014 (3)0.014 (3)
Br1B0.0634 (3)0.0557 (2)0.0761 (3)0.00218 (19)0.0079 (2)0.01765 (19)
O1B0.0480 (15)0.0694 (16)0.0605 (15)0.0056 (12)0.0072 (12)0.0265 (13)
N1B0.0516 (18)0.0485 (16)0.0452 (15)0.0006 (14)0.0065 (13)0.0122 (13)
C1B0.052 (2)0.0402 (17)0.0414 (17)0.0021 (15)0.0100 (15)0.0071 (14)
C2B0.044 (2)0.0408 (17)0.0458 (18)0.0024 (15)0.0093 (15)0.0042 (15)
C3B0.050 (2)0.0406 (17)0.0415 (17)0.0013 (15)0.0113 (15)0.0036 (14)
C4B0.055 (2)0.0426 (18)0.0472 (18)0.0022 (16)0.0112 (16)0.0098 (15)
C5B0.048 (2)0.0420 (17)0.0435 (17)0.0015 (15)0.0061 (15)0.0090 (15)
C6B0.044 (2)0.0457 (18)0.0494 (18)0.0000 (15)0.0128 (15)0.0109 (15)
C7B0.048 (2)0.0470 (18)0.0445 (18)0.0019 (16)0.0115 (16)0.0054 (15)
C8B0.045 (2)0.0483 (19)0.0402 (17)0.0068 (16)0.0025 (14)0.0071 (15)
C9B0.064 (2)0.0431 (18)0.050 (2)0.0039 (17)0.0114 (17)0.0011 (16)
C10B0.072 (3)0.062 (2)0.046 (2)0.002 (2)0.0182 (18)0.0014 (17)
C11B0.062 (2)0.057 (2)0.0436 (19)0.0087 (19)0.0066 (17)0.0140 (16)
C12B0.044 (2)0.0505 (19)0.0447 (18)0.0090 (16)0.0077 (15)0.0110 (15)
C13B0.0393 (19)0.054 (2)0.0449 (18)0.0029 (16)0.0024 (14)0.0063 (16)
C14B0.050 (2)0.0506 (19)0.059 (2)0.0015 (17)0.0206 (17)0.0061 (17)
C15B0.067 (3)0.070 (3)0.099 (3)0.026 (2)0.023 (2)0.015 (2)
C16B0.067 (3)0.061 (2)0.070 (2)0.003 (2)0.028 (2)0.000 (2)
C17B0.082 (3)0.087 (3)0.089 (3)0.010 (3)0.047 (3)0.032 (3)
C18B0.047 (2)0.052 (2)0.055 (2)0.0007 (16)0.0035 (16)0.0148 (17)
C19B0.067 (3)0.097 (3)0.083 (3)0.002 (3)0.010 (2)0.044 (3)
C20B0.066 (3)0.081 (3)0.115 (4)0.013 (2)0.019 (3)0.024 (3)
C21B0.092 (4)0.090 (3)0.088 (3)0.042 (3)0.004 (3)0.010 (3)
Geometric parameters (Å, º) top
Br1A—C12A1.901 (3)Br1B—C12B1.902 (3)
O1A—C2A1.358 (4)O1B—C2B1.350 (4)
O1A—H1A0.8200O1B—H1B0.8200
N1A—C7A1.277 (4)N1B—C7B1.271 (4)
N1A—C8A1.421 (4)N1B—C8B1.419 (4)
C1A—C6A1.400 (4)C1B—C6B1.396 (5)
C1A—C2A1.414 (4)C1B—C2B1.406 (4)
C1A—C7A1.452 (4)C1B—C7B1.457 (4)
C2A—C3A1.399 (4)C2B—C3B1.403 (4)
C3A—C4A1.394 (4)C3B—C4B1.389 (5)
C3A—C14A1.534 (5)C3B—C14B1.538 (4)
C4A—C5A1.402 (4)C4B—C5B1.401 (4)
C4A—H4A0.9300C4B—H4B0.9300
C5A—C6A1.377 (5)C5B—C6B1.378 (4)
C5A—C18A1.534 (4)C5B—C18B1.537 (5)
C6A—H6A0.9300C6B—H6B0.9300
C7A—H7A0.9300C7B—H7B0.9300
C8A—C13A1.386 (5)C8B—C13B1.388 (4)
C8A—C9A1.397 (5)C8B—C9B1.392 (4)
C9A—C10A1.372 (5)C9B—C10B1.380 (5)
C9A—H9A0.9300C9B—H9B0.9300
C10A—C11A1.393 (5)C10B—C11B1.369 (5)
C10A—H10A0.9300C10B—H10B0.9300
C11A—C12A1.378 (5)C11B—C12B1.382 (5)
C11A—H11A0.9300C11B—H11B0.9300
C12A—C13A1.386 (5)C12B—C13B1.372 (4)
C13A—H13A0.9300C13B—H13B0.9300
C14A—C17A1.516 (5)C14B—C17B1.523 (5)
C14A—C16A1.539 (4)C14B—C16B1.533 (5)
C14A—C15A1.548 (5)C14B—C15B1.551 (5)
C15A—H15A0.9600C15B—H15D0.9600
C15A—H15B0.9600C15B—H15E0.9600
C15A—H15C0.9600C15B—H15F0.9600
C16A—H16A0.9600C16B—H16D0.9600
C16A—H16B0.9600C16B—H16E0.9600
C16A—H16C0.9600C16B—H16F0.9600
C17A—H17A0.9600C17B—H17D0.9600
C17A—H17B0.9600C17B—H17E0.9600
C17A—H17C0.9600C17B—H17F0.9600
C18A—C19A1.518 (6)C18B—C20B1.517 (5)
C18A—C20A1.521 (5)C18B—C21B1.529 (5)
C18A—C21A1.537 (5)C18B—C19B1.530 (5)
C19A—H19A0.9600C19B—H19D0.9600
C19A—H19B0.9600C19B—H19E0.9600
C19A—H19C0.9600C19B—H19F0.9600
C20A—H20A0.9600C20B—H20D0.9600
C20A—H20B0.9600C20B—H20E0.9600
C20A—H20C0.9600C20B—H20F0.9600
C21A—H21A0.9600C21B—H21D0.9600
C21A—H21B0.9600C21B—H21E0.9600
C21A—H21C0.9600C21B—H21F0.9600
C2A—O1A—H1A109.5C2B—O1B—H1B109.5
C7A—N1A—C8A121.0 (3)C7B—N1B—C8B120.7 (3)
C6A—C1A—C2A119.0 (3)C6B—C1B—C2B119.8 (3)
C6A—C1A—C7A119.5 (3)C6B—C1B—C7B118.8 (3)
C2A—C1A—C7A121.5 (3)C2B—C1B—C7B121.3 (3)
O1A—C2A—C3A119.4 (3)O1B—C2B—C3B119.3 (3)
O1A—C2A—C1A119.8 (3)O1B—C2B—C1B120.3 (3)
C3A—C2A—C1A120.8 (3)C3B—C2B—C1B120.4 (3)
C4A—C3A—C2A116.8 (3)C4B—C3B—C2B116.5 (3)
C4A—C3A—C14A121.4 (3)C4B—C3B—C14B121.7 (3)
C2A—C3A—C14A121.8 (3)C2B—C3B—C14B121.7 (3)
C3A—C4A—C5A124.6 (3)C3B—C4B—C5B125.0 (3)
C3A—C4A—H4A117.7C3B—C4B—H4B117.5
C5A—C4A—H4A117.7C5B—C4B—H4B117.5
C6A—C5A—C4A116.4 (3)C6B—C5B—C4B116.3 (3)
C6A—C5A—C18A120.7 (3)C6B—C5B—C18B120.6 (3)
C4A—C5A—C18A122.9 (3)C4B—C5B—C18B123.1 (3)
C5A—C6A—C1A122.4 (3)C5B—C6B—C1B121.8 (3)
C5A—C6A—H6A118.8C5B—C6B—H6B119.1
C1A—C6A—H6A118.8C1B—C6B—H6B119.1
N1A—C7A—C1A122.1 (3)N1B—C7B—C1B122.8 (3)
N1A—C7A—H7A118.9N1B—C7B—H7B118.6
C1A—C7A—H7A118.9C1B—C7B—H7B118.6
C13A—C8A—C9A120.3 (3)C13B—C8B—C9B119.6 (3)
C13A—C8A—N1A117.5 (3)C13B—C8B—N1B118.3 (3)
C9A—C8A—N1A122.3 (3)C9B—C8B—N1B122.1 (3)
C10A—C9A—C8A119.3 (3)C10B—C9B—C8B119.7 (3)
C10A—C9A—H9A120.3C10B—C9B—H9B120.2
C8A—C9A—H9A120.3C8B—C9B—H9B120.2
C9A—C10A—C11A121.5 (3)C11B—C10B—C9B121.1 (3)
C9A—C10A—H10A119.2C11B—C10B—H10B119.5
C11A—C10A—H10A119.2C9B—C10B—H10B119.5
C12A—C11A—C10A118.2 (3)C10B—C11B—C12B118.7 (3)
C12A—C11A—H11A120.9C10B—C11B—H11B120.7
C10A—C11A—H11A120.9C12B—C11B—H11B120.7
C11A—C12A—C13A121.9 (3)C13B—C12B—C11B121.7 (3)
C11A—C12A—Br1A119.7 (3)C13B—C12B—Br1B118.6 (3)
C13A—C12A—Br1A118.4 (3)C11B—C12B—Br1B119.8 (3)
C8A—C13A—C12A118.9 (3)C12B—C13B—C8B119.3 (3)
C8A—C13A—H13A120.6C12B—C13B—H13B120.4
C12A—C13A—H13A120.6C8B—C13B—H13B120.4
C17A—C14A—C3A112.8 (3)C17B—C14B—C16B107.3 (3)
C17A—C14A—C16A107.2 (3)C17B—C14B—C3B112.4 (3)
C3A—C14A—C16A110.1 (3)C16B—C14B—C3B110.3 (3)
C17A—C14A—C15A107.4 (3)C17B—C14B—C15B107.6 (3)
C3A—C14A—C15A109.7 (3)C16B—C14B—C15B109.4 (3)
C16A—C14A—C15A109.6 (3)C3B—C14B—C15B109.7 (3)
C14A—C15A—H15A109.5C14B—C15B—H15D109.5
C14A—C15A—H15B109.5C14B—C15B—H15E109.5
H15A—C15A—H15B109.5H15D—C15B—H15E109.5
C14A—C15A—H15C109.5C14B—C15B—H15F109.5
H15A—C15A—H15C109.5H15D—C15B—H15F109.5
H15B—C15A—H15C109.5H15E—C15B—H15F109.5
C14A—C16A—H16A109.5C14B—C16B—H16D109.5
C14A—C16A—H16B109.5C14B—C16B—H16E109.5
H16A—C16A—H16B109.5H16D—C16B—H16E109.5
C14A—C16A—H16C109.5C14B—C16B—H16F109.5
H16A—C16A—H16C109.5H16D—C16B—H16F109.5
H16B—C16A—H16C109.5H16E—C16B—H16F109.5
C14A—C17A—H17A109.5C14B—C17B—H17D109.5
C14A—C17A—H17B109.5C14B—C17B—H17E109.5
H17A—C17A—H17B109.5H17D—C17B—H17E109.5
C14A—C17A—H17C109.5C14B—C17B—H17F109.5
H17A—C17A—H17C109.5H17D—C17B—H17F109.5
H17B—C17A—H17C109.5H17E—C17B—H17F109.5
C19A—C18A—C20A109.1 (4)C20B—C18B—C21B109.2 (4)
C19A—C18A—C5A113.4 (3)C20B—C18B—C19B108.2 (3)
C20A—C18A—C5A110.4 (3)C21B—C18B—C19B107.8 (3)
C19A—C18A—C21A106.8 (3)C20B—C18B—C5B110.4 (3)
C20A—C18A—C21A108.2 (4)C21B—C18B—C5B108.8 (3)
C5A—C18A—C21A108.8 (3)C19B—C18B—C5B112.4 (3)
C18A—C19A—H19A109.5C18B—C19B—H19D109.5
C18A—C19A—H19B109.5C18B—C19B—H19E109.5
H19A—C19A—H19B109.5H19D—C19B—H19E109.5
C18A—C19A—H19C109.5C18B—C19B—H19F109.5
H19A—C19A—H19C109.5H19D—C19B—H19F109.5
H19B—C19A—H19C109.5H19E—C19B—H19F109.5
C18A—C20A—H20A109.5C18B—C20B—H20D109.5
C18A—C20A—H20B109.5C18B—C20B—H20E109.5
H20A—C20A—H20B109.5H20D—C20B—H20E109.5
C18A—C20A—H20C109.5C18B—C20B—H20F109.5
H20A—C20A—H20C109.5H20D—C20B—H20F109.5
H20B—C20A—H20C109.5H20E—C20B—H20F109.5
C18A—C21A—H21A109.5C18B—C21B—H21D109.5
C18A—C21A—H21B109.5C18B—C21B—H21E109.5
H21A—C21A—H21B109.5H21D—C21B—H21E109.5
C18A—C21A—H21C109.5C18B—C21B—H21F109.5
H21A—C21A—H21C109.5H21D—C21B—H21F109.5
H21B—C21A—H21C109.5H21E—C21B—H21F109.5
C6A—C1A—C2A—O1A178.0 (3)C6B—C1B—C2B—O1B177.6 (3)
C7A—C1A—C2A—O1A1.5 (4)C7B—C1B—C2B—O1B1.2 (4)
C6A—C1A—C2A—C3A1.5 (5)C6B—C1B—C2B—C3B2.1 (4)
C7A—C1A—C2A—C3A179.0 (3)C7B—C1B—C2B—C3B179.1 (3)
O1A—C2A—C3A—C4A177.3 (3)O1B—C2B—C3B—C4B176.7 (3)
C1A—C2A—C3A—C4A2.2 (4)C1B—C2B—C3B—C4B3.0 (4)
O1A—C2A—C3A—C14A1.9 (4)O1B—C2B—C3B—C14B2.4 (4)
C1A—C2A—C3A—C14A178.6 (3)C1B—C2B—C3B—C14B177.9 (3)
C2A—C3A—C4A—C5A1.0 (5)C2B—C3B—C4B—C5B1.6 (4)
C14A—C3A—C4A—C5A179.8 (3)C14B—C3B—C4B—C5B179.3 (3)
C3A—C4A—C5A—C6A0.9 (5)C3B—C4B—C5B—C6B0.9 (4)
C3A—C4A—C5A—C18A177.0 (3)C3B—C4B—C5B—C18B178.6 (3)
C4A—C5A—C6A—C1A1.8 (5)C4B—C5B—C6B—C1B2.0 (4)
C18A—C5A—C6A—C1A176.3 (3)C18B—C5B—C6B—C1B177.6 (3)
C2A—C1A—C6A—C5A0.6 (5)C2B—C1B—C6B—C5B0.6 (4)
C7A—C1A—C6A—C5A178.9 (3)C7B—C1B—C6B—C5B178.3 (3)
C8A—N1A—C7A—C1A177.9 (3)C8B—N1B—C7B—C1B177.4 (3)
C6A—C1A—C7A—N1A179.8 (3)C6B—C1B—C7B—N1B179.3 (3)
C2A—C1A—C7A—N1A0.3 (5)C2B—C1B—C7B—N1B0.4 (5)
C7A—N1A—C8A—C13A136.9 (3)C7B—N1B—C8B—C13B136.8 (3)
C7A—N1A—C8A—C9A45.4 (4)C7B—N1B—C8B—C9B46.1 (4)
C13A—C8A—C9A—C10A0.4 (5)C13B—C8B—C9B—C10B1.8 (5)
N1A—C8A—C9A—C10A178.0 (3)N1B—C8B—C9B—C10B178.9 (3)
C8A—C9A—C10A—C11A0.5 (6)C8B—C9B—C10B—C11B0.7 (5)
C9A—C10A—C11A—C12A0.5 (5)C9B—C10B—C11B—C12B0.3 (5)
C10A—C11A—C12A—C13A0.2 (5)C10B—C11B—C12B—C13B0.1 (5)
C10A—C11A—C12A—Br1A178.9 (3)C10B—C11B—C12B—Br1B179.8 (3)
C9A—C8A—C13A—C12A1.1 (5)C11B—C12B—C13B—C8B0.9 (5)
N1A—C8A—C13A—C12A178.8 (3)Br1B—C12B—C13B—C8B178.8 (2)
C11A—C12A—C13A—C8A1.0 (5)C9B—C8B—C13B—C12B1.9 (5)
Br1A—C12A—C13A—C8A178.1 (2)N1B—C8B—C13B—C12B179.1 (3)
C4A—C3A—C14A—C17A2.8 (4)C4B—C3B—C14B—C17B4.0 (4)
C2A—C3A—C14A—C17A178.0 (3)C2B—C3B—C14B—C17B176.9 (3)
C4A—C3A—C14A—C16A122.4 (3)C4B—C3B—C14B—C16B123.7 (3)
C2A—C3A—C14A—C16A58.4 (4)C2B—C3B—C14B—C16B57.2 (4)
C4A—C3A—C14A—C15A116.8 (3)C4B—C3B—C14B—C15B115.7 (3)
C2A—C3A—C14A—C15A62.3 (4)C2B—C3B—C14B—C15B63.3 (4)
C6A—C5A—C18A—C19A179.8 (3)C6B—C5B—C18B—C20B57.3 (4)
C4A—C5A—C18A—C19A2.3 (5)C4B—C5B—C18B—C20B123.2 (4)
C6A—C5A—C18A—C20A57.1 (5)C6B—C5B—C18B—C21B62.6 (4)
C4A—C5A—C18A—C20A125.1 (4)C4B—C5B—C18B—C21B117.0 (4)
C6A—C5A—C18A—C21A61.6 (4)C6B—C5B—C18B—C19B178.2 (3)
C4A—C5A—C18A—C21A116.3 (4)C4B—C5B—C18B—C19B2.3 (4)
(4) top
Crystal data top
C21H26ClNOV = 1979.8 (4) Å3
Mr = 343.88Z = 4
Triclinic, P1F(000) = 736
a = 10.7392 (12) ÅDx = 1.154 Mg m3
b = 11.5369 (15) ÅMo Kα radiation, λ = 0.71075 Å
c = 16.1292 (19) ŵ = 0.20 mm1
α = 88.032 (3)°T = 296 K
β = 82.446 (3)°Platelet, yellow
γ = 89.642 (3)°0.15 × 0.07 × 0.03 mm
Data collection top
Rigaku R-AXIS RAPID IP Area Detector System
diffractometer
7172 independent reflections
Radiation source: rotating anode X-ray tube2946 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
ω scansθmax = 25.3°, θmin = 3.0°
Absorption correction: multi-scan
Absorption was corrected by ABSCOR
h = 1212
Tmin = 0.729, Tmax = 0.994k = 1313
16014 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.3548P]
where P = (Fo2 + 2Fc2)/3
7172 reflections(Δ/σ)max = 0.020
461 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C21H26ClNOγ = 89.642 (3)°
Mr = 343.88V = 1979.8 (4) Å3
Triclinic, P1Z = 4
a = 10.7392 (12) ÅMo Kα radiation
b = 11.5369 (15) ŵ = 0.20 mm1
c = 16.1292 (19) ÅT = 296 K
α = 88.032 (3)°0.15 × 0.07 × 0.03 mm
β = 82.446 (3)°
Data collection top
Rigaku R-AXIS RAPID IP Area Detector System
diffractometer
7172 independent reflections
Absorption correction: multi-scan
Absorption was corrected by ABSCOR
2946 reflections with I > 2σ(I)
Tmin = 0.729, Tmax = 0.994Rint = 0.079
16014 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.02Δρmax = 0.20 e Å3
7172 reflectionsΔρmin = 0.19 e Å3
461 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl1A0.29775 (10)0.53750 (10)0.56057 (8)0.0816 (4)
O1A0.2913 (2)0.0621 (2)0.31207 (17)0.0664 (8)
H1A0.30650.10020.35150.100*
N1A0.4238 (3)0.1645 (3)0.4116 (2)0.0564 (8)
C1A0.5150 (3)0.0423 (3)0.3023 (2)0.0496 (10)
C2A0.4000 (3)0.0182 (3)0.2725 (2)0.0499 (10)
C3A0.3979 (3)0.0505 (3)0.2032 (2)0.0507 (10)
C4A0.5120 (3)0.0984 (3)0.1685 (2)0.0545 (10)
H4A0.51150.14520.12270.065*
C5A0.6265 (3)0.0806 (3)0.1979 (2)0.0498 (9)
C6A0.6254 (3)0.0082 (3)0.2640 (2)0.0521 (10)
H6A0.70070.00760.28390.062*
C7A0.5210 (4)0.1162 (3)0.3725 (2)0.0549 (10)
H7A0.59880.12910.39000.066*
C8A0.4364 (3)0.2341 (3)0.4816 (2)0.0525 (10)
C9A0.5054 (4)0.1977 (4)0.5445 (3)0.0649 (11)
H9A0.54680.12660.54180.078*
C10A0.5119 (4)0.2679 (4)0.6111 (3)0.0714 (12)
H10A0.55950.24410.65280.086*
C11A0.4496 (4)0.3727 (4)0.6174 (3)0.0674 (12)
H11A0.45510.41980.66240.081*
C12A0.3791 (3)0.4056 (3)0.5554 (3)0.0567 (10)
C13A0.3705 (3)0.3381 (4)0.4871 (2)0.0559 (10)
H13A0.32190.36180.44590.067*
C14A0.2739 (3)0.0737 (3)0.1672 (3)0.0608 (11)
C15A0.2109 (4)0.0415 (4)0.1452 (3)0.0768 (13)
H15A0.13420.02570.12310.115*
H15B0.26650.08470.10410.115*
H15C0.19280.08580.19460.115*
C16A0.1854 (4)0.1447 (4)0.2314 (3)0.0889 (16)
H16A0.11140.16440.20740.133*
H16B0.16210.09990.28010.133*
H16C0.22710.21440.24690.133*
C17A0.2962 (4)0.1415 (4)0.0867 (3)0.0935 (16)
H17A0.33020.21650.09850.140*
H17B0.35430.09990.04620.140*
H17C0.21800.15060.06480.140*
C18A0.7484 (3)0.1387 (3)0.1601 (3)0.0584 (11)
C19A0.7282 (4)0.2186 (5)0.0897 (4)0.1087 (19)
H19A0.67640.28270.11210.163*
H19B0.80790.24710.06430.163*
H19C0.68770.17630.04850.163*
C20A0.8429 (4)0.0474 (4)0.1233 (4)0.1066 (18)
H20A0.80730.00020.08220.160*
H20B0.91760.08460.09750.160*
H20C0.86370.00050.16710.160*
C21A0.8034 (4)0.2112 (5)0.2270 (3)0.1036 (18)
H21A0.82280.16190.27030.155*
H21B0.87880.24870.20240.155*
H21C0.74350.26870.25040.155*
Cl1B0.17617 (11)1.02923 (10)0.55715 (8)0.0819 (4)
O1B0.2852 (2)0.5591 (2)0.30932 (16)0.0643 (8)
H1B0.25240.59680.34860.096*
N1B0.1099 (3)0.6583 (3)0.4069 (2)0.0575 (9)
C1B0.0668 (3)0.5382 (3)0.2959 (2)0.0496 (10)
C2B0.1945 (3)0.5159 (3)0.2677 (2)0.0485 (9)
C3B0.2286 (3)0.4482 (3)0.1980 (2)0.0475 (9)
C4B0.1320 (3)0.4013 (3)0.1605 (2)0.0538 (10)
H4B0.15360.35540.11450.065*
C5B0.0034 (3)0.4186 (3)0.1876 (2)0.0531 (10)
C6B0.0255 (3)0.4884 (3)0.2556 (2)0.0551 (10)
H6B0.10940.50250.27510.066*
C7B0.0301 (3)0.6097 (3)0.3670 (2)0.0553 (10)
H7B0.05500.62080.38450.066*
C8B0.0695 (3)0.7271 (3)0.4771 (2)0.0529 (10)
C9B0.0246 (4)0.6919 (4)0.5397 (3)0.0648 (11)
H9B0.06630.62210.53630.078*
C10B0.0562 (4)0.7617 (4)0.6074 (3)0.0752 (13)
H10B0.11910.73790.64970.090*
C11B0.0036 (4)0.8655 (4)0.6134 (3)0.0716 (13)
H11B0.01970.91280.65840.086*
C12B0.0982 (4)0.8979 (4)0.5517 (3)0.0601 (11)
C13B0.1326 (3)0.8305 (4)0.4836 (2)0.0559 (10)
H13B0.19720.85400.44240.067*
C14B0.3678 (3)0.4258 (3)0.1661 (2)0.0518 (10)
C15B0.4303 (4)0.3572 (4)0.2321 (3)0.0734 (13)
H15D0.38870.28390.24390.110*
H15E0.42430.40020.28240.110*
H15F0.51710.34440.21160.110*
C16B0.3837 (4)0.3553 (4)0.0860 (3)0.0753 (13)
H16D0.47150.34710.06620.113*
H16E0.34260.39490.04380.113*
H16F0.34700.28000.09810.113*
C17B0.4373 (3)0.5413 (4)0.1430 (3)0.0729 (13)
H17D0.52420.52590.12420.109*
H17E0.43070.58850.19120.109*
H17F0.40020.58140.09910.109*
C18B0.0997 (3)0.3615 (4)0.1459 (3)0.0631 (11)
C19B0.0489 (5)0.2854 (5)0.0734 (4)0.092 (2)0.898 (7)
H19D0.00760.22860.09240.138*0.898 (7)
H19E0.00480.33290.02910.138*0.898 (7)
H19F0.11740.24700.05310.138*0.898 (7)
C20B0.1862 (5)0.4525 (5)0.1148 (5)0.099 (2)0.898 (7)
H20D0.25110.41530.08970.148*0.898 (7)
H20E0.13890.50310.07390.148*0.898 (7)
H20F0.22360.49690.16090.148*0.898 (7)
C21B0.1780 (5)0.2816 (5)0.2119 (4)0.098 (2)0.898 (7)
H21D0.24020.24180.18600.147*0.898 (7)
H21E0.21880.32750.25610.147*0.898 (7)
H21F0.12370.22590.23460.147*0.898 (7)
C19C0.075 (4)0.419 (5)0.045 (3)0.081 (16)*0.102 (7)
H19G0.00150.38910.01690.122*0.102 (7)
H19H0.07030.50200.04680.122*0.102 (7)
H19I0.14400.39830.01630.122*0.102 (7)
C20C0.228 (5)0.405 (6)0.183 (4)0.098 (19)*0.102 (7)
H20G0.29160.37230.15380.147*0.102 (7)
H20H0.23090.48820.17680.147*0.102 (7)
H20I0.24400.38240.24100.147*0.102 (7)
C21C0.071 (4)0.240 (4)0.147 (3)0.068 (14)*0.102 (7)
H21G0.01250.22840.11820.102*0.102 (7)
H21H0.13010.19970.11850.102*0.102 (7)
H21I0.07540.21090.20330.102*0.102 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0818 (7)0.0631 (8)0.0956 (9)0.0106 (6)0.0080 (6)0.0215 (7)
O1A0.0544 (15)0.071 (2)0.076 (2)0.0102 (14)0.0108 (14)0.0249 (16)
N1A0.062 (2)0.047 (2)0.061 (2)0.0062 (16)0.0092 (17)0.0119 (18)
C1A0.056 (2)0.036 (2)0.058 (3)0.0047 (18)0.0131 (19)0.007 (2)
C2A0.048 (2)0.040 (2)0.063 (3)0.0102 (17)0.0097 (19)0.006 (2)
C3A0.054 (2)0.036 (2)0.063 (3)0.0037 (17)0.0158 (19)0.005 (2)
C4A0.064 (2)0.044 (3)0.058 (3)0.0047 (19)0.016 (2)0.012 (2)
C5A0.055 (2)0.041 (2)0.054 (3)0.0030 (17)0.0076 (19)0.008 (2)
C6A0.054 (2)0.042 (2)0.062 (3)0.0027 (18)0.0143 (19)0.006 (2)
C7A0.059 (2)0.047 (3)0.062 (3)0.007 (2)0.019 (2)0.008 (2)
C8A0.054 (2)0.048 (3)0.056 (3)0.0027 (19)0.0051 (19)0.010 (2)
C9A0.077 (3)0.051 (3)0.069 (3)0.001 (2)0.017 (2)0.001 (2)
C10A0.087 (3)0.065 (3)0.066 (3)0.002 (3)0.025 (2)0.005 (3)
C11A0.078 (3)0.067 (3)0.058 (3)0.010 (2)0.008 (2)0.016 (2)
C12A0.053 (2)0.052 (3)0.062 (3)0.0046 (19)0.006 (2)0.015 (2)
C13A0.051 (2)0.061 (3)0.056 (3)0.004 (2)0.0066 (18)0.013 (2)
C14A0.066 (3)0.048 (3)0.073 (3)0.002 (2)0.028 (2)0.003 (2)
C15A0.085 (3)0.061 (3)0.091 (3)0.012 (2)0.037 (3)0.001 (3)
C16A0.084 (3)0.071 (4)0.117 (4)0.019 (3)0.035 (3)0.019 (3)
C17A0.099 (3)0.085 (4)0.110 (4)0.018 (3)0.057 (3)0.041 (3)
C18A0.057 (2)0.052 (3)0.066 (3)0.000 (2)0.001 (2)0.018 (2)
C19A0.080 (3)0.111 (5)0.136 (5)0.007 (3)0.003 (3)0.067 (4)
C20A0.078 (3)0.083 (4)0.148 (5)0.009 (3)0.028 (3)0.017 (4)
C21A0.101 (4)0.107 (5)0.101 (4)0.055 (3)0.008 (3)0.005 (4)
Cl1B0.0960 (8)0.0657 (8)0.0911 (9)0.0071 (6)0.0341 (7)0.0227 (7)
O1B0.0527 (15)0.069 (2)0.0725 (19)0.0015 (13)0.0083 (13)0.0259 (16)
N1B0.0585 (19)0.049 (2)0.065 (2)0.0049 (16)0.0031 (17)0.0160 (18)
C1B0.048 (2)0.042 (2)0.058 (3)0.0045 (17)0.0018 (18)0.011 (2)
C2B0.052 (2)0.041 (2)0.054 (2)0.0007 (18)0.0109 (19)0.009 (2)
C3B0.046 (2)0.041 (2)0.056 (3)0.0019 (17)0.0045 (18)0.008 (2)
C4B0.060 (2)0.046 (3)0.056 (3)0.0047 (19)0.007 (2)0.012 (2)
C5B0.050 (2)0.044 (2)0.067 (3)0.0018 (18)0.0089 (19)0.014 (2)
C6B0.047 (2)0.046 (3)0.071 (3)0.0023 (18)0.0029 (19)0.007 (2)
C7B0.053 (2)0.049 (3)0.060 (3)0.0053 (19)0.004 (2)0.005 (2)
C8B0.061 (2)0.046 (3)0.051 (3)0.017 (2)0.006 (2)0.006 (2)
C9B0.078 (3)0.052 (3)0.061 (3)0.008 (2)0.002 (2)0.003 (2)
C10B0.084 (3)0.071 (4)0.066 (3)0.013 (3)0.010 (2)0.006 (3)
C11B0.085 (3)0.071 (4)0.058 (3)0.029 (3)0.007 (3)0.015 (3)
C12B0.071 (3)0.053 (3)0.060 (3)0.019 (2)0.020 (2)0.013 (2)
C13B0.059 (2)0.055 (3)0.055 (3)0.008 (2)0.0083 (19)0.008 (2)
C14B0.047 (2)0.043 (2)0.066 (3)0.0022 (17)0.0043 (18)0.011 (2)
C15B0.062 (2)0.073 (3)0.085 (3)0.018 (2)0.009 (2)0.001 (3)
C16B0.062 (3)0.080 (3)0.082 (3)0.001 (2)0.007 (2)0.031 (3)
C17B0.060 (2)0.064 (3)0.090 (3)0.007 (2)0.009 (2)0.008 (3)
C18B0.056 (2)0.058 (3)0.077 (3)0.006 (2)0.015 (2)0.014 (3)
C19B0.076 (3)0.103 (5)0.104 (5)0.004 (3)0.025 (3)0.055 (4)
C20B0.092 (4)0.082 (4)0.136 (6)0.014 (3)0.063 (4)0.014 (4)
C21B0.090 (4)0.088 (5)0.116 (5)0.041 (3)0.013 (4)0.010 (4)
Geometric parameters (Å, º) top
Cl1A—C12A1.749 (4)C1B—C2B1.412 (5)
O1A—C2A1.358 (4)C1B—C7B1.447 (5)
O1A—H1A0.8200C2B—C3B1.400 (5)
N1A—C7A1.281 (4)C3B—C4B1.389 (5)
N1A—C8A1.428 (4)C3B—C14B1.538 (5)
C1A—C6A1.396 (5)C4B—C5B1.407 (5)
C1A—C2A1.416 (5)C4B—H4B0.9300
C1A—C7A1.449 (5)C5B—C6B1.385 (5)
C2A—C3A1.395 (5)C5B—C18B1.532 (5)
C3A—C4A1.397 (5)C6B—H6B0.9300
C3A—C14A1.548 (5)C7B—H7B0.9300
C4A—C5A1.394 (5)C8B—C9B1.384 (5)
C4A—H4A0.9300C8B—C13B1.390 (5)
C5A—C6A1.376 (5)C9B—C10B1.385 (5)
C5A—C18A1.531 (5)C9B—H9B0.9300
C6A—H6A0.9300C10B—C11B1.375 (6)
C7A—H7A0.9300C10B—H10B0.9300
C8A—C9A1.386 (5)C11B—C12B1.370 (6)
C8A—C13A1.389 (5)C11B—H11B0.9300
C9A—C10A1.376 (5)C12B—C13B1.377 (5)
C9A—H9A0.9300C13B—H13B0.9300
C10A—C11A1.379 (6)C14B—C15B1.528 (5)
C10A—H10A0.9300C14B—C16B1.539 (5)
C11A—C12A1.374 (5)C14B—C17B1.542 (5)
C11A—H11A0.9300C15B—H15D0.9600
C12A—C13A1.384 (5)C15B—H15E0.9600
C13A—H13A0.9300C15B—H15F0.9600
C14A—C16A1.529 (6)C16B—H16D0.9600
C14A—C17A1.531 (6)C16B—H16E0.9600
C14A—C15A1.540 (5)C16B—H16F0.9600
C15A—H15A0.9600C17B—H17D0.9600
C15A—H15B0.9600C17B—H17E0.9600
C15A—H15C0.9600C17B—H17F0.9600
C16A—H16A0.9600C18B—C21C1.43 (4)
C16A—H16B0.9600C18B—C20B1.515 (6)
C16A—H16C0.9600C18B—C20C1.52 (5)
C17A—H17A0.9600C18B—C19B1.528 (6)
C17A—H17B0.9600C18B—C21B1.548 (6)
C17A—H17C0.9600C18B—C19C1.72 (4)
C18A—C20A1.518 (6)C19B—H19D0.9600
C18A—C21A1.521 (6)C19B—H19E0.9600
C18A—C19A1.525 (5)C19B—H19F0.9600
C19A—H19A0.9600C20B—H20D0.9600
C19A—H19B0.9600C20B—H20E0.9600
C19A—H19C0.9600C20B—H20F0.9600
C20A—H20A0.9600C21B—H21D0.9600
C20A—H20B0.9600C21B—H21E0.9600
C20A—H20C0.9600C21B—H21F0.9600
C21A—H21A0.9600C19C—H19G0.9600
C21A—H21B0.9600C19C—H19H0.9600
C21A—H21C0.9600C19C—H19I0.9600
Cl1B—C12B1.746 (4)C20C—H20G0.9600
O1B—C2B1.359 (4)C20C—H20H0.9600
O1B—H1B0.8200C20C—H20I0.9600
N1B—C7B1.280 (4)C21C—H21G0.9600
N1B—C8B1.424 (5)C21C—H21H0.9600
C1B—C6B1.392 (5)C21C—H21I0.9600
C2A—O1A—H1A109.5C3B—C4B—H4B117.8
C7A—N1A—C8A119.7 (3)C5B—C4B—H4B117.8
C6A—C1A—C2A119.1 (3)C6B—C5B—C4B116.3 (3)
C6A—C1A—C7A119.1 (3)C6B—C5B—C18B121.4 (3)
C2A—C1A—C7A121.8 (3)C4B—C5B—C18B122.3 (3)
O1A—C2A—C3A120.1 (3)C5B—C6B—C1B122.2 (3)
O1A—C2A—C1A119.5 (3)C5B—C6B—H6B118.9
C3A—C2A—C1A120.4 (3)C1B—C6B—H6B118.9
C2A—C3A—C4A117.1 (3)N1B—C7B—C1B122.7 (3)
C2A—C3A—C14A121.2 (3)N1B—C7B—H7B118.6
C4A—C3A—C14A121.7 (4)C1B—C7B—H7B118.6
C5A—C4A—C3A124.4 (4)C9B—C8B—C13B119.8 (4)
C5A—C4A—H4A117.8C9B—C8B—N1B122.5 (4)
C3A—C4A—H4A117.8C13B—C8B—N1B117.6 (4)
C6A—C5A—C4A116.7 (3)C8B—C9B—C10B119.3 (4)
C6A—C5A—C18A120.7 (3)C8B—C9B—H9B120.4
C4A—C5A—C18A122.6 (3)C10B—C9B—H9B120.4
C5A—C6A—C1A122.3 (3)C11B—C10B—C9B121.3 (4)
C5A—C6A—H6A118.9C11B—C10B—H10B119.4
C1A—C6A—H6A118.9C9B—C10B—H10B119.4
N1A—C7A—C1A122.9 (3)C12B—C11B—C10B118.6 (4)
N1A—C7A—H7A118.6C12B—C11B—H11B120.7
C1A—C7A—H7A118.6C10B—C11B—H11B120.7
C9A—C8A—C13A120.5 (4)C11B—C12B—C13B121.7 (4)
C9A—C8A—N1A122.1 (4)C11B—C12B—Cl1B119.9 (4)
C13A—C8A—N1A117.3 (3)C13B—C12B—Cl1B118.4 (4)
C10A—C9A—C8A119.3 (4)C12B—C13B—C8B119.2 (4)
C10A—C9A—H9A120.4C12B—C13B—H13B120.4
C8A—C9A—H9A120.4C8B—C13B—H13B120.4
C9A—C10A—C11A121.6 (4)C15B—C14B—C3B110.4 (3)
C9A—C10A—H10A119.2C15B—C14B—C16B107.5 (3)
C11A—C10A—H10A119.2C3B—C14B—C16B111.9 (3)
C12A—C11A—C10A118.1 (4)C15B—C14B—C17B110.3 (3)
C12A—C11A—H11A120.9C3B—C14B—C17B110.5 (3)
C10A—C11A—H11A120.9C16B—C14B—C17B106.2 (3)
C11A—C12A—C13A122.3 (4)C14B—C15B—H15D109.5
C11A—C12A—Cl1A120.0 (3)C14B—C15B—H15E109.5
C13A—C12A—Cl1A117.7 (3)H15D—C15B—H15E109.5
C12A—C13A—C8A118.3 (4)C14B—C15B—H15F109.5
C12A—C13A—H13A120.9H15D—C15B—H15F109.5
C8A—C13A—H13A120.9H15E—C15B—H15F109.5
C16A—C14A—C17A108.0 (4)C14B—C16B—H16D109.5
C16A—C14A—C15A110.1 (4)C14B—C16B—H16E109.5
C17A—C14A—C15A106.7 (3)H16D—C16B—H16E109.5
C16A—C14A—C3A109.5 (3)C14B—C16B—H16F109.5
C17A—C14A—C3A112.0 (3)H16D—C16B—H16F109.5
C15A—C14A—C3A110.4 (3)H16E—C16B—H16F109.5
C14A—C15A—H15A109.5C14B—C17B—H17D109.5
C14A—C15A—H15B109.5C14B—C17B—H17E109.5
H15A—C15A—H15B109.5H17D—C17B—H17E109.5
C14A—C15A—H15C109.5C14B—C17B—H17F109.5
H15A—C15A—H15C109.5H17D—C17B—H17F109.5
H15B—C15A—H15C109.5H17E—C17B—H17F109.5
C14A—C16A—H16A109.5C21C—C18B—C20B143.8 (17)
C14A—C16A—H16B109.5C21C—C18B—C20C121 (3)
H16A—C16A—H16B109.5C20B—C18B—C20C48 (2)
C14A—C16A—H16C109.5C21C—C18B—C19B51 (2)
H16A—C16A—H16C109.5C20B—C18B—C19B109.0 (4)
H16B—C16A—H16C109.5C20C—C18B—C19B136 (2)
C14A—C17A—H17A109.5C21C—C18B—C5B105.5 (17)
C14A—C17A—H17B109.5C20B—C18B—C5B110.5 (4)
H17A—C17A—H17B109.5C20C—C18B—C5B110 (2)
C14A—C17A—H17C109.5C19B—C18B—C5B113.5 (3)
H17A—C17A—H17C109.5C21C—C18B—C21B62 (2)
H17B—C17A—H17C109.5C20B—C18B—C21B108.4 (4)
C20A—C18A—C21A109.5 (4)C20C—C18B—C21B63 (3)
C20A—C18A—C19A107.2 (4)C19B—C18B—C21B106.8 (4)
C21A—C18A—C19A107.7 (4)C5B—C18B—C21B108.5 (4)
C20A—C18A—C5A110.1 (3)C21C—C18B—C19C110 (3)
C21A—C18A—C5A110.0 (3)C20B—C18B—C19C58.0 (16)
C19A—C18A—C5A112.3 (3)C20C—C18B—C19C105 (3)
C18A—C19A—H19A109.5C19B—C18B—C19C59.8 (18)
C18A—C19A—H19B109.5C5B—C18B—C19C103.0 (15)
H19A—C19A—H19B109.5C21B—C18B—C19C148.6 (15)
C18A—C19A—H19C109.5C18B—C19B—H19D109.5
H19A—C19A—H19C109.5C18B—C19B—H19E109.5
H19B—C19A—H19C109.5C18B—C19B—H19F109.5
C18A—C20A—H20A109.5C18B—C20B—H20D109.5
C18A—C20A—H20B109.5C18B—C20B—H20E109.5
H20A—C20A—H20B109.5C18B—C20B—H20F109.5
C18A—C20A—H20C109.5C18B—C21B—H21D109.5
H20A—C20A—H20C109.5C18B—C21B—H21E109.5
H20B—C20A—H20C109.5C18B—C21B—H21F109.5
C18A—C21A—H21A109.5C18B—C19C—H19G109.5
C18A—C21A—H21B109.5C18B—C19C—H19H109.5
H21A—C21A—H21B109.5H19G—C19C—H19H109.5
C18A—C21A—H21C109.5C18B—C19C—H19I109.5
H21A—C21A—H21C109.5H19G—C19C—H19I109.5
H21B—C21A—H21C109.5H19H—C19C—H19I109.5
C2B—O1B—H1B109.5C18B—C20C—H20G109.5
C7B—N1B—C8B120.8 (3)C18B—C20C—H20H109.5
C6B—C1B—C2B119.3 (3)H20G—C20C—H20H109.5
C6B—C1B—C7B119.4 (3)C18B—C20C—H20I109.5
C2B—C1B—C7B121.3 (3)H20G—C20C—H20I109.5
O1B—C2B—C3B119.6 (3)H20H—C20C—H20I109.5
O1B—C2B—C1B119.8 (3)C18B—C21C—H21G109.5
C3B—C2B—C1B120.6 (3)C18B—C21C—H21H109.5
C4B—C3B—C2B117.2 (3)H21G—C21C—H21H109.5
C4B—C3B—C14B122.2 (3)C18B—C21C—H21I109.5
C2B—C3B—C14B120.6 (3)H21G—C21C—H21I109.5
C3B—C4B—C5B124.3 (4)H21H—C21C—H21I109.5
C6A—C1A—C2A—O1A176.7 (3)C7B—C1B—C2B—C3B178.9 (4)
C7A—C1A—C2A—O1A2.1 (5)O1B—C2B—C3B—C4B176.7 (3)
C6A—C1A—C2A—C3A3.2 (5)C1B—C2B—C3B—C4B2.4 (5)
C7A—C1A—C2A—C3A178.0 (4)O1B—C2B—C3B—C14B2.2 (5)
O1A—C2A—C3A—C4A176.4 (3)C1B—C2B—C3B—C14B178.7 (3)
C1A—C2A—C3A—C4A3.4 (5)C2B—C3B—C4B—C5B0.8 (6)
O1A—C2A—C3A—C14A2.8 (5)C14B—C3B—C4B—C5B179.6 (3)
C1A—C2A—C3A—C14A177.4 (3)C3B—C4B—C5B—C6B0.7 (6)
C2A—C3A—C4A—C5A0.9 (6)C3B—C4B—C5B—C18B177.8 (4)
C14A—C3A—C4A—C5A179.9 (3)C4B—C5B—C6B—C1B0.5 (6)
C3A—C4A—C5A—C6A1.9 (6)C18B—C5B—C6B—C1B178.0 (4)
C3A—C4A—C5A—C18A177.5 (4)C2B—C1B—C6B—C5B1.0 (6)
C4A—C5A—C6A—C1A2.2 (6)C7B—C1B—C6B—C5B179.6 (4)
C18A—C5A—C6A—C1A177.2 (3)C8B—N1B—C7B—C1B179.5 (3)
C2A—C1A—C6A—C5A0.2 (6)C6B—C1B—C7B—N1B179.9 (4)
C7A—C1A—C6A—C5A179.1 (4)C2B—C1B—C7B—N1B1.6 (6)
C8A—N1A—C7A—C1A178.6 (3)C7B—N1B—C8B—C9B45.5 (5)
C6A—C1A—C7A—N1A179.1 (4)C7B—N1B—C8B—C13B137.7 (4)
C2A—C1A—C7A—N1A0.3 (6)C13B—C8B—C9B—C10B1.2 (6)
C7A—N1A—C8A—C9A46.6 (5)N1B—C8B—C9B—C10B177.9 (3)
C7A—N1A—C8A—C13A137.0 (4)C8B—C9B—C10B—C11B0.4 (6)
C13A—C8A—C9A—C10A2.5 (6)C9B—C10B—C11B—C12B1.7 (7)
N1A—C8A—C9A—C10A178.7 (4)C10B—C11B—C12B—C13B1.4 (6)
C8A—C9A—C10A—C11A1.2 (7)C10B—C11B—C12B—Cl1B180.0 (3)
C9A—C10A—C11A—C12A0.5 (6)C11B—C12B—C13B—C8B0.2 (6)
C10A—C11A—C12A—C13A0.9 (6)Cl1B—C12B—C13B—C8B178.4 (3)
C10A—C11A—C12A—Cl1A179.8 (3)C9B—C8B—C13B—C12B1.4 (5)
C11A—C12A—C13A—C8A0.3 (6)N1B—C8B—C13B—C12B178.4 (3)
Cl1A—C12A—C13A—C8A178.9 (3)C4B—C3B—C14B—C15B115.2 (4)
C9A—C8A—C13A—C12A2.1 (6)C2B—C3B—C14B—C15B63.6 (4)
N1A—C8A—C13A—C12A178.5 (3)C4B—C3B—C14B—C16B4.4 (5)
C2A—C3A—C14A—C16A65.5 (5)C2B—C3B—C14B—C16B176.7 (4)
C4A—C3A—C14A—C16A113.6 (4)C4B—C3B—C14B—C17B122.5 (4)
C2A—C3A—C14A—C17A174.7 (4)C2B—C3B—C14B—C17B58.7 (5)
C4A—C3A—C14A—C17A6.2 (5)C6B—C5B—C18B—C21C125 (2)
C2A—C3A—C14A—C15A55.9 (5)C4B—C5B—C18B—C21C53 (2)
C4A—C3A—C14A—C15A125.0 (4)C6B—C5B—C18B—C20B58.7 (6)
C6A—C5A—C18A—C20A62.8 (5)C4B—C5B—C18B—C20B122.8 (5)
C4A—C5A—C18A—C20A117.9 (4)C6B—C5B—C18B—C20C7 (3)
C6A—C5A—C18A—C21A57.9 (5)C4B—C5B—C18B—C20C175 (3)
C4A—C5A—C18A—C21A121.4 (4)C6B—C5B—C18B—C19B178.5 (5)
C6A—C5A—C18A—C19A177.9 (4)C4B—C5B—C18B—C19B0.1 (6)
C4A—C5A—C18A—C19A1.5 (6)C6B—C5B—C18B—C21B60.0 (5)
C6B—C1B—C2B—O1B176.5 (3)C4B—C5B—C18B—C21B118.4 (5)
C7B—C1B—C2B—O1B2.0 (5)C6B—C5B—C18B—C19C119.1 (18)
C6B—C1B—C2B—C3B2.5 (6)C4B—C5B—C18B—C19C62.5 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···N1A0.821.862.599 (4)149
O1B—H1B···N1B0.821.842.578 (4)149
(5) top
Crystal data top
C21.05H26.14BrNOF(000) = 808
Mr = 388.34Dx = 1.299 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 18.0699 (14) ÅCell parameters from 9961 reflections
b = 10.5997 (10) Åθ = 3.0–27.4°
c = 10.3838 (9) ŵ = 2.08 mm1
β = 92.858 (2)°T = 296 K
V = 1986.4 (3) Å3Platelet, yellow
Z = 40.20 × 0.14 × 0.06 mm
Data collection top
Rigaku R-AXIS RAPID IP Area Detector System
diffractometer
4500 independent reflections
Radiation source: rotating anode X-ray tube1915 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.109
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
Absorption was corrected by ABSCOR
h = 2323
Tmin = 0.559, Tmax = 0.884k = 1313
18792 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.7378P]
where P = (Fo2 + 2Fc2)/3
4500 reflections(Δ/σ)max = 0.001
241 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = 0.39 e Å3
Crystal data top
C21.05H26.14BrNOV = 1986.4 (3) Å3
Mr = 388.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.0699 (14) ŵ = 2.08 mm1
b = 10.5997 (10) ÅT = 296 K
c = 10.3838 (9) Å0.20 × 0.14 × 0.06 mm
β = 92.858 (2)°
Data collection top
Rigaku R-AXIS RAPID IP Area Detector System
diffractometer
4500 independent reflections
Absorption correction: multi-scan
Absorption was corrected by ABSCOR
1915 reflections with I > 2σ(I)
Tmin = 0.559, Tmax = 0.884Rint = 0.109
18792 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0591 restraint
wR(F2) = 0.147H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
4500 reflectionsΔρmin = 0.39 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.63428 (3)0.94478 (5)0.78959 (5)0.0846 (3)
O10.31975 (16)0.5115 (3)0.3426 (3)0.0675 (8)
H10.34930.54990.39060.101*
N10.38417 (19)0.7042 (3)0.4600 (3)0.0621 (10)
C10.2712 (2)0.7202 (4)0.3264 (4)0.0539 (11)
C20.2675 (2)0.5929 (4)0.2929 (4)0.0526 (11)
C30.2104 (2)0.5486 (4)0.2085 (4)0.0493 (10)
C40.1588 (2)0.6372 (4)0.1616 (4)0.0527 (11)
H40.12090.60910.10490.063*
C50.1598 (2)0.7651 (4)0.1937 (4)0.0535 (11)
C60.2176 (2)0.8048 (4)0.2772 (4)0.0586 (11)
H60.22070.88940.30080.070*
C70.3313 (2)0.7713 (5)0.4106 (4)0.0637 (12)
H70.33100.85710.42920.076*
C80.4413 (2)0.7628 (5)0.5396 (4)0.0601 (12)
C90.4299 (3)0.8713 (5)0.6096 (5)0.0860 (16)
H90.38330.90850.60760.103*
C100.4878 (3)0.9242 (5)0.6824 (5)0.0882 (17)
H100.47980.99790.72830.106*
C110.5559 (2)0.8711 (5)0.6884 (4)0.0605 (12)
C120.5674 (2)0.7614 (5)0.6213 (5)0.0754 (14)
H120.61390.72340.62580.090*
C130.5101 (2)0.7076 (5)0.5471 (5)0.0738 (14)
H130.51820.63340.50200.089*
C140.2046 (2)0.4088 (4)0.1694 (4)0.0570 (11)
C150.1986 (3)0.3261 (4)0.2895 (4)0.0738 (14)
H15A0.24050.34120.34800.111*
H15B0.19770.23880.26470.111*
H15C0.15380.34640.33110.111*
C160.2737 (3)0.3707 (5)0.0962 (4)0.0768 (14)
H16A0.27620.42110.01980.115*
H16B0.27020.28320.07280.115*
H16C0.31750.38400.15070.115*
C170.1361 (3)0.3813 (5)0.0797 (4)0.0796 (15)
H17A0.09220.40730.12090.119*
H17B0.13350.29260.06180.119*
H17C0.13990.42700.00050.119*
C180.1004 (2)0.8578 (4)0.1401 (4)0.0586 (11)
C19A0.1124 (9)0.8889 (17)0.0083 (13)0.070 (5)*0.366 (13)
H19A0.11050.81340.04280.105*0.366 (13)
H19B0.16000.92800.00280.105*0.366 (13)
H19C0.07450.94620.02340.105*0.366 (13)
C20A0.0191 (8)0.7867 (13)0.1417 (19)0.074 (5)*0.366 (13)
H20A0.01150.75550.22680.110*0.366 (13)
H20B0.01780.71770.08180.110*0.366 (13)
H20C0.01940.84580.11730.110*0.366 (13)
C21A0.0922 (11)0.9728 (17)0.2220 (18)0.081 (6)*0.366 (13)
H21A0.04831.01770.19370.122*0.366 (13)
H21B0.13461.02640.21450.122*0.366 (13)
H21C0.08860.94810.31040.122*0.366 (13)
C19B0.1388 (9)0.952 (2)0.0459 (19)0.068 (6)*0.325 (16)
H19D0.15410.90620.02820.101*0.325 (16)
H19E0.18130.98930.08980.101*0.325 (16)
H19F0.10441.01650.01880.101*0.325 (16)
C20B0.0351 (10)0.7909 (15)0.063 (2)0.070 (6)*0.325 (16)
H20D0.00150.85240.03600.106*0.325 (16)
H20E0.01310.72930.11700.106*0.325 (16)
H20F0.05360.75000.01140.106*0.325 (16)
C21B0.0692 (9)0.9361 (18)0.2506 (13)0.044 (4)*0.325 (16)
H21D0.10830.98560.29120.066*0.325 (16)
H21E0.04920.88040.31280.066*0.325 (16)
H21F0.03090.99100.21620.066*0.325 (16)
C19C0.1409 (11)0.9921 (19)0.119 (2)0.092 (7)*0.325 (12)
H19G0.17930.98180.05900.139*0.325 (12)
H19H0.16231.02180.19990.139*0.325 (12)
H19I0.10531.05230.08540.139*0.325 (12)
C20C0.0441 (11)0.875 (2)0.2302 (18)0.088 (7)*0.325 (12)
H20G0.00760.93300.19540.132*0.325 (12)
H20H0.06580.90780.30950.132*0.325 (12)
H20I0.02100.79520.24630.132*0.325 (12)
C21C0.0730 (10)0.8211 (16)0.0048 (15)0.064 (5)*0.325 (12)
H21G0.03790.88270.02790.096*0.325 (12)
H21H0.04960.73990.00690.096*0.325 (12)
H21I0.11410.81760.05010.096*0.325 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0727 (4)0.0862 (4)0.0924 (4)0.0136 (3)0.0205 (3)0.0036 (3)
O10.0636 (19)0.0562 (19)0.080 (2)0.0091 (15)0.0204 (16)0.0033 (16)
N10.056 (2)0.063 (3)0.067 (2)0.0015 (19)0.0115 (19)0.0083 (19)
C10.054 (2)0.050 (3)0.057 (3)0.003 (2)0.009 (2)0.006 (2)
C20.048 (2)0.055 (3)0.054 (2)0.005 (2)0.002 (2)0.007 (2)
C30.051 (2)0.050 (3)0.047 (2)0.000 (2)0.002 (2)0.000 (2)
C40.053 (3)0.057 (3)0.046 (2)0.004 (2)0.006 (2)0.001 (2)
C50.054 (3)0.056 (3)0.050 (2)0.007 (2)0.001 (2)0.004 (2)
C60.060 (3)0.051 (3)0.063 (3)0.002 (2)0.006 (2)0.004 (2)
C70.065 (3)0.060 (3)0.064 (3)0.004 (2)0.010 (2)0.004 (2)
C80.056 (3)0.067 (3)0.057 (3)0.002 (2)0.003 (2)0.000 (2)
C90.058 (3)0.112 (5)0.086 (3)0.021 (3)0.018 (3)0.028 (3)
C100.074 (4)0.094 (4)0.095 (4)0.020 (3)0.016 (3)0.036 (3)
C110.052 (3)0.068 (3)0.060 (3)0.001 (2)0.006 (2)0.002 (2)
C120.051 (3)0.081 (4)0.093 (4)0.007 (3)0.013 (3)0.001 (3)
C130.063 (3)0.067 (3)0.089 (3)0.011 (3)0.016 (3)0.012 (3)
C140.064 (3)0.052 (3)0.054 (2)0.001 (2)0.001 (2)0.001 (2)
C150.092 (4)0.059 (3)0.071 (3)0.008 (3)0.001 (3)0.010 (3)
C160.091 (4)0.063 (3)0.077 (3)0.009 (3)0.013 (3)0.004 (3)
C170.087 (4)0.067 (3)0.083 (3)0.007 (3)0.018 (3)0.015 (3)
C180.062 (3)0.064 (3)0.050 (2)0.013 (2)0.002 (2)0.001 (2)
Geometric parameters (Å, º) top
Br1—C111.890 (4)C17—H17C0.9600
O1—C21.361 (4)C18—C20C1.428 (17)
O1—H10.8200C18—C19A1.435 (13)
N1—C71.277 (5)C18—C21A1.498 (16)
N1—C81.432 (5)C18—C21C1.517 (14)
C1—C21.395 (5)C18—C21B1.544 (15)
C1—C61.398 (5)C18—C20B1.564 (15)
C1—C71.464 (5)C18—C19B1.580 (17)
C2—C31.401 (5)C18—C19C1.621 (19)
C3—C41.394 (5)C18—C20A1.653 (15)
C3—C141.539 (6)C19A—H19A0.9600
C4—C51.396 (6)C19A—H19B0.9600
C4—H40.9300C19A—H19C0.9600
C5—C61.389 (5)C20A—H20A0.9600
C5—C181.538 (5)C20A—H20B0.9600
C6—H60.9300C20A—H20C0.9600
C7—H70.9300C21A—H21A0.9600
C8—C131.373 (6)C21A—H21B0.9600
C8—C91.380 (6)C21A—H21C0.9600
C9—C101.379 (6)C19B—H19D0.9600
C9—H90.9300C19B—H19E0.9600
C10—C111.352 (6)C19B—H19F0.9600
C10—H100.9300C20B—H20D0.9600
C11—C121.377 (6)C20B—H20E0.9600
C12—C131.383 (6)C20B—H20F0.9600
C12—H120.9300C21B—H21D0.9600
C13—H130.9300C21B—H21E0.9600
C14—C151.533 (6)C21B—H21F0.9600
C14—C171.539 (6)C19C—H19G0.9600
C14—C161.547 (6)C19C—H19H0.9600
C15—H15A0.9600C19C—H19I0.9600
C15—H15B0.9600C20C—H20G0.9600
C15—H15C0.9600C20C—H20H0.9600
C16—H16A0.9600C20C—H20I0.9600
C16—H16B0.9600C21C—H21G0.9600
C16—H16C0.9600C21C—H21H0.9600
C17—H17A0.9600C21C—H21I0.9600
C17—H17B0.9600
C2—O1—H1109.5C21A—C18—C5113.7 (7)
C7—N1—C8119.5 (4)C21C—C18—C5111.2 (6)
C2—C1—C6120.4 (4)C20C—C18—C21B31.5 (9)
C2—C1—C7122.1 (4)C19A—C18—C21B131.5 (9)
C6—C1—C7117.5 (4)C21A—C18—C21B24.7 (8)
O1—C2—C1119.7 (4)C21C—C18—C21B135.3 (8)
O1—C2—C3120.0 (4)C5—C18—C21B110.4 (6)
C1—C2—C3120.3 (4)C20C—C18—C20B81.3 (11)
C4—C3—C2116.9 (4)C19A—C18—C20B76.2 (10)
C4—C3—C14121.4 (3)C21A—C18—C20B124.5 (10)
C2—C3—C14121.7 (3)C21C—C18—C20B37.4 (9)
C3—C4—C5124.8 (4)C5—C18—C20B113.0 (7)
C3—C4—H4117.6C21B—C18—C20B109.3 (9)
C5—C4—H4117.6C20C—C18—C19B132.5 (11)
C6—C5—C4116.4 (4)C19A—C18—C19B34.2 (8)
C6—C5—C18121.4 (4)C21A—C18—C19B84.1 (10)
C4—C5—C18122.2 (4)C21C—C18—C19B73.8 (10)
C5—C6—C1121.3 (4)C5—C18—C19B107.8 (6)
C5—C6—H6119.4C21B—C18—C19B108.0 (10)
C1—C6—H6119.4C20B—C18—C19B108.2 (9)
N1—C7—C1123.4 (4)C20C—C18—C19C108.6 (11)
N1—C7—H7118.3C19A—C18—C19C65.1 (11)
C1—C7—H7118.3C21A—C18—C19C54.6 (11)
C13—C8—C9118.9 (4)C21C—C18—C19C103.2 (10)
C13—C8—N1118.2 (4)C5—C18—C19C107.4 (7)
C9—C8—N1123.0 (4)C21B—C18—C19C79.2 (10)
C10—C9—C8120.0 (5)C20B—C18—C19C131.6 (10)
C10—C9—H9120.0C19B—C18—C19C31.5 (8)
C8—C9—H9120.0C20C—C18—C20A52.2 (11)
C11—C10—C9121.3 (5)C19A—C18—C20A106.9 (9)
C11—C10—H10119.4C21A—C18—C20A104.6 (9)
C9—C10—H10119.4C21C—C18—C20A69.0 (9)
C10—C11—C12119.3 (4)C5—C18—C20A108.1 (6)
C10—C11—Br1120.5 (4)C21B—C18—C20A83.1 (9)
C12—C11—Br1120.2 (3)C20B—C18—C20A31.7 (8)
C11—C12—C13120.1 (4)C19B—C18—C20A135.3 (8)
C11—C12—H12119.9C19C—C18—C20A144.1 (9)
C13—C12—H12119.9C18—C19A—H19A109.5
C8—C13—C12120.5 (5)C18—C19A—H19B109.5
C8—C13—H13119.8C18—C19A—H19C109.5
C12—C13—H13119.8C18—C20A—H20A109.5
C15—C14—C17107.3 (4)C18—C20A—H20B109.5
C15—C14—C3110.1 (3)C18—C20A—H20C109.5
C17—C14—C3112.6 (3)C18—C21A—H21A109.5
C15—C14—C16110.0 (4)C18—C21A—H21B109.5
C17—C14—C16107.3 (4)C18—C21A—H21C109.5
C3—C14—C16109.6 (3)C18—C19B—H19D109.5
C14—C15—H15A109.5C18—C19B—H19E109.5
C14—C15—H15B109.5H19D—C19B—H19E109.5
H15A—C15—H15B109.5C18—C19B—H19F109.5
C14—C15—H15C109.5H19D—C19B—H19F109.5
H15A—C15—H15C109.5H19E—C19B—H19F109.5
H15B—C15—H15C109.5C18—C20B—H20D109.5
C14—C16—H16A109.5C18—C20B—H20E109.5
C14—C16—H16B109.5H20D—C20B—H20E109.5
H16A—C16—H16B109.5C18—C20B—H20F109.5
C14—C16—H16C109.5H20D—C20B—H20F109.5
H16A—C16—H16C109.5H20E—C20B—H20F109.5
H16B—C16—H16C109.5C18—C21B—H21D109.5
C14—C17—H17A109.5C18—C21B—H21E109.5
C14—C17—H17B109.5H21D—C21B—H21E109.5
H17A—C17—H17B109.5C18—C21B—H21F109.5
C14—C17—H17C109.5H21D—C21B—H21F109.5
H17A—C17—H17C109.5H21E—C21B—H21F109.5
H17B—C17—H17C109.5C18—C19C—H19G109.5
C20C—C18—C19A137.9 (10)C18—C19C—H19H109.5
C20C—C18—C21A55.3 (12)C18—C19C—H19I109.5
C19A—C18—C21A112.2 (10)C18—C20C—H20G109.5
C20C—C18—C21C115.3 (10)C18—C20C—H20H109.5
C19A—C18—C21C39.9 (9)C18—C20C—H20I109.5
C21A—C18—C21C134.2 (9)C18—C21C—H21G109.5
C20C—C18—C5110.6 (8)C18—C21C—H21H109.5
C19A—C18—C5110.9 (6)C18—C21C—H21I109.5
C6—C1—C2—O1179.3 (4)C9—C8—C13—C121.5 (7)
C7—C1—C2—O12.2 (6)N1—C8—C13—C12179.1 (4)
C6—C1—C2—C30.6 (6)C11—C12—C13—C80.0 (8)
C7—C1—C2—C3177.9 (4)C4—C3—C14—C15121.4 (4)
O1—C2—C3—C4179.8 (4)C2—C3—C14—C1558.5 (5)
C1—C2—C3—C40.1 (6)C4—C3—C14—C171.7 (6)
O1—C2—C3—C140.1 (6)C2—C3—C14—C17178.1 (4)
C1—C2—C3—C14180.0 (4)C4—C3—C14—C16117.6 (4)
C2—C3—C4—C50.7 (6)C2—C3—C14—C1662.6 (5)
C14—C3—C4—C5179.2 (4)C6—C5—C18—C20C83.4 (12)
C3—C4—C5—C60.9 (6)C4—C5—C18—C20C96.6 (12)
C3—C4—C5—C18179.1 (4)C6—C5—C18—C19A104.2 (10)
C4—C5—C6—C10.4 (6)C4—C5—C18—C19A75.8 (11)
C18—C5—C6—C1179.6 (4)C6—C5—C18—C21A23.3 (11)
C2—C1—C6—C50.3 (7)C4—C5—C18—C21A156.7 (10)
C7—C1—C6—C5178.2 (4)C6—C5—C18—C21C147.1 (9)
C8—N1—C7—C1179.0 (4)C4—C5—C18—C21C32.9 (10)
C2—C1—C7—N10.4 (7)C6—C5—C18—C21B49.8 (10)
C6—C1—C7—N1178.9 (4)C4—C5—C18—C21B130.3 (9)
C7—N1—C8—C13153.2 (4)C6—C5—C18—C20B172.5 (11)
C7—N1—C8—C927.5 (7)C4—C5—C18—C20B7.5 (12)
C13—C8—C9—C101.9 (8)C6—C5—C18—C19B68.0 (10)
N1—C8—C9—C10178.7 (5)C4—C5—C18—C19B112.0 (10)
C8—C9—C10—C110.9 (9)C6—C5—C18—C19C34.9 (10)
C9—C10—C11—C120.6 (8)C4—C5—C18—C19C145.1 (10)
C9—C10—C11—Br1179.6 (4)C6—C5—C18—C20A139.0 (8)
C10—C11—C12—C131.0 (7)C4—C5—C18—C20A41.0 (9)
Br1—C11—C12—C13179.9 (4)
(6) top
Crystal data top
C21H27NODx = 1.104 Mg m3
Mr = 309.44Mo Kα radiation, λ = 0.71075 Å
Orthorhombic, Pna21Cell parameters from 15059 reflections
a = 12.4043 (6) Åθ = 3.1–27.4°
b = 8.9918 (5) ŵ = 0.07 mm1
c = 16.6903 (7) ÅT = 296 K
V = 1861.59 (16) Å3Block, yellow
Z = 40.50 × 0.35 × 0.15 mm
F(000) = 672
Data collection top
Rigaku R-AXIS RAPID IP Area Detector System
diffractometer
2193 independent reflections
Radiation source: rotating anode X-ray tube1955 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan
Absorption was corrected by ABSCOR
h = 1615
Tmin = 0.798, Tmax = 0.990k = 1111
17422 measured reflectionsl = 2120
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0635P)2 + 0.1242P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2193 reflectionsΔρmax = 0.22 e Å3
214 parametersΔρmin = 0.14 e Å3
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methods
Crystal data top
C21H27NOV = 1861.59 (16) Å3
Mr = 309.44Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 12.4043 (6) ŵ = 0.07 mm1
b = 8.9918 (5) ÅT = 296 K
c = 16.6903 (7) Å0.50 × 0.35 × 0.15 mm
Data collection top
Rigaku R-AXIS RAPID IP Area Detector System
diffractometer
2193 independent reflections
Absorption correction: multi-scan
Absorption was corrected by ABSCOR
1955 reflections with I > 2σ(I)
Tmin = 0.798, Tmax = 0.990Rint = 0.032
17422 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.101H-atom parameters constrained
S = 1.06Δρmax = 0.22 e Å3
2193 reflectionsΔρmin = 0.14 e Å3
214 parametersAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.84007 (12)0.63129 (15)0.09389 (9)0.0426 (3)
H10.88520.57490.07480.064*
N10.94351 (13)0.38858 (18)0.06977 (10)0.0374 (4)
C10.81743 (15)0.4166 (2)0.17701 (12)0.0337 (4)
C20.79029 (15)0.5638 (2)0.15614 (10)0.0327 (4)
C30.70898 (16)0.6406 (2)0.19846 (11)0.0347 (4)
C40.66127 (16)0.5665 (2)0.26238 (11)0.0368 (4)
H40.60750.61580.29080.044*
C50.68902 (16)0.4218 (2)0.28688 (11)0.0346 (4)
C60.76649 (16)0.3483 (2)0.24299 (12)0.0354 (4)
H60.78560.25180.25710.043*
C70.89474 (17)0.3316 (2)0.12988 (12)0.0364 (4)
H70.90900.23350.14390.044*
C81.01957 (15)0.3096 (2)0.02234 (12)0.0351 (4)
C91.0794 (2)0.1892 (3)0.04932 (14)0.0497 (5)
H91.06990.15310.10110.060*
C101.1536 (2)0.1231 (3)0.00167 (16)0.0579 (6)
H101.19330.04180.01610.070*
C111.1695 (2)0.1755 (3)0.07772 (15)0.0566 (6)
H111.21940.12970.11110.068*
C121.1114 (2)0.2960 (3)0.10484 (14)0.0544 (6)
H121.12230.33220.15640.065*
C131.03672 (19)0.3627 (2)0.05471 (13)0.0458 (5)
H130.99750.44420.07290.055*
C140.67344 (18)0.7978 (2)0.17227 (12)0.0425 (5)
C150.7690 (2)0.9068 (3)0.17628 (19)0.0612 (7)
H15A0.79620.91070.23010.092*
H15B0.82510.87370.14090.092*
H15C0.74541.00410.16040.092*
C160.6288 (2)0.7910 (3)0.08601 (14)0.0571 (6)
H16A0.61110.88960.06830.086*
H16B0.68240.74910.05110.086*
H16C0.56530.73010.08500.086*
C170.5829 (2)0.8579 (3)0.22615 (15)0.0571 (6)
H17A0.60730.86090.28070.086*
H17B0.56360.95640.20910.086*
H17C0.52110.79400.22230.086*
C180.63177 (17)0.3514 (2)0.35952 (13)0.0424 (5)
C190.6395 (3)0.4555 (3)0.43250 (15)0.0662 (7)
H19A0.60300.54710.42090.099*
H19B0.60650.40870.47800.099*
H19C0.71400.47550.44410.099*
C200.6825 (2)0.2033 (3)0.38308 (16)0.0584 (6)
H20A0.75720.21830.39580.088*
H20B0.64570.16380.42900.088*
H20C0.67650.13470.33930.088*
C210.5130 (2)0.3240 (4)0.3386 (2)0.0792 (9)
H21A0.50840.25330.29570.119*
H21B0.47610.28580.38480.119*
H21C0.48020.41590.32230.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0466 (8)0.0398 (7)0.0414 (7)0.0060 (6)0.0123 (6)0.0088 (6)
N10.0363 (8)0.0377 (8)0.0381 (8)0.0039 (7)0.0031 (7)0.0029 (6)
C10.0309 (9)0.0369 (9)0.0332 (8)0.0022 (7)0.0006 (7)0.0003 (7)
C20.0331 (9)0.0366 (9)0.0283 (8)0.0009 (7)0.0014 (7)0.0026 (7)
C30.0365 (10)0.0357 (9)0.0320 (9)0.0050 (7)0.0025 (7)0.0010 (8)
C40.0346 (10)0.0440 (10)0.0316 (9)0.0073 (8)0.0030 (7)0.0002 (7)
C50.0349 (9)0.0389 (9)0.0301 (8)0.0016 (7)0.0004 (7)0.0049 (7)
C60.0365 (9)0.0327 (8)0.0371 (9)0.0017 (7)0.0007 (8)0.0056 (7)
C70.0366 (10)0.0329 (8)0.0397 (9)0.0047 (8)0.0005 (8)0.0005 (8)
C80.0306 (9)0.0374 (9)0.0374 (9)0.0014 (7)0.0007 (7)0.0060 (7)
C90.0508 (13)0.0592 (13)0.0392 (10)0.0136 (10)0.0003 (9)0.0032 (10)
C100.0527 (14)0.0629 (14)0.0581 (14)0.0271 (12)0.0028 (11)0.0066 (12)
C110.0464 (13)0.0737 (16)0.0498 (13)0.0149 (11)0.0067 (10)0.0175 (11)
C120.0559 (14)0.0696 (15)0.0377 (10)0.0075 (12)0.0102 (10)0.0006 (11)
C130.0473 (12)0.0454 (11)0.0447 (12)0.0065 (9)0.0042 (9)0.0038 (9)
C140.0525 (12)0.0367 (10)0.0383 (10)0.0116 (8)0.0057 (9)0.0035 (8)
C150.0760 (17)0.0378 (10)0.0698 (15)0.0020 (11)0.0100 (15)0.0003 (11)
C160.0669 (15)0.0620 (14)0.0425 (11)0.0262 (12)0.0019 (11)0.0106 (10)
C170.0679 (17)0.0520 (12)0.0515 (13)0.0277 (12)0.0103 (12)0.0052 (10)
C180.0410 (11)0.0498 (11)0.0363 (9)0.0022 (9)0.0046 (8)0.0082 (9)
C190.095 (2)0.0655 (16)0.0380 (11)0.0017 (14)0.0178 (12)0.0040 (11)
C200.0714 (16)0.0548 (13)0.0490 (13)0.0003 (12)0.0109 (11)0.0197 (11)
C210.0447 (14)0.113 (2)0.0804 (19)0.0178 (15)0.0040 (14)0.0296 (18)
Geometric parameters (Å, º) top
O1—C21.352 (2)C13—H130.9300
O1—H10.8200C14—C171.537 (3)
N1—C71.279 (3)C14—C151.540 (4)
N1—C81.421 (2)C14—C161.544 (3)
C1—C21.409 (3)C15—H15A0.9600
C1—C61.410 (3)C15—H15B0.9600
C1—C71.457 (3)C15—H15C0.9600
C2—C31.412 (3)C16—H16A0.9600
C3—C41.390 (3)C16—H16B0.9600
C3—C141.543 (3)C16—H16C0.9600
C4—C51.406 (3)C17—H17A0.9600
C4—H40.9300C17—H17B0.9600
C5—C61.377 (3)C17—H17C0.9600
C5—C181.541 (3)C18—C201.524 (3)
C6—H60.9300C18—C211.534 (4)
C7—H70.9300C18—C191.539 (3)
C8—C131.388 (3)C19—H19A0.9600
C8—C91.388 (3)C19—H19B0.9600
C9—C101.387 (3)C19—H19C0.9600
C9—H90.9300C20—H20A0.9600
C10—C111.368 (4)C20—H20B0.9600
C10—H100.9300C20—H20C0.9600
C11—C121.377 (4)C21—H21A0.9600
C11—H110.9300C21—H21B0.9600
C12—C131.385 (3)C21—H21C0.9600
C12—H120.9300
C2—O1—H1109.5C15—C14—C16110.0 (2)
C7—N1—C8123.43 (17)C3—C14—C16109.30 (17)
C2—C1—C6119.65 (17)C14—C15—H15A109.5
C2—C1—C7121.09 (17)C14—C15—H15B109.5
C6—C1—C7119.22 (17)H15A—C15—H15B109.5
O1—C2—C1120.14 (16)C14—C15—H15C109.5
O1—C2—C3119.41 (16)H15A—C15—H15C109.5
C1—C2—C3120.42 (16)H15B—C15—H15C109.5
C4—C3—C2116.98 (16)C14—C16—H16A109.5
C4—C3—C14122.32 (17)C14—C16—H16B109.5
C2—C3—C14120.68 (16)H16A—C16—H16B109.5
C3—C4—C5124.22 (17)C14—C16—H16C109.5
C3—C4—H4117.9H16A—C16—H16C109.5
C5—C4—H4117.9H16B—C16—H16C109.5
C6—C5—C4117.38 (17)C14—C17—H17A109.5
C6—C5—C18122.87 (17)C14—C17—H17B109.5
C4—C5—C18119.74 (17)H17A—C17—H17B109.5
C5—C6—C1121.27 (17)C14—C17—H17C109.5
C5—C6—H6119.4H17A—C17—H17C109.5
C1—C6—H6119.4H17B—C17—H17C109.5
N1—C7—C1121.66 (17)C20—C18—C21108.4 (2)
N1—C7—H7119.2C20—C18—C19107.5 (2)
C1—C7—H7119.2C21—C18—C19109.7 (2)
C13—C8—C9119.12 (19)C20—C18—C5111.82 (19)
C13—C8—N1116.49 (17)C21—C18—C5109.26 (19)
C9—C8—N1124.33 (18)C19—C18—C5110.11 (18)
C10—C9—C8119.3 (2)C18—C19—H19A109.5
C10—C9—H9120.3C18—C19—H19B109.5
C8—C9—H9120.3H19A—C19—H19B109.5
C11—C10—C9121.1 (2)C18—C19—H19C109.5
C11—C10—H10119.4H19A—C19—H19C109.5
C9—C10—H10119.4H19B—C19—H19C109.5
C10—C11—C12120.1 (2)C18—C20—H20A109.5
C10—C11—H11120.0C18—C20—H20B109.5
C12—C11—H11120.0H20A—C20—H20B109.5
C11—C12—C13119.5 (2)C18—C20—H20C109.5
C11—C12—H12120.3H20A—C20—H20C109.5
C13—C12—H12120.3H20B—C20—H20C109.5
C12—C13—C8120.9 (2)C18—C21—H21A109.5
C12—C13—H13119.6C18—C21—H21B109.5
C8—C13—H13119.6H21A—C21—H21B109.5
C17—C14—C15108.3 (2)C18—C21—H21C109.5
C17—C14—C3111.42 (17)H21A—C21—H21C109.5
C15—C14—C3110.53 (19)H21B—C21—H21C109.5
C17—C14—C16107.31 (19)
C6—C1—C2—O1178.79 (17)C13—C8—C9—C101.0 (3)
C7—C1—C2—O13.3 (3)N1—C8—C9—C10178.2 (2)
C6—C1—C2—C33.0 (3)C8—C9—C10—C110.6 (4)
C7—C1—C2—C3174.90 (17)C9—C10—C11—C120.1 (4)
O1—C2—C3—C4179.40 (17)C10—C11—C12—C130.4 (4)
C1—C2—C3—C42.4 (3)C11—C12—C13—C80.1 (4)
O1—C2—C3—C142.5 (3)C9—C8—C13—C120.8 (3)
C1—C2—C3—C14175.78 (18)N1—C8—C13—C12178.2 (2)
C2—C3—C4—C50.1 (3)C4—C3—C14—C171.0 (3)
C14—C3—C4—C5178.16 (18)C2—C3—C14—C17179.0 (2)
C3—C4—C5—C61.8 (3)C4—C3—C14—C15121.4 (2)
C3—C4—C5—C18179.10 (19)C2—C3—C14—C1560.6 (2)
C4—C5—C6—C11.2 (3)C4—C3—C14—C16117.4 (2)
C18—C5—C6—C1179.78 (18)C2—C3—C14—C1660.6 (2)
C2—C1—C6—C51.2 (3)C6—C5—C18—C208.2 (3)
C7—C1—C6—C5176.78 (18)C4—C5—C18—C20172.7 (2)
C8—N1—C7—C1179.89 (17)C6—C5—C18—C21111.7 (3)
C2—C1—C7—N12.5 (3)C4—C5—C18—C2167.3 (3)
C6—C1—C7—N1179.63 (19)C6—C5—C18—C19127.7 (2)
C7—N1—C8—C13157.8 (2)C4—C5—C18—C1953.3 (3)
C7—N1—C8—C925.0 (3)
(7) top
Crystal data top
C22H27NO3F(000) = 760
Mr = 353.45Dx = 1.212 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
a = 6.1482 (4) ÅCell parameters from 18571 reflections
b = 19.5491 (13) Åθ = 1.0–27.5°
c = 17.0976 (13) ŵ = 0.08 mm1
β = 109.453 (3)°T = 293 K
V = 1937.7 (2) Å3Platelet, orange
Z = 40.40 × 0.30 × 0.02 mm
Data collection top
Rigaku R-AXIS RAPID IP Area Detector System
diffractometer
4410 independent reflections
Radiation source: rotating anode X-ray tube2938 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
Absorption was corrected by ABSCOR
h = 77
Tmin = 0.627, Tmax = 0.998k = 2525
17354 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.206H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0926P)2 + 0.5402P]
where P = (Fo2 + 2Fc2)/3
4410 reflections(Δ/σ)max < 0.001
272 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C22H27NO3V = 1937.7 (2) Å3
Mr = 353.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.1482 (4) ŵ = 0.08 mm1
b = 19.5491 (13) ÅT = 293 K
c = 17.0976 (13) Å0.40 × 0.30 × 0.02 mm
β = 109.453 (3)°
Data collection top
Rigaku R-AXIS RAPID IP Area Detector System
diffractometer
4410 independent reflections
Absorption correction: multi-scan
Absorption was corrected by ABSCOR
2938 reflections with I > 2σ(I)
Tmin = 0.627, Tmax = 0.998Rint = 0.087
17354 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.206H-atom parameters constrained
S = 1.03Δρmax = 0.33 e Å3
4410 reflectionsΔρmin = 0.27 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4657 (3)0.23698 (9)0.18159 (9)0.0615 (5)
H10.35190.26180.16540.092*
O20.7434 (3)0.47770 (9)0.08567 (11)0.0684 (5)
H20.86690.49810.07250.103*
O30.8699 (3)0.45015 (9)0.04739 (11)0.0658 (5)
N10.0947 (3)0.29279 (10)0.07873 (11)0.0521 (5)
C10.3453 (3)0.21927 (11)0.03639 (13)0.0477 (5)
C20.4985 (4)0.20599 (11)0.11625 (13)0.0459 (5)
C30.6832 (3)0.16083 (10)0.12809 (12)0.0447 (5)
C40.7052 (3)0.13130 (11)0.05756 (12)0.0461 (5)
H40.82800.10150.06420.055*
C50.5563 (4)0.14309 (11)0.02274 (13)0.0465 (5)
C60.3787 (4)0.18771 (12)0.03124 (13)0.0515 (5)
H60.27710.19720.08410.062*
C70.1486 (4)0.26393 (12)0.02147 (14)0.0534 (5)
H70.05640.27190.03310.064*
C80.1099 (4)0.33241 (11)0.06053 (14)0.0484 (5)
C90.2771 (4)0.33657 (13)0.01716 (15)0.0614 (6)
H90.25680.31330.06170.074*
C100.4724 (4)0.37475 (13)0.02876 (15)0.0594 (6)
H100.58250.37760.08140.071*
C110.5073 (3)0.40867 (10)0.03596 (14)0.0474 (5)
C120.3406 (4)0.40443 (14)0.11328 (15)0.0638 (6)
H120.36110.42740.15790.077*
C130.1446 (4)0.36659 (14)0.12471 (15)0.0644 (7)
H130.03360.36420.17720.077*
C140.7227 (4)0.44754 (11)0.02130 (14)0.0490 (5)
C150.8470 (4)0.14290 (12)0.21475 (13)0.0531 (5)
C160.7092 (5)0.11059 (16)0.26513 (16)0.0739 (8)
H16A0.81190.09870.31930.111*
H16B0.63270.07020.23740.111*
H16C0.59650.14270.27030.111*
C171.0311 (5)0.09187 (15)0.21197 (16)0.0730 (8)
H17A1.12130.11100.18110.110*
H17B0.95860.05050.18560.110*
H17C1.12940.08180.26740.110*
C180.9705 (5)0.20695 (14)0.25910 (16)0.0680 (7)
H18A0.85870.23920.26470.102*
H18B1.05650.22720.22740.102*
H18C1.07370.19470.31310.102*
C190.5867 (4)0.10678 (12)0.09775 (14)0.0544 (6)
C20A0.3883 (14)0.1148 (6)0.1783 (4)0.086 (3)0.482 (9)
H20A0.40940.08420.21910.129*0.482 (9)
H20B0.38370.16110.19760.129*0.482 (9)
H20C0.24590.10430.16930.129*0.482 (9)
C21A0.606 (2)0.0267 (3)0.0805 (4)0.094 (3)0.482 (9)
H21A0.64200.00390.12440.141*0.482 (9)
H21B0.46220.00980.07780.141*0.482 (9)
H21C0.72620.01800.02870.141*0.482 (9)
C22A0.8069 (15)0.1275 (5)0.1091 (5)0.098 (4)0.482 (9)
H22A0.93310.11790.05930.147*0.482 (9)
H22B0.80300.17550.12100.147*0.482 (9)
H22C0.82700.10230.15440.147*0.482 (9)
C20B0.6311 (19)0.1644 (4)0.1544 (4)0.099 (3)0.518 (9)
H20D0.77500.18670.12600.149*0.518 (9)
H20E0.50820.19730.16700.149*0.518 (9)
H20F0.63710.14460.20500.149*0.518 (9)
C21B0.3629 (14)0.0723 (5)0.1440 (6)0.103 (3)0.518 (9)
H21D0.38080.04600.18890.155*0.518 (9)
H21E0.24540.10620.16570.155*0.518 (9)
H21F0.31930.04260.10710.155*0.518 (9)
C22B0.7817 (16)0.0594 (5)0.0753 (4)0.099 (4)0.518 (9)
H22D0.79450.03890.12470.149*0.518 (9)
H22E0.75760.02420.03990.149*0.518 (9)
H22F0.92110.08380.04680.149*0.518 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0599 (9)0.0816 (11)0.0441 (8)0.0189 (8)0.0187 (7)0.0040 (8)
O20.0570 (9)0.0774 (11)0.0698 (11)0.0211 (9)0.0199 (8)0.0092 (9)
O30.0484 (9)0.0782 (11)0.0648 (10)0.0132 (8)0.0110 (8)0.0091 (9)
N10.0472 (10)0.0588 (11)0.0523 (11)0.0072 (8)0.0193 (8)0.0047 (8)
C10.0453 (10)0.0525 (12)0.0479 (11)0.0068 (9)0.0189 (9)0.0049 (9)
C20.0469 (11)0.0518 (11)0.0431 (11)0.0000 (9)0.0204 (9)0.0024 (9)
C30.0418 (10)0.0515 (11)0.0409 (10)0.0003 (9)0.0139 (8)0.0000 (9)
C40.0434 (10)0.0497 (11)0.0462 (11)0.0054 (9)0.0163 (9)0.0010 (9)
C50.0483 (11)0.0504 (11)0.0438 (11)0.0009 (9)0.0191 (9)0.0008 (9)
C60.0514 (12)0.0618 (13)0.0416 (11)0.0090 (10)0.0157 (9)0.0044 (9)
C70.0547 (12)0.0596 (13)0.0471 (12)0.0088 (11)0.0184 (10)0.0043 (10)
C80.0421 (10)0.0506 (11)0.0545 (12)0.0044 (9)0.0186 (9)0.0066 (9)
C90.0545 (13)0.0739 (16)0.0560 (14)0.0117 (12)0.0187 (11)0.0093 (12)
C100.0496 (12)0.0698 (15)0.0544 (13)0.0100 (11)0.0117 (10)0.0060 (11)
C110.0419 (10)0.0452 (11)0.0567 (12)0.0025 (9)0.0184 (9)0.0025 (9)
C120.0607 (14)0.0766 (16)0.0527 (13)0.0158 (13)0.0169 (11)0.0046 (12)
C130.0586 (14)0.0810 (17)0.0500 (13)0.0209 (13)0.0132 (11)0.0002 (12)
C140.0455 (11)0.0458 (11)0.0574 (13)0.0002 (9)0.0192 (10)0.0002 (10)
C150.0495 (11)0.0654 (13)0.0409 (11)0.0041 (10)0.0103 (9)0.0011 (10)
C160.0752 (17)0.0907 (19)0.0536 (14)0.0021 (15)0.0185 (13)0.0184 (13)
C170.0631 (15)0.0868 (19)0.0568 (14)0.0239 (14)0.0034 (12)0.0005 (13)
C180.0619 (14)0.0805 (17)0.0547 (14)0.0010 (13)0.0099 (11)0.0115 (12)
C190.0588 (13)0.0644 (13)0.0448 (11)0.0005 (11)0.0235 (10)0.0054 (10)
C20A0.084 (5)0.132 (7)0.038 (3)0.023 (5)0.016 (3)0.016 (3)
C21A0.139 (8)0.068 (4)0.072 (4)0.003 (4)0.031 (5)0.023 (3)
C22A0.097 (5)0.133 (8)0.090 (5)0.039 (6)0.067 (5)0.040 (6)
C20B0.170 (9)0.086 (4)0.066 (4)0.006 (5)0.071 (5)0.002 (3)
C21B0.109 (5)0.123 (7)0.088 (6)0.030 (5)0.046 (5)0.057 (5)
C22B0.121 (7)0.116 (7)0.067 (4)0.055 (6)0.041 (4)0.012 (4)
Geometric parameters (Å, º) top
O1—C21.344 (2)C16—H16A0.9600
O1—H10.8200C16—H16B0.9600
O2—C141.292 (3)C16—H16C0.9600
O2—H20.8200C17—H17A0.9600
O3—C141.222 (3)C17—H17B0.9600
N1—C71.266 (3)C17—H17C0.9600
N1—C81.421 (3)C18—H18A0.9600
C1—C61.385 (3)C18—H18B0.9600
C1—C21.401 (3)C18—H18C0.9600
C1—C71.444 (3)C19—C22B1.462 (7)
C2—C31.399 (3)C19—C22A1.486 (7)
C3—C41.384 (3)C19—C21B1.500 (8)
C3—C151.529 (3)C19—C20A1.514 (6)
C4—C51.393 (3)C19—C20B1.568 (6)
C4—H40.9300C19—C21A1.590 (7)
C5—C61.367 (3)C20A—H20A0.9600
C5—C191.531 (3)C20A—H20B0.9600
C6—H60.9300C20A—H20C0.9600
C7—H70.9300C21A—H21A0.9600
C8—C131.361 (3)C21A—H21B0.9600
C8—C91.385 (3)C21A—H21C0.9600
C9—C101.371 (3)C22A—H22A0.9600
C9—H90.9300C22A—H22B0.9600
C10—C111.367 (3)C22A—H22C0.9600
C10—H100.9300C20B—H20D0.9600
C11—C121.380 (3)C20B—H20E0.9600
C11—C141.474 (3)C20B—H20F0.9600
C12—C131.371 (3)C21B—H21D0.9600
C12—H120.9300C21B—H21E0.9600
C13—H130.9300C21B—H21F0.9600
C15—C171.521 (3)C22B—H22D0.9600
C15—C181.528 (3)C22B—H22E0.9600
C15—C161.531 (4)C22B—H22F0.9600
C2—O1—H1109.5H17A—C17—H17B109.5
C14—O2—H2109.5C15—C17—H17C109.5
C7—N1—C8120.94 (19)H17A—C17—H17C109.5
C6—C1—C2119.52 (19)H17B—C17—H17C109.5
C6—C1—C7118.05 (19)C15—C18—H18A109.5
C2—C1—C7122.41 (19)C15—C18—H18B109.5
O1—C2—C3120.23 (18)H18A—C18—H18B109.5
O1—C2—C1119.24 (18)C15—C18—H18C109.5
C3—C2—C1120.52 (18)H18A—C18—H18C109.5
C4—C3—C2116.59 (18)H18B—C18—H18C109.5
C4—C3—C15121.65 (18)C22B—C19—C22A60.2 (5)
C2—C3—C15121.72 (18)C22B—C19—C21B112.4 (5)
C3—C4—C5124.54 (19)C22A—C19—C21B140.3 (4)
C3—C4—H4117.7C22B—C19—C20A130.3 (4)
C5—C4—H4117.7C22A—C19—C20A110.2 (5)
C6—C5—C4116.75 (19)C21B—C19—C20A41.1 (4)
C6—C5—C19121.53 (19)C22B—C19—C5113.1 (3)
C4—C5—C19121.70 (19)C22A—C19—C5110.7 (3)
C5—C6—C1122.06 (19)C21B—C19—C5107.7 (3)
C5—C6—H6119.0C20A—C19—C5115.3 (3)
C1—C6—H6119.0C22B—C19—C20B108.7 (5)
N1—C7—C1123.5 (2)C22A—C19—C20B51.0 (4)
N1—C7—H7118.2C21B—C19—C20B108.4 (5)
C1—C7—H7118.2C20A—C19—C20B67.4 (5)
C13—C8—C9118.6 (2)C5—C19—C20B106.2 (3)
C13—C8—N1117.14 (19)C22B—C19—C21A47.4 (4)
C9—C8—N1124.2 (2)C22A—C19—C21A106.0 (6)
C10—C9—C8120.3 (2)C21B—C19—C21A69.8 (5)
C10—C9—H9119.8C20A—C19—C21A105.1 (5)
C8—C9—H9119.8C5—C19—C21A108.9 (3)
C11—C10—C9120.9 (2)C20B—C19—C21A143.5 (4)
C11—C10—H10119.6C19—C20A—H20A109.5
C9—C10—H10119.6C19—C20A—H20B109.5
C10—C11—C12118.6 (2)C19—C20A—H20C109.5
C10—C11—C14119.1 (2)C19—C21A—H21A109.5
C12—C11—C14122.2 (2)C19—C21A—H21B109.5
C13—C12—C11120.4 (2)C19—C21A—H21C109.5
C13—C12—H12119.8C19—C22A—H22A109.5
C11—C12—H12119.8C19—C22A—H22B109.5
C8—C13—C12121.1 (2)C19—C22A—H22C109.5
C8—C13—H13119.5C19—C20B—H20D109.5
C12—C13—H13119.5C19—C20B—H20E109.5
O3—C14—O2123.2 (2)H20D—C20B—H20E109.5
O3—C14—C11121.4 (2)C19—C20B—H20F109.5
O2—C14—C11115.36 (19)H20D—C20B—H20F109.5
C17—C15—C18107.5 (2)H20E—C20B—H20F109.5
C17—C15—C3112.13 (19)C19—C21B—H21D109.5
C18—C15—C3110.54 (19)C19—C21B—H21E109.5
C17—C15—C16107.7 (2)H21D—C21B—H21E109.5
C18—C15—C16109.6 (2)C19—C21B—H21F109.5
C3—C15—C16109.29 (18)H21D—C21B—H21F109.5
C15—C16—H16A109.5H21E—C21B—H21F109.5
C15—C16—H16B109.5C19—C22B—H22D109.5
H16A—C16—H16B109.5C19—C22B—H22E109.5
C15—C16—H16C109.5H22D—C22B—H22E109.5
H16A—C16—H16C109.5C19—C22B—H22F109.5
H16B—C16—H16C109.5H22D—C22B—H22F109.5
C15—C17—H17A109.5H22E—C22B—H22F109.5
C15—C17—H17B109.5
C6—C1—C2—O1179.7 (2)C14—C11—C12—C13178.7 (2)
C7—C1—C2—O11.6 (3)C9—C8—C13—C120.0 (4)
C6—C1—C2—C30.5 (3)N1—C8—C13—C12178.1 (2)
C7—C1—C2—C3178.2 (2)C11—C12—C13—C80.1 (4)
O1—C2—C3—C4179.75 (19)C10—C11—C14—O30.2 (3)
C1—C2—C3—C40.5 (3)C12—C11—C14—O3179.2 (2)
O1—C2—C3—C152.5 (3)C10—C11—C14—O2179.5 (2)
C1—C2—C3—C15177.3 (2)C12—C11—C14—O20.5 (3)
C2—C3—C4—C50.6 (3)C4—C3—C15—C171.3 (3)
C15—C3—C4—C5177.1 (2)C2—C3—C15—C17178.9 (2)
C3—C4—C5—C60.8 (3)C4—C3—C15—C18121.2 (2)
C3—C4—C5—C19178.0 (2)C2—C3—C15—C1861.1 (3)
C4—C5—C6—C10.8 (3)C4—C3—C15—C16118.0 (2)
C19—C5—C6—C1178.0 (2)C2—C3—C15—C1659.6 (3)
C2—C1—C6—C50.6 (3)C6—C5—C19—C22B177.9 (5)
C7—C1—C6—C5178.1 (2)C4—C5—C19—C22B0.8 (6)
C8—N1—C7—C1175.6 (2)C6—C5—C19—C22A116.7 (5)
C6—C1—C7—N1176.4 (2)C4—C5—C19—C22A64.6 (6)
C2—C1—C7—N12.2 (4)C6—C5—C19—C21B53.0 (6)
C7—N1—C8—C13174.4 (2)C4—C5—C19—C21B125.6 (5)
C7—N1—C8—C97.6 (4)C6—C5—C19—C20A9.4 (6)
C13—C8—C9—C100.4 (4)C4—C5—C19—C20A169.3 (5)
N1—C8—C9—C10178.4 (2)C6—C5—C19—C20B62.9 (5)
C8—C9—C10—C110.8 (4)C4—C5—C19—C20B118.4 (5)
C9—C10—C11—C120.8 (4)C6—C5—C19—C21A127.1 (5)
C9—C10—C11—C14178.3 (2)C4—C5—C19—C21A51.6 (5)
C10—C11—C12—C130.3 (4)
(8) top
Crystal data top
C13H10ClNOF(000) = 480
Mr = 231.67Dx = 1.405 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54186 Å
a = 4.6868 (1) ÅCell parameters from 6946 reflections
b = 18.9497 (4) Åθ = 3.1–68.2°
c = 12.8231 (2) ŵ = 2.88 mm1
β = 105.968 (1)°T = 293 K
V = 1094.92 (4) Å3Needle, yellow
Z = 40.33 × 0.10 × 0.06 mm
Data collection top
Rigaku VM-SPIDER IP Area Detector System
diffractometer
1976 independent reflections
Radiation source: rotating anode X-ray tube1565 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 68.2°, θmin = 4.3°
Absorption correction: multi-scan
Absorption was corrected by ABSCOR
h = 55
Tmin = 0.340, Tmax = 0.837k = 2222
12241 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.9889P]
where P = (Fo2 + 2Fc2)/3
1976 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C13H10ClNOV = 1094.92 (4) Å3
Mr = 231.67Z = 4
Monoclinic, P21/cCu Kα radiation
a = 4.6868 (1) ŵ = 2.88 mm1
b = 18.9497 (4) ÅT = 293 K
c = 12.8231 (2) Å0.33 × 0.10 × 0.06 mm
β = 105.968 (1)°
Data collection top
Rigaku VM-SPIDER IP Area Detector System
diffractometer
1976 independent reflections
Absorption correction: multi-scan
Absorption was corrected by ABSCOR
1565 reflections with I > 2σ(I)
Tmin = 0.340, Tmax = 0.837Rint = 0.046
12241 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.08Δρmax = 0.33 e Å3
1976 reflectionsΔρmin = 0.21 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.1485 (3)0.43020 (5)0.42965 (7)0.0781 (4)
O10.6479 (6)0.28079 (13)0.41658 (17)0.0680 (7)
H10.74910.30610.38900.102*
N10.8377 (6)0.33312 (13)0.25858 (19)0.0485 (6)
C10.4969 (7)0.23728 (15)0.2327 (2)0.0457 (7)
C20.4830 (7)0.23663 (16)0.3405 (2)0.0508 (7)
C30.2954 (8)0.18914 (18)0.3716 (3)0.0595 (9)
H30.28530.18840.44300.071*
C40.1245 (8)0.14309 (18)0.2968 (3)0.0601 (9)
H40.00070.11160.31830.072*
C50.1362 (8)0.14294 (18)0.1909 (3)0.0612 (9)
H50.01990.11170.14110.073*
C60.3220 (8)0.18958 (17)0.1593 (3)0.0573 (8)
H60.33100.18930.08770.069*
C70.6862 (7)0.28631 (15)0.1956 (2)0.0486 (7)
H70.69730.28350.12440.058*
C81.0163 (7)0.38220 (15)0.2224 (2)0.0455 (7)
C91.0413 (8)0.38690 (17)0.1171 (3)0.0536 (8)
H90.93570.35560.06470.064*
C101.2201 (9)0.43715 (17)0.0889 (3)0.0621 (9)
H101.23430.43930.01810.075*
C111.3777 (8)0.48413 (18)0.1653 (3)0.0625 (9)
H111.49700.51810.14590.075*
C121.3585 (8)0.48083 (17)0.2696 (3)0.0618 (9)
H121.46610.51220.32140.074*
C131.1792 (7)0.43085 (16)0.2981 (3)0.0517 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1048 (8)0.0824 (7)0.0478 (5)0.0182 (5)0.0221 (5)0.0120 (4)
O10.0794 (17)0.0824 (17)0.0444 (13)0.0233 (13)0.0206 (12)0.0071 (11)
N10.0529 (15)0.0482 (14)0.0456 (14)0.0005 (11)0.0153 (12)0.0012 (11)
C10.0477 (17)0.0451 (15)0.0444 (16)0.0042 (13)0.0128 (13)0.0026 (12)
C20.0536 (19)0.0516 (17)0.0457 (17)0.0020 (14)0.0114 (14)0.0027 (13)
C30.065 (2)0.065 (2)0.0508 (18)0.0003 (17)0.0202 (17)0.0120 (15)
C40.057 (2)0.0525 (18)0.072 (2)0.0024 (15)0.0188 (17)0.0108 (16)
C50.064 (2)0.0530 (18)0.065 (2)0.0094 (16)0.0149 (17)0.0046 (15)
C60.065 (2)0.0559 (18)0.0507 (18)0.0017 (16)0.0162 (16)0.0043 (14)
C70.0538 (18)0.0501 (16)0.0417 (16)0.0048 (14)0.0131 (14)0.0025 (13)
C80.0490 (17)0.0426 (15)0.0456 (16)0.0054 (13)0.0143 (13)0.0019 (12)
C90.060 (2)0.0538 (17)0.0475 (17)0.0014 (15)0.0160 (15)0.0003 (13)
C100.075 (2)0.060 (2)0.058 (2)0.0027 (17)0.0289 (18)0.0096 (16)
C110.066 (2)0.0502 (18)0.076 (2)0.0028 (16)0.0265 (19)0.0069 (16)
C120.067 (2)0.0469 (17)0.068 (2)0.0037 (16)0.0137 (18)0.0032 (15)
C130.0564 (19)0.0491 (16)0.0487 (17)0.0062 (14)0.0127 (14)0.0016 (13)
Geometric parameters (Å, º) top
Cl1—C131.732 (3)C5—H50.9300
O1—C21.355 (4)C6—H60.9300
O1—H10.8200C7—H70.9300
N1—C71.276 (4)C8—C91.390 (4)
N1—C81.413 (4)C8—C131.403 (4)
C1—C61.397 (4)C9—C101.381 (5)
C1—C21.402 (4)C9—H90.9300
C1—C71.452 (4)C10—C111.378 (5)
C2—C31.391 (5)C10—H100.9300
C3—C41.379 (5)C11—C121.367 (5)
C3—H30.9300C11—H110.9300
C4—C51.373 (5)C12—C131.380 (5)
C4—H40.9300C12—H120.9300
C5—C61.378 (5)
C2—O1—H1109.5N1—C7—H7119.3
C7—N1—C8121.8 (3)C1—C7—H7119.3
C6—C1—C2118.7 (3)C9—C8—C13117.1 (3)
C6—C1—C7119.5 (3)C9—C8—N1125.3 (3)
C2—C1—C7121.8 (3)C13—C8—N1117.7 (3)
O1—C2—C3118.3 (3)C10—C9—C8121.2 (3)
O1—C2—C1122.2 (3)C10—C9—H9119.4
C3—C2—C1119.5 (3)C8—C9—H9119.4
C4—C3—C2120.1 (3)C11—C10—C9120.3 (3)
C4—C3—H3119.9C11—C10—H10119.8
C2—C3—H3119.9C9—C10—H10119.8
C5—C4—C3121.0 (3)C12—C11—C10119.9 (3)
C5—C4—H4119.5C12—C11—H11120.0
C3—C4—H4119.5C10—C11—H11120.0
C4—C5—C6119.3 (3)C11—C12—C13119.9 (3)
C4—C5—H5120.3C11—C12—H12120.0
C6—C5—H5120.3C13—C12—H12120.0
C5—C6—C1121.2 (3)C12—C13—C8121.5 (3)
C5—C6—H6119.4C12—C13—Cl1118.8 (3)
C1—C6—H6119.4C8—C13—Cl1119.6 (2)
N1—C7—C1121.4 (3)
C6—C1—C2—O1179.4 (3)C7—N1—C8—C92.1 (5)
C7—C1—C2—O11.0 (5)C7—N1—C8—C13178.8 (3)
C6—C1—C2—C30.3 (5)C13—C8—C9—C100.3 (5)
C7—C1—C2—C3179.3 (3)N1—C8—C9—C10179.4 (3)
O1—C2—C3—C4179.8 (3)C8—C9—C10—C110.2 (5)
C1—C2—C3—C40.0 (5)C9—C10—C11—C120.3 (5)
C2—C3—C4—C50.2 (5)C10—C11—C12—C130.6 (5)
C3—C4—C5—C60.0 (5)C11—C12—C13—C80.7 (5)
C4—C5—C6—C10.4 (5)C11—C12—C13—Cl1177.5 (3)
C2—C1—C6—C50.6 (5)C9—C8—C13—C120.5 (5)
C7—C1—C6—C5179.0 (3)N1—C8—C13—C12179.7 (3)
C8—N1—C7—C1178.3 (3)C9—C8—C13—Cl1177.7 (2)
C6—C1—C7—N1176.3 (3)N1—C8—C13—Cl11.5 (4)
C2—C1—C7—N13.3 (5)
(1) top
Crystal data top
C17.12H19.35NOF(000) = 544
Mr = 255.13Dx = 1.135 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 14.3711 (8) ÅCell parameters from 15484 reflections
b = 6.4227 (4) Åθ = 3.0–27.5°
c = 17.9938 (9) ŵ = 0.07 mm1
β = 116.819 (4)°T = 296 K
V = 1482.20 (14) Å3Block, yellow
Z = 40.34 × 0.30 × 0.18 mm
Data collection top
Rigaku R-AXIS RAPID IP Area Detector System
diffractometer
3381 independent reflections
Radiation source: rotating anode X-ray tube2187 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
Absorption was corrected by ABSCOR
h = 1718
Tmin = 0.885, Tmax = 0.988k = 88
23765 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.190 w = 1/[σ2(Fo2) + (0.0905P)2 + 0.1529P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.002
3381 reflectionsΔρmax = 0.22 e Å3
194 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.023 (4)
Crystal data top
C17.12H19.35NOV = 1482.20 (14) Å3
Mr = 255.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.3711 (8) ŵ = 0.07 mm1
b = 6.4227 (4) ÅT = 296 K
c = 17.9938 (9) Å0.34 × 0.30 × 0.18 mm
β = 116.819 (4)°
Data collection top
Rigaku R-AXIS RAPID IP Area Detector System
diffractometer
3381 independent reflections
Absorption correction: multi-scan
Absorption was corrected by ABSCOR
2187 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.988Rint = 0.036
23765 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.190H-atom parameters constrained
S = 1.13Δρmax = 0.22 e Å3
3381 reflectionsΔρmin = 0.21 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.19001 (12)0.1106 (2)0.35065 (9)0.0918 (5)
H10.21120.17980.32310.138*
N10.20174 (11)0.4307 (2)0.26577 (9)0.0677 (4)
C10.09283 (12)0.4273 (3)0.33406 (9)0.0601 (4)
C20.12003 (14)0.2230 (3)0.36456 (10)0.0670 (5)
C30.07406 (16)0.1330 (3)0.41036 (12)0.0801 (5)
H30.09260.00110.43130.096*
C40.00164 (17)0.2414 (4)0.42460 (12)0.0844 (6)
H40.02870.17940.45510.101*
C50.02717 (16)0.4412 (3)0.39448 (12)0.0815 (6)
H50.07690.51310.40410.098*
C60.01872 (14)0.5321 (3)0.35013 (10)0.0692 (5)
H60.00010.66700.33030.083*
C70.13993 (12)0.5281 (3)0.28719 (9)0.0621 (4)
H70.12480.66720.27230.075*
C80.24819 (12)0.5348 (3)0.22120 (11)0.0639 (4)
C90.29023 (15)0.7326 (3)0.24101 (12)0.0741 (5)
H90.28600.80640.28390.089*
C100.33839 (15)0.8207 (3)0.19744 (12)0.0764 (5)
H100.36680.95330.21230.092*
C110.34605 (13)0.7192 (3)0.13224 (10)0.0651 (4)
C120.30135 (16)0.5221 (3)0.11268 (13)0.0770 (5)
H120.30280.44990.06840.092*
C130.25522 (15)0.4310 (3)0.15669 (13)0.0779 (5)
H130.22820.29710.14290.093*
C140.40060 (15)0.8134 (3)0.08426 (12)0.0746 (5)
C15A0.4587 (5)1.0294 (10)0.1274 (4)0.0765 (18)*0.402 (8)
H15A0.50831.00320.18410.115*0.402 (8)
H15B0.40801.12850.12610.115*0.402 (8)
H15C0.49421.08410.09740.115*0.402 (8)
C16A0.4906 (7)0.6690 (11)0.0906 (6)0.092 (2)*0.402 (8)
H16A0.52500.73060.06090.137*0.402 (8)
H16B0.46270.53590.06670.137*0.402 (8)
H16C0.53980.65150.14800.137*0.402 (8)
C17A0.3280 (6)0.8537 (15)0.0027 (4)0.099 (2)*0.402 (8)
H17A0.27310.94310.00530.149*0.402 (8)
H17B0.29890.72460.03020.149*0.402 (8)
H17C0.36440.92010.02970.149*0.402 (8)
C15B0.3564 (6)0.7232 (14)0.0095 (5)0.095 (2)*0.335 (7)
H15D0.38820.79640.03860.143*0.335 (7)
H15E0.28210.74200.03810.143*0.335 (7)
H15F0.37240.57750.00730.143*0.335 (7)
C16B0.3911 (8)1.0433 (14)0.0746 (7)0.119 (3)*0.335 (7)
H16D0.42821.10810.12810.179*0.335 (7)
H16E0.31891.08210.05080.179*0.335 (7)
H16F0.42021.08820.03860.179*0.335 (7)
C17B0.5155 (6)0.7413 (14)0.1247 (6)0.097 (3)*0.335 (7)
H17D0.54950.79550.09350.145*0.335 (7)
H17E0.51820.59190.12480.145*0.335 (7)
H17F0.55030.79160.18090.145*0.335 (7)
C15C0.4890 (9)0.938 (2)0.1377 (7)0.116 (4)*0.302 (8)
H15G0.52230.99310.10600.174*0.302 (8)
H15H0.53770.85410.18230.174*0.302 (8)
H15I0.46591.05140.16020.174*0.302 (8)
C16C0.3117 (6)0.9437 (15)0.0135 (5)0.083 (2)*0.302 (8)
H16G0.28291.04070.03810.125*0.302 (8)
H16H0.25790.85150.02300.125*0.302 (8)
H16I0.34031.01840.01770.125*0.302 (8)
C17C0.4359 (10)0.6434 (15)0.0439 (8)0.109 (3)*0.302 (8)
H17G0.47980.70280.02210.163*0.302 (8)
H17H0.37600.58070.00060.163*0.302 (8)
H17I0.47410.53950.08470.163*0.302 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1083 (10)0.0687 (8)0.1079 (11)0.0250 (7)0.0570 (9)0.0195 (7)
N10.0675 (8)0.0652 (8)0.0701 (9)0.0032 (7)0.0306 (7)0.0031 (7)
C10.0632 (9)0.0600 (9)0.0485 (8)0.0014 (7)0.0175 (7)0.0017 (6)
C20.0730 (10)0.0622 (10)0.0580 (9)0.0025 (8)0.0226 (8)0.0018 (7)
C30.0963 (14)0.0724 (11)0.0649 (10)0.0050 (10)0.0305 (10)0.0069 (9)
C40.0943 (14)0.0988 (15)0.0627 (10)0.0155 (12)0.0376 (10)0.0006 (10)
C50.0825 (12)0.0986 (15)0.0663 (10)0.0039 (11)0.0360 (10)0.0064 (10)
C60.0761 (11)0.0694 (10)0.0588 (9)0.0054 (8)0.0274 (8)0.0013 (8)
C70.0646 (9)0.0588 (9)0.0547 (8)0.0022 (7)0.0196 (7)0.0016 (7)
C80.0598 (9)0.0610 (9)0.0675 (10)0.0036 (7)0.0257 (8)0.0030 (7)
C90.0832 (12)0.0691 (11)0.0719 (11)0.0060 (9)0.0367 (10)0.0093 (8)
C100.0829 (12)0.0646 (10)0.0793 (12)0.0113 (9)0.0344 (10)0.0077 (9)
C110.0589 (9)0.0647 (10)0.0644 (9)0.0049 (7)0.0215 (8)0.0057 (7)
C120.0886 (12)0.0701 (11)0.0824 (12)0.0066 (9)0.0475 (11)0.0123 (9)
C130.0877 (12)0.0612 (10)0.0927 (13)0.0097 (9)0.0478 (11)0.0136 (9)
C140.0748 (11)0.0745 (11)0.0712 (11)0.0033 (9)0.0301 (9)0.0067 (9)
Geometric parameters (Å, º) top
O1—C21.350 (2)C14—C16A1.553 (7)
O1—H10.8200C14—C16C1.577 (8)
N1—C71.280 (2)C14—C15B1.617 (8)
N1—C81.421 (2)C14—C15A1.625 (6)
C1—C61.396 (2)C15A—H15A0.9600
C1—C21.408 (2)C15A—H15B0.9600
C1—C71.450 (2)C15A—H15C0.9600
C2—C31.393 (3)C16A—H16A0.9600
C3—C41.369 (3)C16A—H16B0.9600
C3—H30.9300C16A—H16C0.9600
C4—C51.382 (3)C17A—H17A0.9600
C4—H40.9300C17A—H17B0.9600
C5—C61.374 (3)C17A—H17C0.9600
C5—H50.9300C15B—H15D0.9600
C6—H60.9300C15B—H15E0.9600
C7—H70.9300C15B—H15F0.9600
C8—C131.381 (2)C16B—H16D0.9600
C8—C91.382 (2)C16B—H16E0.9600
C9—C101.380 (3)C16B—H16F0.9600
C9—H90.9300C17B—H17D0.9600
C10—C111.389 (2)C17B—H17E0.9600
C10—H100.9300C17B—H17F0.9600
C11—C121.391 (2)C15C—H15G0.9600
C11—C141.529 (2)C15C—H15H0.9600
C12—C131.372 (2)C15C—H15I0.9600
C12—H120.9300C16C—H16G0.9600
C13—H130.9300C16C—H16H0.9600
C14—C15C1.443 (10)C16C—H16I0.9600
C14—C17A1.459 (7)C17C—H17G0.9600
C14—C16B1.486 (9)C17C—H17H0.9600
C14—C17C1.519 (9)C17C—H17I0.9600
C14—C17B1.545 (8)
C2—O1—H1109.5C17B—C14—C16A27.0 (4)
C7—N1—C8120.45 (15)C15C—C14—C16C113.0 (6)
C6—C1—C2118.16 (15)C17A—C14—C16C27.5 (4)
C6—C1—C7120.36 (15)C16B—C14—C16C51.7 (5)
C2—C1—C7121.47 (15)C17C—C14—C16C108.6 (5)
O1—C2—C3118.66 (16)C11—C14—C16C103.4 (3)
O1—C2—C1121.68 (16)C17B—C14—C16C147.5 (4)
C3—C2—C1119.66 (17)C16A—C14—C16C136.1 (4)
C4—C3—C2120.23 (19)C15C—C14—C15B135.1 (5)
C4—C3—H3119.9C17A—C14—C15B36.0 (4)
C2—C3—H3119.9C16B—C14—C15B105.2 (5)
C3—C4—C5121.15 (19)C17C—C14—C15B45.8 (5)
C3—C4—H4119.4C11—C14—C15B112.7 (3)
C5—C4—H4119.4C17B—C14—C15B102.6 (4)
C6—C5—C4119.00 (18)C16A—C14—C15B77.6 (4)
C6—C5—H5120.5C16C—C14—C15B63.5 (5)
C4—C5—H5120.5C15C—C14—C15A25.6 (5)
C5—C6—C1121.79 (18)C17A—C14—C15A109.0 (4)
C5—C6—H6119.1C16B—C14—C15A37.6 (4)
C1—C6—H6119.1C17C—C14—C15A129.1 (5)
N1—C7—C1121.79 (15)C11—C14—C15A110.6 (2)
N1—C7—H7119.1C17B—C14—C15A79.7 (4)
C1—C7—H7119.1C16A—C14—C15A104.0 (4)
C13—C8—C9118.10 (16)C16C—C14—C15A89.2 (4)
C13—C8—N1118.58 (15)C15B—C14—C15A132.8 (4)
C9—C8—N1123.28 (15)C14—C15A—H15A109.5
C10—C9—C8120.23 (16)C14—C15A—H15B109.5
C10—C9—H9119.9C14—C15A—H15C109.5
C8—C9—H9119.9C14—C16A—H16A109.5
C9—C10—C11122.57 (17)C14—C16A—H16B109.5
C9—C10—H10118.7C14—C16A—H16C109.5
C11—C10—H10118.7C14—C17A—H17A109.5
C10—C11—C12115.93 (16)C14—C17A—H17B109.5
C10—C11—C14123.19 (16)C14—C17A—H17C109.5
C12—C11—C14120.88 (16)C14—C15B—H15D109.5
C13—C12—C11122.03 (17)C14—C15B—H15E109.5
C13—C12—H12119.0H15D—C15B—H15E109.5
C11—C12—H12119.0C14—C15B—H15F109.5
C12—C13—C8121.11 (17)H15D—C15B—H15F109.5
C12—C13—H13119.4H15E—C15B—H15F109.5
C8—C13—H13119.4C14—C16B—H16D109.5
C15C—C14—C17A127.1 (6)C14—C16B—H16E109.5
C15C—C14—C16B62.0 (7)H16D—C16B—H16E109.5
C17A—C14—C16B73.4 (6)C14—C16B—H16F109.5
C15C—C14—C17C109.6 (6)H16D—C16B—H16F109.5
C17A—C14—C17C81.2 (5)H16E—C16B—H16F109.5
C16B—C14—C17C133.7 (5)C14—C17B—H17D109.5
C15C—C14—C11111.5 (4)C14—C17B—H17E109.5
C17A—C14—C11112.0 (3)H17D—C17B—H17E109.5
C16B—C14—C11114.6 (4)C14—C17B—H17F109.5
C17C—C14—C11110.6 (4)H17D—C17B—H17F109.5
C15C—C14—C17B54.6 (7)H17E—C17B—H17F109.5
C17A—C14—C17B130.8 (5)C14—C15C—H15G109.5
C16B—C14—C17B112.0 (5)C14—C15C—H15H109.5
C17C—C14—C17B59.6 (6)C14—C15C—H15I109.5
C11—C14—C17B109.1 (3)C14—C16C—H16G109.5
C15C—C14—C16A80.2 (6)C14—C16C—H16H109.5
C17A—C14—C16A110.7 (4)C14—C16C—H16I109.5
C16B—C14—C16A129.1 (5)C14—C17C—H17G109.5
C17C—C14—C16A32.8 (4)C14—C17C—H17H109.5
C11—C14—C16A110.2 (3)C14—C17C—H17I109.5
C6—C1—C2—O1179.11 (16)C14—C11—C12—C13177.63 (18)
C7—C1—C2—O10.9 (2)C11—C12—C13—C82.1 (3)
C6—C1—C2—C30.9 (2)C9—C8—C13—C120.8 (3)
C7—C1—C2—C3179.06 (15)N1—C8—C13—C12178.56 (17)
O1—C2—C3—C4179.03 (17)C10—C11—C14—C15C34.4 (7)
C1—C2—C3—C41.0 (3)C12—C11—C14—C15C145.1 (7)
C2—C3—C4—C50.3 (3)C10—C11—C14—C17A114.8 (5)
C3—C4—C5—C60.5 (3)C12—C11—C14—C17A65.7 (5)
C4—C5—C6—C10.6 (3)C10—C11—C14—C16B33.7 (5)
C2—C1—C6—C50.1 (2)C12—C11—C14—C16B146.9 (5)
C7—C1—C6—C5179.85 (15)C10—C11—C14—C17C156.6 (6)
C8—N1—C7—C1178.82 (14)C12—C11—C14—C17C22.9 (6)
C6—C1—C7—N1174.33 (15)C10—C11—C14—C17B92.8 (5)
C2—C1—C7—N15.7 (2)C12—C11—C14—C17B86.6 (4)
C7—N1—C8—C13138.90 (18)C10—C11—C14—C16A121.5 (4)
C7—N1—C8—C943.5 (2)C12—C11—C14—C16A58.0 (5)
C13—C8—C9—C100.6 (3)C10—C11—C14—C16C87.3 (4)
N1—C8—C9—C10177.05 (16)C12—C11—C14—C16C93.2 (4)
C8—C9—C10—C110.7 (3)C10—C11—C14—C15B153.9 (4)
C9—C10—C11—C120.4 (3)C12—C11—C14—C15B26.6 (4)
C9—C10—C11—C14179.03 (17)C10—C11—C14—C15A7.0 (4)
C10—C11—C12—C131.9 (3)C12—C11—C14—C15A172.5 (3)

Experimental details

(2)(3)(4)(5)
Crystal data
Chemical formulaC22H29NO2C21H26BrNOC21H26ClNOC21.05H26.14BrNO
Mr339.46388.34343.88388.34
Crystal system, space groupTriclinic, P1Triclinic, P1Triclinic, P1Monoclinic, P21/c
Temperature (K)293296296296
a, b, c (Å)10.814 (2), 12.011 (2), 15.727 (3)10.7505 (6), 11.5008 (7), 16.3284 (8)10.7392 (12), 11.5369 (15), 16.1292 (19)18.0699 (14), 10.5997 (10), 10.3838 (9)
α, β, γ (°)89.25 (3), 81.21 (3), 89.97 (3)87.959 (1), 83.166 (2), 89.536 (2)88.032 (3), 82.446 (3), 89.642 (3)90, 92.858 (2), 90
V3)2018.7 (7)2003.20 (19)1979.8 (4)1986.4 (3)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.072.060.202.08
Crystal size (mm)0.34 × 0.26 × 0.060.18 × 0.17 × 0.040.15 × 0.07 × 0.030.20 × 0.14 × 0.06
Data collection
DiffractometerBruker SMART CCD area detector system
diffractometer
Rigaku R-AXIS RAPID IP Area Detector System
diffractometer
Rigaku R-AXIS RAPID IP Area Detector System
diffractometer
Rigaku R-AXIS RAPID IP Area Detector System
diffractometer
Absorption correctionMulti-scan
Absorption was corrected by SADABS
Multi-scan
Absorption was corrected by ABSCOR
Multi-scan
Absorption was corrected by ABSCOR
Multi-scan
Absorption was corrected by ABSCOR
Tmin, Tmax0.976, 0.9960.189, 0.9280.729, 0.9940.559, 0.884
No. of measured, independent and
observed [I > 2σ(I)] reflections
29048, 10049, 5423 19830, 9015, 4719 16014, 7172, 2946 18792, 4500, 1915
Rint0.0360.0540.0790.109
(sin θ/λ)max1)0.6680.6480.6020.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.128, 0.92 0.043, 0.143, 1.08 0.064, 0.164, 1.02 0.059, 0.147, 1.02
No. of reflections10049901571724500
No. of parameters482445461241
No. of restraints0001
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.160.87, 0.780.20, 0.190.30, 0.39
Absolute structure????


(6)(7)(8)(1)
Crystal data
Chemical formulaC21H27NOC22H27NO3C13H10ClNOC17.12H19.35NO
Mr309.44353.45231.67255.13
Crystal system, space groupOrthorhombic, Pna21Monoclinic, P21/cMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)296293293296
a, b, c (Å)12.4043 (6), 8.9918 (5), 16.6903 (7)6.1482 (4), 19.5491 (13), 17.0976 (13)4.6868 (1), 18.9497 (4), 12.8231 (2)14.3711 (8), 6.4227 (4), 17.9938 (9)
α, β, γ (°)90, 90, 9090, 109.453 (3), 9090, 105.968 (1), 9090, 116.819 (4), 90
V3)1861.59 (16)1937.7 (2)1094.92 (4)1482.20 (14)
Z4444
Radiation typeMo KαMo KαCu KαMo Kα
µ (mm1)0.070.082.880.07
Crystal size (mm)0.50 × 0.35 × 0.150.40 × 0.30 × 0.020.33 × 0.10 × 0.060.34 × 0.30 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID IP Area Detector System
diffractometer
Rigaku R-AXIS RAPID IP Area Detector System
diffractometer
Rigaku VM-SPIDER IP Area Detector System
diffractometer
Rigaku R-AXIS RAPID IP Area Detector System
diffractometer
Absorption correctionMulti-scan
Absorption was corrected by ABSCOR
Multi-scan
Absorption was corrected by ABSCOR
Multi-scan
Absorption was corrected by ABSCOR
Multi-scan
Absorption was corrected by ABSCOR
Tmin, Tmax0.798, 0.9900.627, 0.9980.340, 0.8370.885, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
17422, 2193, 1955 17354, 4410, 2938 12241, 1976, 1565 23765, 3381, 2187
Rint0.0320.0870.0460.036
(sin θ/λ)max1)0.6480.6490.6020.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.101, 1.06 0.072, 0.206, 1.03 0.056, 0.170, 1.08 0.057, 0.190, 1.13
No. of reflections2193441019763381
No. of parameters214272145194
No. of restraints1000
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.140.33, 0.270.33, 0.210.22, 0.21
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881???

Computer programs: Bruker SMART, PROCESS-AUTO (Rigaku, 1998), Bruker SAINT & SADABS, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), Siemens SHELXTL, ORTEP-3 (Farrugia, 2008).

Hydrogen-bond geometry (Å, º) for (4) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···N1A0.821.862.599 (4)149.3
O1B—H1B···N1B0.821.842.578 (4)149.2
 

Acknowledgements

This work was supported by Grant-in-Aid for Scientific Research from the Japan Society for Promotion of Science.

References

First citationAhmad, J. U., Nieger, M., Sundberg, M. R., Leskela, M. & Repo, T. (2011). J. Mol. Struct. 995, 9–19.  CAS
First citationAndes, R. V. & Manikowski, D. M. (1968). Appl. Opt. 7, 1179–1183.  CrossRef CAS PubMed Web of Science
First citationArmistead, W. H. & Stookey, S. D. (1964). Science, 144, 150–154.  CrossRef PubMed CAS Web of Science
First citationBregman, J., Leiserowitz, L. & Schmidt, G. M. (1964). J. Chem. Soc. pp. 2068–2085.  CrossRef Web of Science
First citationCohen, M. D., Hirshberg, Y. & Schmidt, G. M. (1964). J. Chem. Soc. pp. 2051–2059.  CrossRef Web of Science
First citationCohen, M. D. & Schmidt, G. M. (1962). J. Chem. Phys. 66, 2442–2447.  CrossRef CAS
First citationCohen, M. D., Schmidt, G. M. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051.  CrossRef Web of Science
First citationCrano, J. C. & Guglielmetti, R. J. (1999). Organic Photochromic and Thermochromic Compounds. New York, London: Plenum Press.
First citationDuerr, H. & Bouas-Laurent, H. (1990). Photochromism Molecules and Systems. Amsterdam: Elsevier.
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationFujiwara, T., Harada, J. & Ogawa, K. (2004). J. Phys. Chem. B, 108, 4035–4038.  Web of Science CrossRef CAS
First citationFukaminato, T., Sasaki, T., Kawai, T., Tamai, N. & Irie, M. (2004). J. Am. Chem. Soc. 126, 14843–14849.  Web of Science CrossRef PubMed CAS
First citationFukuda, H., Amimoto, K., Koyama, H. & Kawato, T. (2003). Org. Biomol. Chem. 1, 1578–1583.  Web of Science CSD CrossRef PubMed CAS
First citationHaneda, T., Kawano, M., Kojima, T. & Fujita, M. (2007). Angew. Chem. Int. Ed. 46, 6643–6645.  Web of Science CSD CrossRef CAS
First citationHarada, J., Fujiwara, T. & Ogawa, K. (2007). J. Am. Chem. Soc. 129, 16216–16221.  Web of Science CrossRef PubMed CAS
First citationHarada, J. & Ogawa, K. (2009). Chem. Soc. Rev. 38, 2244–2252.  Web of Science CrossRef PubMed CAS
First citationHarada, J., Ogawa, K. & Tomoda, S. (1997). Acta Cryst. B53, 662–672.  CSD CrossRef CAS Web of Science IUCr Journals
First citationHarada, J., Uekusa, H. & Ohashi, Y. (1999). J. Am. Chem. Soc. 121, 5809–5810.  Web of Science CSD CrossRef CAS
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
First citationJohmoto, K., Sekine, A., Uekusa, H. & Ohashi, Y. (2009). Bull. Chem. Soc. Jpn, 82, 50–57.  Web of Science CSD CrossRef CAS
First citationKawata, S. & Kawata, Y. (2000). Chem. Rev. 100, 1777–1788.  Web of Science CrossRef PubMed CAS
First citationMikami, M. & Nakamura, S. (2004). Phys. Rev. B, 69, 134205.  Web of Science CrossRef
First citationMizuno, H., Mal, T. K., Wälchli, M., Kikuchi, A., Fukano, T., Ando, R., Jeyakanthan, J., Taka, J. Shiro, Y., Ikura, M. & Miyawaki, A. (2008). Proc. Natl Acad. Sci. USA, 105, 9927–9932.  Web of Science CrossRef
First citationMoustakali-Mavridis, I., Hadjoudis, E. & Mavridis, A. (1978). Acta Cryst. B34, 3709–3715.  CSD CrossRef CAS IUCr Journals Web of Science
First citationMoustakali-Mavridis, I., Hadjoudis, B. & Mavridis, A. (1980). Acta Cryst. B36, 1126–1130.  CSD CrossRef CAS IUCr Journals
First citationOgawa, K., Kasahara, Y., Ohtani, Y. & Harada, J. (1998). J. Am. Chem. Soc. 120, 7107–7108.  Web of Science CSD CrossRef CAS
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
First citationSenir, A. & Shepheard, F. G. (1909). J. Chem. Soc. Trans. 95, 1943–1955.
First citationSenir, A., Shepheard, F. G. & Clarke, R. (1912). J. Chem. Soc. Trans. 101, 1950–1958.
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSiemens (1994a). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
First citationSiemens (1994b). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
First citationSiemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
First citationSousa, J. A. & Kashnow, R. A. (1969). Rev. Sci. Instrum. 40, 966–967.  CrossRef CAS Web of Science

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds