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The charge-flipping algorithm (CFA) is a member of the

diverse family of dual-space iterative phasing algorithms.

These algorithms use alternating modifications in direct and

reciprocal space to find a solution to the phase problem. The

current state-of-the-art CFA is reviewed and it is put in the

context of related dual-space algorithms with relevance for

crystallography. The CFA has found applications in many

crystallographic problems. The principal applications in

various fields are described with sections devoted to routine

structure solution, the solution of complex structures from

powder diffraction data, the solution of incommensurately

modulated crystals and quasicrystals, macromolecular crystal-

lography and single-particle imaging.
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1. Introduction

Structural crystallography is celebrating its centennial. During

the 100 years since its birth it has evolved into a rich science

with many subfields. Nevertheless, the bulk of the crystal-

lographic work is still the determination of atomic positions in

the structures of crystals. Also, despite the enormous progress

of alternative methods, the most successful method for struc-

ture analysis remains the analysis of diffraction data.

After the first structure solutions which used symmetry

arguments and trial-and-error methods, the Patterson method

became the first systematically used approach to structure

solution. When the statistical relationships between the

reflection intensities and their phases were discovered by

Cochran, Sayre, Karle, Hauptman and many others in the

1950s and 1960s, a rich field of direct methods was developed

(see e.g. Giacovazzo, 1998, for an overview of the subject). The

continuous development and growing power of direct

methods made them a leading tool for ab initio structure

solution, and their dominance seemed to be incontestable.

The development of crystallographic methods obtained an

important new impulse with the advent of powerful desktop

computers. Suddenly computationally expensive approaches

became available to everybody, and methods could be devel-

oped that make heavy use of computationally demanding

techniques, such as Fourier transform. The fruits of this

revolution are numerous. Direct methods were combined with

density modifications in direct space to produce the ‘Shake-

and-Bake’ (SnB) method (Weeks et al., 1993). A flavour of

direct methods based on Patterson-function arguments was

developed (Rius, 1993) and later transformed into an algo-

rithm cycling between direct and Fourier space (Rius et al.,

2007; Rius & Frontera, 2008; Rius, 2012). The ‘revenge of the

Patterson function’ was announced (Burla et al., 2004, 2006),

combining the superposition minimum function method

(Buerger, 1959) with new analysis and computer power, and
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applying the method to ab initio phasing of macromolecular

crystals. Yet another algorithm called VLD (Burla, Giacov-

azzo & Polidori, 2010; Burla, Giacovazzo & Polidori, 2011;

Burla, Carrozzini et al., 2011; Burla, Carrozzini et al., 2012) is

based on an iterative application of difference-Fourier

synthesis and real-space density modification techniques.

Next to all these algorithms, a class of so-called dual-space

algorithms emerged. This name might be somewhat confusing,

because many if not all of the algorithms mentioned in the

previous paragraph are in a certain sense dual-space.

However, in the dual-space algorithms sensu stricto neither of

the two spaces play a dominant role – neither the operation in

direct space nor in the Fourier space is, even in principle,

capable of solving the structure alone. In contrast, in direct

methods and all their flavors, the relationships derived in

Fourier space play the key role and Patterson methods are

predominantly direct-space methods. VLD is an algorithm

based on the iterative modification of the trial density map

using suitable Fourier synthesis, which makes it related to the

dual-space algorithms. However, the key step in VLD is the

use of special coefficients of the difference-Fourier synthesis

(Burla, Caliandro et al., 2010) that provide some structural

information even if the original density map used for the

difference synthesis is random. The expressions for these

difference Fourier coefficients contain a ‘flipping term’. The

name of this term can be a source of some confusion, but it

applies to Fourier coefficients and it is not related to the

charge-flipping operation intrinsic to the charge-flipping

algorithm. VLD is an interesting algorithm that shares several

concepts with the dual space-algorithms, but its key concept is

different and it thus does not belong to the class of dual-space

algorithms sensu stricto. Naturally, it is possible to mix the

concepts of various ‘pure’ structure-solution methods to

obtain new, more efficient hybrid algorithms.

The iterative dual-space phasing algorithms have gained

considerable interest in the crystallographic community over

the last few years. Among them the best known is the charge-

flipping algorithm (CFA; Oszlányi & Süto��, 2004). While not

the first published algorithm of this kind, it sparked consid-

erable interest in iterative dual-space methods for structure

solution and has marked the beginning of a broad interest and

development of this field in crystallography.

This review summarizes the development of the crystal-

lographic dual-space algorithms both prior to and after the

publication of the CFA, describes the CFA and related algo-

rithms, and gives an overview of the applications of these

algorithms to crystallographic problems. The text is organized

as follows. First a general overview of dual-space algorithms in

phase retrieval is presented with focus on algorithms relevant

for crystallography. Then a detailed description of CFA and its

variants is provided, followed by sections on two important

special topics: symmetry and missing data. Then the software

available for applications of CFA is described, and, finally,

applications of the algorithm are described in sections devoted

to general structure solution, modulated structures, powder

diffraction data, macromolecules and single-particle recon-

struction.

2. Dual-space algorithms in phase retrieval

The problem of phase retrieval is omnipresent in various fields

of physics and engineering. The problem is usually formulated

in the general space of square-integrable functions, but for our

purposes let us limit the definition to a discretely sampled

signal in Euclidean space En of dimension n (n ¼ 3 for a

typical crystal structure). Let � ¼ f�i; i ¼ 1 . . . Npg be a

(generally complex-valued) function sampled on a discrete n-

dimensional grid comprising Np pixels. Let �̂� be its (discrete)

Fourier transform. Let M ¼ hj; j ¼ 1 . . . Nh

� �
be the set of

indices hj, for which Fourier magnitudes jFoðhjÞj ¼ jF
o
j j are

known from experiment. Then the phase retrieval problem

can be formulated as: find � or an approximation to �, given

the set of known Fourier magnitudes (magnitude constraint)

and some additional information about �. This additional

information can be the support (i.e. a subset of �i is assumed to

be zero), positivity (�i>0 for all i), atomicity (the signal in � is

composed of a set of discrete peaks) or any other piece of

information. Since this additional information is in all practical

applications defined in the direct space of �, not in its Fourier

space, it will be denoted as a direct-space constraint. The set of

all � that fulfill the constraint is called the constraint set. Let us

denote by S the set of all � matching this direct-space

constraint, and by R the set of all � such that j�̂�jj ¼ jF
o
j j,

j ¼ 1 . . . Nh, i.e. matching the magnitude constraint. Then the

phase retrieval problem can be simply stated as: find some �
from S \ R. If such � exists, the problem is called consistent. If

the intersection of S and R is empty, the problem does not

have a solution and is called inconsistent. In such a case, it may

still be useful to search for � such that the sum of its distances

to the nearest points in S and R is minimal.

A similar problem is encountered in convex optimization

theory. The basic formulation of the problem is the same as

above, but the two constraints are not specifically the magni-

tude and direct-space constraint. Instead, a general pair of

constraints is considered, with the important property of

convexity. A constraint set A is convex if for any two elements

of the constraint set the following statement is valid

�; �0 2 A) �þ cð�0 � �Þ 2 A; for c 2 h0; 1i: ð1Þ

The convexity of the constraints allows important conclusions

to be made about the properties and convergence of algo-

rithms proposed for the solution of the convex feasibility

problem. Algorithms exist that always converge to a solution

of this problem. Unfortunately, the magnitude constraint

central to the phase-retrieval problem is obviously non-

convex, and the results of the convex optimization theory

cannot be carried over to the phase retrieval problem.

Nevertheless, it is useful to compare the algorithms developed

in these two frameworks. Analysis of the convex versions of

the algorithms gives valuable insight into the relationships

between various algorithms proposed in phase retrieval.

Before the algorithms relevant for crystallography are

summarized, we describe the specific forms of the magnitude

and direct-space constraints. The basic form of the magnitude

constraint set was defined above as the set of all � such that
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�̂�j ¼ jF
o
j j for all hj 2 M. The recipe to transform an arbitrary

function � into a function that belongs to the constraint set is

called projection operator or projector. The basic projector

onto the magnitude constraint set can be defined as follows

Fnew
j ¼

jFo
j
j

jFold
j
j
Fold

j if hj 2 M

Fold
j if hj =2 M

(
: ð2Þ

�new is then obtained as a Fourier transform of fFnew
j g. In other

words, the new � is obtained from the old by replacing the

known Fourier magnitudes with the observed ones, keeping all

phases and the unknown Fourier magnitudes intact. However,

alternative variants of this basic scheme have been proposed

and used. Elser (2003b) proposed to place an upper bound on

the magnitude of unknown Fourier coefficients

Fnew
i ¼

jFo
j
j

jFold
j
j
Fold

j if hj 2 M

c
jFbound

j
j

jFold
j
j

Fold
j if hj =2M and jFold

j j> cjFbound
j j

Fold
j otherwise

8>><
>>: : ð3Þ

In crystallography, suitable jFbound
j j can be conveniently esti-

mated from the Wilson plot. For normalized Fourier magni-

tudes (E values), Fbound ¼ 1 for all j. If c goes to infinity, this

operator transforms to equation (2). Another special instance

of this operator is the case c ¼ 0

Fnew
j ¼

jFo
j
j

jFold
j
j
Fold

j if hj 2 M

0 if hj =2 M

(
: ð4Þ

Yet another variant has been devised for practical applica-

tions. The Fourier magnitudes jFoj are known only for asso-

ciated scattering vectors up to a certain length hmax. The

sphere of known jFoj is denoted as the resolution sphere. In

practical applications, the set M of scattering vectors with

known Fourier magnitudes rarely covers all vectors in the

resolution sphere. For example, the scattering at very low or

zero angle can almost never be measured directly. Such

missing data inside the resolution sphere require a treatment

different from unmeasured data at high resolution. For this

purpose, a combination of projector (3) for data inside the

resolution sphere and (6) outside the resolution sphere is

useful

Fnew
j ¼

jFo
j
j

jFold
j
j
Fold

j if hj 2 M

c
jFbound

j
j

jFold
j
j

Fold
j if hj =2 M; hj < hmax; and jFold

j j> cjFbound
j j

Fold
j if hj =2 M; hj < hmax; and jFold

j j<cjFWilson
j j

0 otherwise

8>>>><
>>>>:

:

ð5Þ

Again, the constant c can be set infinite, in which case the

second condition is never met and the rule reduces to leaving

all unmeasured magnitudes inside the resolution sphere

unchanged, and setting everything outside the resolution

sphere to zero.

Equation (5) has a very important special case, namely

c ¼ 1 and hmax so small that the only coefficient with h< hmax

is the coefficient Fð0Þ. This case corresponds essentially to

equation (2), but instead of constraining Fð0Þ to zero, it is left

unchanged by the projector. This form was used in the original

article on the CFA (Oszlányi & Süto��, 2004)

Fnew
j ¼

jFo
j
j

jFold
j
j
Fold

j if hj 2 M

Fold
j if hj ¼ 0

0 otherwise

8<
: : ð6Þ

Among direct space constraints the most studied constraint in

phase retrieval is the support constraint. This constraint can be

applied if some part of � is known or assumed to be zero. This

is a relevant constraint in single-particle imaging. However, in

crystallography the distribution of scattering density in the

unit cell is usually unknown and no support constraint can be

defined. Instead, the positivity of the electron density can be

exploited, and the positivity constraint can be conveniently

defined. The corresponding projector is very simple

�new
i ¼

�old
i if �i � 0

0 if �i < 0

�
: ð7Þ

Such an operation has been frequently used in macro-

molecular crystallography as part of phase extension and

refinement procedures (solvent flattening; Wang, 1985). For ab

initio crystal-structure determination, however, it was found

that a more aggressive density modification technique is

needed

�new
i ¼

�old
i if �i � �

0 if �i < �

�
; �> 0: ð8Þ

Introduction of the free parameter � gives the algorithms

more freedom to find a balance between the perturbing and

stabilizing effect of the operation. Such an operation is the

basis of some of the EDM (electron-density modification)

techniques used in direct methods (e.g. Giacovazzo & Siliqi,

1997). In the context of ab-initio structure solution by dual-

space methods, it was first proposed by Shiono & Woolfson

(1992) and it is in the background of the charge-flipping

operation. As noted e.g. in Oszlányi & Süto�� (2008), this

operation is not distance-minimizing, i.e. the distance between

�new and �old is not the shortest possible distance between �old

and the constraint set. Such operators that have the properties

of a projection (i.e. repeated application of the operator has

the same effect as a single application), but are not distance

minimizing, are sometimes called pseudoprojections. For the

sake of simplicity, we will not make a distinction between true

distance-minimizing projections and pseudoprojections in this

text.

Operation (8) lends itself to a modification, which is not

possible with (7), namely

�new
i ¼

�old
i if j�ij � �

0 if j�ij < �

�
: ð9Þ

This constraint does not impose positivity on �, but only

eliminates low-density regions. It can be understood as a

‘dynamical support’ constraint, where, unlike in the standard

support constraint, the support is newly identified at every

iteration cycle as the region with high density. This operation
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is at the basis of the band-flipping approach (Oszlányi & Süto��,

2007).

Another direct-space constraint used in crystallography is

the atomicity constraint. This constraint is less easily

expressed by a simple recipe, but, in rough terms, the corre-

sponding projector consists of selecting a prescribed number

of peaks in �, and setting to zero all pixels outside these peaks

(Elser, 2003b; Feng, 2012).

Whatever the exact constraint and the recipe for the

projector, it can be symbolically denoted as P, and the trans-

formation of the image then as �new ¼ P�old. Such operators

can be combined to yield more complicated transformations of

�. A particularly important combination of projections is a so-

called overprojection

R�
¼ ð1þ �ÞP� �I; ð10Þ

where I is the identity operator. Geometrically, such over-

projection means that the shift from � to P� is continued in the

same direction by a fraction � of the original distance from �
to P�. The special case of � ¼ 1 is called reflector, and will be

denoted R without an explicit

superscript

R :¼ R1
¼ 2P� I: ð11Þ

We are now equipped to review

the different algorithms suggested

in the literature for phase

retrieval, and specifically for

crystal structure solution. In some

works, the iterative phase retrieval

algorithms are described as

explicit schemes for pixelwise

obtaining � of cycle nþ 1 from �
of cycle n. Such recipes do not

explicitly separate the combina-

tion of projectors acting on � from

the exact definition of the

projector, and sometimes cannot

even be expressed in the form of a

combination of projectors acting

on �. Another approach to

describe the algorithms is to define

the iteration scheme in terms of

operators acting on �ðnÞ to obtain

�ðnþ1Þ, and define the exact form of

the operators separately. Where

possible we will adopt this second

approach, and we will point out

cases where this approach leads to

difficulties. Explicit flowcharts of

the most important algorithms are

then summarized in Fig. 1.

The basic algorithm is the

alternating application of the

magnitude and direct-space

projections. Expressed as an

iteration scheme, this algorithm

can be written as

�ðnþ1Þ ¼ PMPD�
ðnÞ: ð12Þ

Here PM denotes the magnitude

projector and PD the direct space

projector. As for all algorithms

that will be presented in this

section, the iteration typically

starts from a random starting

image, but it is not strictly neces-
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Figure 1
Explicit schemes of the most important dual-space algorithms. Projections (6) and (8) were used for PM

and PD, respectively. �, !, ’ and  are intermediate images, �̂�, !̂!, ’̂’ and  ̂ their Fourier transforms,
respectively. The schemes correspond to equations (13) (CFA), 17 (HIO), 22 (AAR) and 19 (DM).



sary, and starting from non-random starting point changes

these algorithms from phase retrieval to phase refinement or

phase extension algorithms. This simple algorithm is known in

the phase-retrieval community as the Gerchberg–Saxton

(Gerchberg & Saxton, 1972) or error-reduction algorithm

(Fienup, 1982), and as the POCS (projections onto convex

sets) for the convex feasibility problems (Censor & Zenios,

1997). In crystallography this algorithm was used in conjunc-

tion with projection (8) under the name low-density elimina-

tion (LDE; Shiono & Woolfson, 1992). This method was

developed as a phase-extension method for macromolecular

crystallography, but the authors added a short comment

stating that one of the test structures could be solved ab initio

from random phases. This seems to be the first published

record of a crystal structure solved ab initio by dual-space

methods, although this possibility was considered much

earlier, for example in the ground-breaking paper by Fienup

(1982). A detailed account on the performance of LDE in ab

initio solution is given in Matsugaki & Shiono (2001).

The Gerchberg–Saxton/error reduction/LDE algorithm is

known to be prone to stagnation at false solutions. One way of

reducing the risk of stagnation is to replace the projectors by

reflectors. Replacing the direct-space projector PD by the

corresponding reflector yields this algorithm

�ðnþ1Þ
¼ PMRD�

ðnÞ: ð13Þ

This is the iteration scheme of the basic CFA (Oszlányi &

Süto��, 2004), with RD being the reflector of (8), and PM the

magnitude projection (6). As noted by Wu, Weierstall et al.

(2004), this algorithm is a special case of Fienup’s output–

output algorithm [Fienup (1982), equation (43) with � ¼ 2 and

with � being the set of all pixels, where �i <�].
A symmetric counterpart of this algorithm is the following

scheme

�ðnþ1Þ
¼ PDRM�

ðnÞ: ð14Þ

Here the reflector is applied in reciprocal space. The phase-

retrieval algorithm of Feng (2012) resembles very much this

type of algorithm, although the operator in Fourier space uses

a special version of the Fourier coefficients, yielding this

operator

Fnew
j ¼

ð2jFo
j j

2
� jFold

j j
2
ÞFold

j if hj 2 M

0 if hj =2 M

�
: ð15Þ

The structure of this operator resembles a reflector, but it is

not a reflector in a strict sense.

Another logical extension of the iteration scheme is to

replace both projectors by reflectors

�ðnþ1Þ ¼ RMRD�
ðnÞ: ð16Þ

It turns out that this scheme is difficult to use because of its

instability. The perturbation induced by the alternating

reflectors is too strong, and the solutions are not stable. This

scheme has been made to work only by replacing the magni-

tude reflector by a special ‘partial reflector’. This scheme,

denoted ‘F þ�F’ will be described in x3 [equation (28)].

In the phase-retrieval community it was quickly noticed that

the simple Gerchberg–Saxton iteration is not satisfactory, and

tends to stagnate. In pioneering work Fienup (1982) proposed

a set of more complicated iterations schemes, of which the

hybrid input–output (HIO) algorithm proved to be the most

successful. The hybrid input–output algorithm was defined as

an explicit recipe for pixelwise obtaining �new from �old.

Adapted to our notation, this scheme reads

�ðnþ1Þ
i ¼

ðPM�
ðnÞÞi if ðPDPM�

ðnÞÞi ¼ PM�
ðnÞ
i

�ðnÞi � �ðPM�
ðnÞÞi otherwise

�
; ð17Þ

where � is a free parameter of the algorithm, and ðPD�
ðnÞÞi

means the ith pixel of the image PD�
ðnÞ. This algorithm cannot

be expressed in the form of an operator acting on �ðnÞ

(Bauschke et al., 2003). Only if the direct-space constraint is

the support constraint (or another constraint for which the

projector is a linear operator) can the HIO algorithm be

expressed as a fixed-point operator (Bauschke et al., 2002,

2003)

�ðnþ1Þ
¼ fPD½ð1þ �ÞPM � I�Þ þ I � �PMg�

ðnÞ

¼
1

2
fRD½RM þ ð�� 1ÞPM� þ I þ ð1� �ÞPMg�

ðnÞ:

ð18Þ

If the second form of the iteration scheme (18) is combined

with positivity constraint (and not support constraint), yet

another algorithm called hybrid-projection reflection (HPR) is

obtained (Bauschke et al., 2003). The HIO algorithm, or

elements thereof, has been used in crystallographic phase

retrieval schemes (Wu et al., 2006; Lei, 2007).

Another algorithm that bears a strong relationship to the

HIO algorithm was proposed by Elser (2003b) and named the

difference map (DM). It is a three-parameter algorithm

defined by the following scheme

�ðnþ1Þ
¼ I þ � PDR

�M
M � PMR

�D
D

� �� �
�ðnÞ: ð19Þ

In the original work (Elser, 2003b) the optimal values of

parameters �M and �D were estimated to be equal to ��1 and

���1, respectively. In subsequent work (Elser, 2003c) a

slightly different choice of �D was suggested. It can be easily

shown (Elser, 2003b) that, for the case of the support

constraint only, the HIO algorithm is a special case of DM with

�M ¼ �
�1 and �D ¼ �1. This equivalence, however, does not

hold for the positivity or atomicity constraint. The difference

map was demonstrated to work for structure solution (Elser,

2003a). The specific form of the magnitude constraint was that

of equation (3), and the direct-space constraint was the

atomicity. Strangely, it appears that this concept was never

used to determine an unknown crystal structure, and the test

case published by Elser (2003a) so far remains the only

explicit application of this algorithm in crystallography. The

algorithm has found more applications in the phase retrieval

of non-periodic objects.

When the special value of � ¼ 1 is used in the second

equality of equation (18), we obtain the particularly simple

expression
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�ðnþ1Þ
¼

1

2
ðRDRM þ IÞ�ðnÞ: ð20Þ

This algorithm was first proposed and analyzed by Douglas &

Rachford (1956) for the solution of differential equations, and

adapted for convex sets by Lions & Mercier (1979). In the

phase-retrieval context it was suggested and analyzed by

Bauschke et al. (2004) under the name averaged alternating

reflections (AAR). The AAR algorithm has the interesting

property that, under certain circumstances, it is an important

special case of both the HIO algorithm and the difference

map. More specifically, assuming PD is a linear operator, the

AAR algorithm is the HIO algorithm with � ¼ 1, and the

difference map algorithm with � ¼ 1, �D ¼ �1 and �M ¼ 1.

Moreover, if, in addition to PD PM is also assumed to be linear

(keep in mind that this is not the case for the magnitude

projection), Elser’s difference map with the recommended

parameters �M ¼ �
�1 and �D ¼ ��

�1 becomes a weighted

average of two symmetric versions of AAR

�ðnþ1Þ
¼

1þ �

2

1

2
ðRDRM þ IÞ

	 

�ðnÞ

þ
1� �

2

1

2
ðRMRD þ IÞ

	 

�ðnÞ: ð21Þ

These relationships cannot be carried over directly to phase

retrieval, where the magnitude constraint and often the direct-

space constraints are not linear. Nevertheless, they indicate

that all these algorithms have a closely related structure.

Equation (20) has a symmetric counterpart, also obtained

from (21) with � ¼ �1

�ðnþ1Þ
¼

1

2
ðRMRD þ IÞ�ðnÞ: ð22Þ

The two schemes are very similar, but they are not the same

because the magnitude and direct-space constraints have a

very different structure. The latter scheme was used by

Oszlányi & Süto�� (2011) and shown to be superior to the

original CFA, especially when dealing with low-resolution

data.

So far, we have not considered the consistency of the phase-

retrieval problem and we have assumed the solution exists.

However, crystallographic phase retrieval is most often

inconsistent. This is caused by the limited resolution of the

diffraction data and by the presence of noise in the data.

Moreover, if constraint (8) is used the problem is inconsistent,

because we are approximating the true � by a function which

does not assume values between 0 and �. For inconsistent

problems, the AAR, HIO, DM and related algorithms have a

tendency to diverge from the solution (Marchesini, 2007; Fig.

2). This leads to a frequently observed problem of wandering

of the iterates away from the solution. The error-reduction

algorithm and CFA do not diverge and stay close to the

optimal point (i.e. at the place with the shortest distance

between the constraint sets), but they suffer from stagnation at

the local distance minima (Fig. 2c). An interesting algorithm

that does not diverge for inconsistent problems, but inherits

most of the ability of the AAR-related algorithms to escape

from the local minima, is the relaxed alternating averaged

reflection (RAAR) algorithm (Luke, 2005). This algorithm is a

one-parameter relaxation of the AAR algorithm
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Figure 2
Convergence of selected dual-space algorithms on a two-dimensional
example. (a) Two convex constraint sets with intersection. (b) Two non-
convex constraint sets with several intersections. (c) Two non-convex
constraint sets without intersection (infeasible problem). All iterations
start from the same point in the right part of the plots. Symbols represent
the actual iterates, the dotted lines are connecting consecutive iterates.
ER = error–reduction algorithm (12), CFA = charge-flipping algorithm
(13), AAR = averaged alternating reflections (20), RAAR = relaxed
averaged alternating reflections (23), DM = difference map [(19), with
�M ¼ �

�1, �D ¼ ��
�1].



�ðnþ1Þ
¼

1

2
�ðRDRM þ IÞ þ ð1� �ÞPM�

ðnÞ: ð23Þ

This algorithm has a fixed point, even if the corresponding

problem is inconsistent. So far, this algorithm has not been

tested in crystallographic context, but it is certainly an inter-

esting alternative to the established schemes.

Realistic phase retrieval problems operate in spaces of very

large dimensions. It is, however, very enlightening to observe

the behavior of the algorithms for a simple, two-pixel problem,

which can be represented in a plane. Several of the presented

algorithms (ER, CFA, AAR, RAAR, DM) were used to solve

a simple problem in two dimensions, where the two constraint

sets are represented by two curves. Fig. 2 shows the results for

a convex consistent problem, a non-convex consistent problem

with multiple solutions and a non-convex inconsistent

problem. Each symbol in the plots shows an iterate of the

algorithms. Successive iterates are connected with a line,

forming a path. For the convex consistent problem (Fig. 2a) all

algorithms converge to the correct solution. For the non-

convex consistent problem (Fig. 2b), ER and CFA stagnate at

local minima. However, the CFA is able to avoid some of the

local minima, and approaches the solution more than ER. All

other algorithms find one of the solutions. The non-convex

inconsistent problem is the most challenging. ER and CFA

approach the solution, but stagnate at local minima. Again,

CFA avoids some of the minima that are trapping the ER

algorithm. AAR, HIO and DM algorithms all diverge from the

solution. The RAAR algorithm converges close to the solu-

tion, and a point very close to the solution would be found by a

single application of one of the projections. Readers interested

in more details on the behavior of various algorithms for

general phase retrieval problems should refer to an excellent,

comprehensive and thorough overview by Marchesini (2007).

Most of the algorithms presented so far can be regarded as

special cases of a general, six-parameter iteration scheme of

the following form

�ðnþ1Þ
¼
�

1� �1 � �2ð ÞI þ �1 R
�D;1

D R
�M;1

M

� �
þ �2 R

�M;2

M R
�D;2

D

� ��
�ðnÞ: ð24Þ

Table 1 gives the parameters of this general algorithm that

correspond to the algorithms presented in this section. The

only algorithm that cannot be represented as a special case of

the above scheme is the general form of the HIO algorithm

[equation (17)] and the HPR algorithm [equation (18) with

positivity constraint].

This overview of algorithms should serve two main

purposes. It should give the reader an idea of the complexity

of the field, and point out the similarities, but also the differ-

ences between the algorithms. For this purpose, detailed

explicit flowcharts of the most important algorithms are also

summarized in Fig. 1. The overview should also make clear

that the potential and performance of various algorithms in

crystallographic context is far from being entirely understood

and explored. Finally, it should provide an interested reader a

starting point for experiments with various flavors of the

phase-retrieval algorithms.

3. Variants of the charge-flipping algorithm

In the previous section, various phase retrieval algorithms

were reviewed. Although several algorithms were applied to

crystallographic problems, the charge-flipping based algo-

rithms remain the most studied and the most applied. This

section therefore provides a detailed overview of variants and

flavors of the CFA.

The first and obvious improvement of the efficiency of the

algorithm is not related to the algorithm itself, but to the data

employed. The original paper on the CFA used the magnitudes

of the standard, non-normalized Fourier coefficients as input.

Using normalized Fourier coefficients (the E values) yields

sharper maps and thus a much better performance of the

algorithm. This general knowledge was quantitatively probed

by Oszlányi & Süto�� (2008), who showed, on a selected

example, a reduction of the number of iteration steps by about

two orders of magnitude on introducing normalized Fourier

coefficients. Other dual-space algorithms (Lei, 2007; Feng,

2012) directly employ the normalized coefficients.

As described in the previous section, the original version of

the CFA employed the iteration scheme (13) with the

magnitude projection (6), and direct-space projection (8). Due

to its crucial role in the CFA, we give here the corresponding

reflector of (8) explicitly

�new
i ¼

�old
i ; if �i � �
��old

i if �i < �

�
: ð25Þ

This is the so-called charge-flipping operation, which gave the

algorithm its name. The zero Fourier coefficient Fð0Þ deserves

special attention. This coefficient is never known experimen-

tally. Nevertheless, in the original formulation of the CFA

[equation (6)] it was left unconstrained. The variant with

constraining Fð0Þ to zero [i.e. using projector (4)] was also

sometimes used (Palatinus, 2004; Coelho, 2007a; Zhou &

Harris, 2008). However, leaving the Fð0Þ coefficient uncon-

strained seems to be the most efficient approach. The exact

form of the magnitude constraint (6) is important. For

example, replacing the constraint by the closely related form

(2) has a devastating effect on the efficiency of the algorithm.

The parameter � is the single free parameter of the algo-

rithm. Its value on absolute scale differs from one problem to
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Table 1
Dual-space iterative algorithms expressed as instances of the general
iteration scheme (24).

� is the free parameter of the algorithms.

�1 �M,1 �D,1 �2 �M,2 �D,2

Gerchberg–Saxton/error reduction 1 0 0 0 – –
Original CFA 1 0 1 0 – –
HIO† � ��1 0 �� 0 1
DM‡ � ��1 0 �� 0 ���1

AAR,§ equation (20) 1
2 1 1 0 – –

AAR, equation (22) 0 – – 1
2 1 1

RAAR �/2 1 1 1 � � 0 �1

† Strictly valid only for support constraint. ‡ With optimal parameters derived from
the assumption of locally orthogonal constraint sets. § Also HPR with � = 1.



another. However, it was shown (Oszlányi & Süto��, 2008) that �
can be conveniently expressed in terms of the standard

deviation of the reconstructed density

� ¼ ked�ð�Þ; ð26Þ

where �ð�Þ is the standard deviation of the distribution of the

density values. The optimal ked was shown to be most often

between 0.9 and 1.3.

Soon after the publication of the algorithm, first applica-

tions and improvements of the algorithm appeared. Wu,

Spence et al. (2004), along with the first application to

experimental data, proposed to replace the � constant in the

charge-flipping operation by a dynamical � determined newly

in every cycle so that a constant number of pixels is flipped.

While this modification does not seem to have an important

effect for realistic structure solution problems, it appears to

have a stabilizing effect for problems where the solution is less

stable. A short series of experiments with an applet named

Charge flipping (Schoeni & Chapuis, 2007) shows that in two-

dimensional problems the dynamical � often yields faster and

more stable convergence than static �.
Naturally, most efforts concentrated on the improvement of

the phasing power of the algorithm. These attempts focused

either on the modification of the constraints or of the iteration

scheme. The first class involves the so-called �-half variant

(Oszlányi & Süto��, 2005), where the magnitude constraint is

modified to [cf. equation (6)]

Fnew
j ¼

jFo
j
j

jFold
j
j
Fold

j if hi 2 M and strong

Fold
j expð�2 iÞ if hj 2 M and weak

0 otherwise

8<
: : ð27Þ

The threshold between weak and strong reflections is selected

so that a certain fraction of reflections – typically 20–30% –

are treated as weak. This modification dramatically improves

the performance of the algorithm.

Another improvement of the operation on the Fourier

magnitudes was the replacement of the simple magnitude

projection by this operation (Oszlányi & Süto��, 2008)

Fnew
j ¼

ð2jFo
j j � jF

old
j jÞ expð2�i’old

j Þ if hj 2 M

0 otherwise

�
: ð28Þ

Here ’old
j is the phase of the coefficient Fold

i . It can be regarded

as a standard F þ�F Fourier synthesis used commonly in

macromolecular crystallography. This operator resembles a

reflector, but a true reflector would have to change the sign of

all unobserved Fourier coefficients (hj =2M). The authors

recommend that a limit is imposed on the change of jFjj so that

jFo
j j �W< jFnew

j j< jF
o
j j þW, where W is a new free para-

meter of the algorithm. This modification provided similar or

somewhat better results than the �-half variant on a test

organic structure (Oszlányi & Süto��, 2008).

Oszlányi & Süto�� (2008) also proposed an improvement of

the direct-space operator. This variant, dubbed flip-mem,

defines a new direct-space modification which uses the density

of the last two cycles to produce the density of the current

cycle

�ðnþ1Þ
i ¼

�ðnÞi þ �ð�
ðnÞ
i � �

ðn�1Þ
i Þ if �ðnÞi � �

��ðnÞi if �ðnÞi < �

�
ð29Þ

with � a positive real number between 0.5 and 1. This modi-

fication cannot be expressed using an operator acting on �ðnÞ,
because it uses both �ðnÞi and �ðn�1Þ

i . It is interesting concep-

tually because, unlike most other modifications, it acts in direct

space and not in Fourier space. However, its efficiency is lower

than that of the previous modifications, and it requires addi-

tional memory for storing �ðn�1Þ.

The modifications described so far are aimed at improving

the efficiency of the algorithm. A variant called band flipping

(Oszlányi & Süto��, 2007) instead aims at lifting the requirement

of the positivity of the direct-space constraint. It employs the

‘dynamical support’ constraint (9) instead of the standard

constraint (8). The dynamical support constraint does not

enforce the positivity of �. The action of the corresponding

reflector (the band-flipping operator) is to change the sign of

all pixels with ��<�i<�. This variant has a weaker phasing

power than the standard variant, but is applicable to neutron

scattering densities with negative scatterers (Oszlányi & Süto��,

2007), or to the reconstruction of difference electron densities,

and hence to the solution of superstructures (Palatinus et al.,

2011).

An interesting ‘variant’ of the CFA was presented by Zhou

& Harris (2008) and named residue-based charge flipping

(RBCF). The authors propose a modification of the Fourier

space step of CF in a way that uses only a difference Fourier

transform

�ðnþ1Þ ¼ RD�
ðnÞ þ��; ð30Þ

where RD�
ðnÞ is the density after the flipping operation, and

�� is obtained as an inverse Fourier transform of residual

coefficients Ri

Rj ¼ ðjF
o
j j � jGjjÞ

Gj

jGjj
; ð31Þ

with Gj the Fourier coefficients of RD�. Furthermore, both �
and Fð0Þ are set to zero throughout the iteration. However, by

comparing equations (30) and (31) with the definition of

magnitude constraints (2) or (4), it becomes clear that

�� ¼ PMRD�
ðnÞ � RD�

ðnÞ and thus this ‘variant’ is (up to

numerical differences) exactly equivalent to the standard CFA

(13) with � ¼ 0. The authors do not specify how Rj is calcu-

lated, if Fo
j is not known. If in such cases Rj ¼ �Gj (i.e. Fo

i is

assumed to be zero), then it corresponds to the standard CFA

with magnitude constraint (4). If Rj ¼ 0 for unknown Fo
j , then

the magnitude constraint is of the form (2), but with Fð0Þ ¼ 0.

Since the authors do not compare the performance of RBCF

with the standard CFA, it is difficult to say if the differences

they observe in the behavior of RBCF from standard CFA

originate solely from using � ¼ 0 and Fð0Þ ¼ 0 or if they arise

due to another difference in implementation. As has been

mentioned several times, subtle differences in implementation

may sometimes lead to important differences in the results.

In their last publication on the CFA (Oszlányi & Süto��, 2011)

the authors combined the charge-flipping operation with the
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AAR iteration scheme (22). It was shown that the AAR

iteration scheme clearly outperforms the standard charge-

flipping scheme. The improvement is especially striking for

low-resolution data.

The tests used in Oszlányi & Süto�� (2008) and Oszlányi &

Süto�� (2011) used a particular form of intensity normalization

Eo
ðhÞ ¼ Fo

ðhÞ=fheavyðhÞ; ð32Þ

where fheavyðhÞ is the scattering factor of the heaviest atom in

the structure for the diffraction vector h. This scheme under-

normalizes the high-frequency Fourier coefficients, because

fheavyðhÞ is larger than the average f of all atoms, and it does

not correct for the fall-off of the Fourier magnitudes with

scattering angle due to the Debye–Waller factor. It is most

notable that this normalization scheme seems to perform

better than the ‘proper’ intensity normalization using the

Wilson plot (Palatinus & Houdková, unpublished results). The

reason for this difference is still not understood.

The simplicity of the CFA makes it easy to combine it with

other iteration schemes or completely different solution stra-

tegies. For example, in the single-particle imaging community,

CFA was combined with the HIO algorithm (x7.5). A special

case is the combination of the CFA with histogram matching in

powder diffraction (x7.3). Coelho (2007a) combined the CFA

with the tangent formula (i.e. classical direct methods) to

obtain an algorithm that merges the two worlds. The algorithm

proposed by Coelho contains a number of modifications with

respect to the original algorithm (see Table 1 in Coelho,

2007a), but the principal one is the introduction of the tangent

formula in the Fourier-space modification step. Instead of

keeping the phases of the Fourier coefficients intact [cf.

equation (2)], they are shifted towards phases obtained by

application of the tangent formula. With this approach, a

substantial improvement of performance was obtained. This

algorithm was implemented in the crystallographic suite

TOPAS (Coelho, 2007b) and has become popular especially in

combination with histogram matching for structure solution

from powder diffraction data.

The outcome of the CFA (as well as of most other iterative

algorithms) is not the best possible density, but a density that is

close enough to the optimal solution. The raw result of the

iteration can be improved by applying one or more cycles of

the LDE algorithm (Palatinus & Chapuis, 2007; Oszlányi &

Süto��, 2008; Fleischer et al., 2010), which brings the iterate

directly to the intersection of the two constraint sets, if the

problem is consistent, or to the local distance minimum for

inconsistent problems. A further improvement of the solution

can be obtained by using the maximum entropy method

(MEM) to optimize the iteration result. This method was

applied to powder diffraction data by Samy et al. (2010) to

obtain entirely model-free reconstructions of electron densi-

ties which revealed all the important details of the structure

including positional disorder.

4. Charge flipping and symmetry

The potential use of the symmetry information in the CFA has

been subject to a recurring debate over the years. All three

major publications on dual-space structure solution methods

(Matsugaki & Shiono, 2001; Elser, 2003b; Oszlányi & Süto��,

2004) note that symmetry has not been used in their tests, and

the latter two express the hope that the proper use of

symmetry will improve the power of the algorithms. However,

this was never accomplished, and application of the algorithms

without any symmetry constraints remains the most efficient

approach. Intuitively this fact is not difficult to understand,

although, to the knowledge of the author, no mathematically

rigorous analysis of the problem has yet been published. If

symmetry is imposed on the density, then all features must

develop from a random density exactly at the positions

determined by symmetry. Without symmetry restriction (i.e. in

‘P1’), the structure can develop anywhere in the unit cell,

giving the algorithm much more freedom to randomly develop

a ‘seed’ of the correct structure, and to converge to a complete

solution from that seed. Moreover, the � parameter of the

flipping operation must be set to find the balance between the

perturbing effect of the operation and the stability at the

solution. If the symmetry is fixed – for simplicity, let us

consider just the presence of the inversion center at the origin

– all Fourier-coefficient phases are fixed to either 0 or �.

Switching the phases of important reflections from 0 to �
requires an extremely strong perturbation of the density in

real space. If � is set so high as to permit such changes, it will be

too high to stabilize the iteration at the solution. If � is smaller,

the phases of the most important reflections will be fixed and

the iteration will stagnate. Interestingly, a similar observation

has also been made in the framework of direct methods

(Sheldrick & Gould, 1995; Burla et al., 2000) and a procedure

called RELAX, which relaxes the symmetry constraints on the

structure (Burla et al., 2002), has become a standard part of

the structure solution process in the program SIR2011 (Burla,

Caliandro et al., 2012).

An apparent contradiction to the arguments just stated is

the method of Eggeman et al. (2009), which used symmetry-

enhanced charge flipping to solve a two-dimensional structure

from zonal electron-diffraction data. The approach is as

follows: first run the CFA in P1 for a couple of cycles and then

symmetrize the density regularly every few cycles. This

approach stabilized and improved the solution. However, the

contradiction is only apparent. In the particular case of two-

dimensional electron-diffraction data, the problem is not to

reach convergence. The structure is very simple to solve, but it

is difficult to stabilize the solution due to the limited accuracy

and limited amount of data. In such cases, applying the

symmetry may indeed help to find the best solution and

stabilize it by adding more constraints to the problem. A

similar effect can be expected for structures solved from

powder diffraction data. Indeed, a possibility to partially or

completely impose the symmetry on the current iterate has

been implemented in the charge-flipping routine of the

program TOPAS-Academic (Coelho, 2007b), and is reported
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to have a stabilizing effect on the structure solution from low-

resolution or powder diffraction data (Coelho, 2012).

The fact that the algorithm performs best without any

symmetry restrictions can be turned into an advantage. If the

solution is found without symmetry restrictions, then it can be

analyzed for the presence of symmetry elements, and the most

probable space group of the structure can be deduced after the

solution (Palatinus & van der Lee, 2008). This approach is

fundamentally different from the standard space-group

determination using the symmetry and systematic absences in

diffraction data, because it uses the phased Fourier coeffi-

cients and not just their magnitudes. It thus does not suffer

from the ambiguities present in the standard approach and

allows, for example, an unambiguous discrimination between

space groups differing only by the presence/absence of an

inversion center. This approach, on the other hand, is less

sensitive to small deviations from higher symmetry which can

often be reliably revealed in Fourier space. Ideally, the best

estimate of the space-group symmetry should be obtained by

combining both methods. This algorithm can be especially

useful for structure solution from powder diffraction data,

where the space-group ambiguity can be much more severe

than in single-crystal diffraction (Palatinus & Damay, 2009).

5. The problem of missing data

Incomplete diffraction data are a severe problem for the

structure solution process regardless of the solution method.

Several methods were devised to overcome the problem. The

missing coefficients can be extrapolated by imposing the

positivity on the Patterson map (Karle & Hauptman, 1964;

Langs, 1998) or probabilistic formulae relating the unknown

magnitudes either to the experimental observations (David,

1987; Cascarano et al., 1991; Xu & Hauptman, 2000) or to the

Fourier magnitudes of a model density (Caliandro et al.,

2005a,b, 2009).

The dual-space algorithms are a Fourier-based technique

and thus the problem of an incomplete data set is probably

even more critical here than in other methods. In the original

formulation of the CFA the magnitude constraint had the

form (6), i.e. all unmeasured Fourier magnitudes except for

Fð0Þ were reset to zero. This severely hampers the algorithm’s

performance, even if only a few important low-order Fourier

magnitudes are missing. A partial remedy to the problem is to

replace projection (6) by projection (5), possibly with infinite

c. This modification solves the problem of missing low-order

data to a large extent. For cases of an extreme amount of

missing data, Palatinus et al. (2007) proposed a method based

on the optimization of the Patterson function by MEM. The

optimization of the Patterson map by MEM leads to an esti-

mation of the missing Fourier magnitudes, which can then be

used as experimental data in the charge-flipping iteration.

Using this technique test structures could be solved with more

than 50% reflections missing inside the resolution sphere. The

method is, however, relatively tedious, time consuming and

not very efficient in extrapolating the data to higher resolu-

tion.

Compared with the standard algorithm with the constraint

(5), significant improvement of performance with missing data

was reported with the AAR variant (Oszlányi & Süto��, 2011).

The published tests show that in some cases the AAR algo-

rithm can solve purely organic, non-centrosymmetric struc-

tures from low-resolution data (dmin = 1.5 Å), while the

standard algorithm fails already slightly above dmin = 1.2 Å.

For centrosymmetric structures, solution from data with dmin =

1.6 Å was easily possible with AAR, while it was very difficult

or impossible with standard CFA.

Despite all these improvements, the problem of missing

data remains important. In daily practice, severely incomplete

data sets are probably a more frequent reason for the failure

of the algorithm than an intrinsic complexity of the crystal

structure.

6. Software

No modern computing method can hope for widespread usage

without publicly available software implementing the method.

It is likely one of the key reasons for the success of the CFA

that a rich collection of such software is available. Quickly

after publication, the CFA has become available for users as a

module in the crystallographic software package PLATON

(Spek, 2003), and in the computer program BayMEM (van

Smaalen et al., 2003). The latter program is adapted for work

in superspace, and it was thus quickly possible to apply the

CFA to the solution of incommensurate structures. The CFA

was also implemented in the program TOPAS (Coelho,

2007b). This program contains an implementation of CF with

several special features (see xx3 and 4). It is focused on

structure solution from powder diffraction data and includes

the powder CFA with histogram matching (x7.3), but can be

also used with single-crystal data. A basic, but functional

charge-flipping routine is included in the set of tools smtbx

(small molecule toolbox; Bourhis et al., 2009), which is

distributed with the crystallographic package Olex2 (Dolo-

manov et al., 2009).

In 2006 a dedicated program named Superflip was devel-

oped and was published the following year (Palatinus &

Chapuis, 2007). This program allows the application of the

CFA in arbitrary dimensions, allowing the solution of ordinary

periodic structures as well as modulated structures and

quasicrystals (see x7.2). The program also contains most of the

modifications of the charge-flipping algorithm described in x3

(except for the flip-mem variant and the combination of CFA

with a tangent formula), and the symmetry-determination

algorithm due to Palatinus & van der Lee (2008). It also

contains the general, six-parameter iteration scheme [equa-

tion (24)], allowing the application of a wide variety of itera-

tive algorithms (Table 1). Superflip is interfaced from a

number of crystallographic packages including JANA2006

(Petřı́ček et al., 2006), WinGX (Farrugia, 2012), Crystals

(Betteridge et al., 2003) or FullProf (Rodrı́guez-Carvajal,

2012). The script flipsmall:py, written by A. van der Lee,

can be used to interface the program with Olex2 (Dolomanov

et al., 2009). The web page http://www.cbs.cnrs.fr/SP/crystal/
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SUPERFLIP/ contains a set of tools to facilitate the applica-

tions of Superflip in macromolecular crystallography.

7. Applications

7.1. General structure solution

When the CFA was published, the authors themselves were

quite skeptical about its competitiveness with state-of-the-art

software and methods. Even today it probably remains true

that the CFA cannot compete with the best available methods

when it comes to the solution of very large, non-centrosym-

metric, light-atom structures. However, these structures

represent only a small fraction of structures encountered in

daily crystallographic practice. When it comes to other

problems, charge flipping does offer a number of features that

make it attractive, be it the speed, the quality and clarity of

solutions, or the fact that it does not require knowledge of the

space group and composition. In daily practice, users’

preferences tend to be very subjective and unpredictable, and

the preference of one method over another is often deter-

mined not only by the general power of the method, but also

by the type of problems to be solved, by tradition, habits,

aesthetic reasons, the ease of use, and by the details of

implementation of the method in a computer program.

For all these reasons it is essentially impossible to say which

structure solution method is the best. Ideally, the practicing

crystallographer should be familiar with a whole set of

methods, and combine them to obtain the best results. van der

Lee (2009) tested automated structure solution work flow on a

large set of standard crystal structures using various methods

and programs, and found that statistically the ability to find a

solution is comparable for direct methods and the CFA, but

the best results can be obtained by combining the results from

both approaches. Regardless of the comparison, it is clear by

now that the CFA has found its users. The first application of

the algorithm to experimental data was presented by Wu,

Spence et al. (2004), followed by the solution of an interesting,

albeit already known, structure with strong pseudosymmetry

(Oszlányi et al., 2006). The method gained broader acceptance

after it became available in user-friendly crystallographic

software (x6). The first published periodic structure solved by

the CFA and not known previously appears to be acetone 2-

nitrophenylhydrazone, published in February 2007 (Wardell et

al., 2007), although unknown aperiodic structures had already

been solved and published in 2006 (x6). The number of solved

structures has grown steadily since 2007. It is impossible to say

exactly how many published structures were solved by charge

flipping, because many references to charge flipping are

hidden as references to the software packages, but their

number reaches certainly hundreds per year.

7.2. Incommensurately modulated structures and quasicrys-
tals

For periodic structures, dual-space methods are one of

several possibilities. For aperiodic structures, the situation is

different. Aperiodic structures – incommensurately modu-

lated structures or quasicrystals (Janssen et al., 2007; van

Smaalen, 2007) – are usually described in higher-dimensional

superspace, where the atoms are not point-like objects, but are

extended along the perpendicular dimensions, forming so-

called atomic domains. Although extensions of direct methods

to modulated structures have been proposed (Hao et al., 1987;

Xiang et al., 1990; Fan et al., 1993), they have not reached wide

use in practice and modulated structures used to be solved in a

two-step procedure. First, the average structure was solved

from main reflections only, and then the modulation was

determined essentially by trial and error. In quasicrystal

research the situation was similar, and insight into the struc-

tures of quasicrystals was often gained through the solution of

approximant structures. The advent of dual-space methods

changed the situation a lot. They do not impose any restriction

on the form of the reconstructed scattering density, and can

thus be thus directly generalized to superspace. The general-

ization is very straightforward. Nothing at all must be changed

in the iteration scheme or in the form of the magnitude or

positivity constraints [equations (6) and (8)]. The only differ-

ence is that � is sampled not on a three-dimensional grid, but

on a (3þ d)-dimensional grid, where d depends on the rank of

the modulation.

The first successful attempts to solve quasicrystal structures

with dual-space algorithms predate the publication of the

CFA, and employ the LDE algorithm (Takakura et al., 2001).

The success rate of the solution was relatively low and a

multisolution strategy had to be employed. The success rate

was low mainly because the phases of the Fourier coefficients

were fixed to 0 or � during the iteration.

The possibility of applying the CFA to incommensurately

modulated structures was demonstrated very soon after its

publication (Palatinus, 2004). It was demonstrated that the

algorithm can solve many modulated structures directly in

superspace without the need to first determine the average

structure. Soon, the method was successfully applied to the

first unknown modulated structures (Zuniga et al., 2006;

Palatinus et al., 2006). The method was also quickly applied to

decagonal quasicrystals (Fleischer & Steurer, 2007; Strutz &

Steurer, 2007; Katrych et al., 2007). In the latter work it was

demonstrated how using only an approximant to gain insight

into the true quasicrystal structure may sometimes lead to

incorrect conclusions.

Thanks to the implementation of the CFA in the program

Superflip, which permits the direct solution of structures in

superspace, charge flipping has evolved to a method of first

choice for ab-initio solution of complex incommensurately

modulated structures and quasicrystals.

7.3. Powder diffraction data

Structure from powder diffraction data is a difficult problem

for all but very simple structures. Most of the new structures

are nowadays solved by direct-space methods, which employ

global minimization techniques to optimize the structure

model against a powder diffraction diagram (for an overview

see e.g. Cerny & Favre-Nicolin, 2007). The complexity of these

lead articles
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approaches, however, tends to grow exponentially with the

number of degrees of freedom in the model. Therefore, they

are very well suited for structures with large known molecular

fragments or other motifs. Cases where the complexity of the

structure makes it inaccessible for these techniques are still

not rare.

The application of truly ab initio methods to the structure

solution from powder data is hindered by the fact that the one-

dimensional powder diffraction pattern contains overlapping

peaks, and hence the intensities of individual reflections are

not known. This problem of reflection overlap is central to the

solution from powder diffraction data. The first method

addressing the overlap problem in combination with charge

flipping was proposed by Wu et al. (2006). The key difference

of their method from the basic algorithm was the addition of

an intensity-repartitioning step during the Fourier-space part

of the iteration cycle. In this step, instead of the standard

operation (6) the following modification is used1

Fnew
j ¼

jFo
j
j

jFold
j
j
Fold

j if hj 2 M and not overlappedffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
overlap

jFo
j
j2P

overlap

jFold
j
j2

vuut Fold
j if hj 2 M and overlapped

0 otherwise

8>>>><
>>>>:

:

ð33Þ

The second possibility is employed if certain reflections belong

to a group of overlapping reflections, and thus only the sum of

their intensities is known. Then the magnitude of Fold
j is not

replaced by the experimental magnitude Fo
j (which is not

known), but it is only scaled so that the sum of all jFnew
j j

2

within one overlap group is constant and equal to the sum of

jFo
j j

2 known from the experiment. The method was shown to

work on a series of simple test cases and on two unknown

structures of tetragonal tungsten bronzes. Unfortunately, the

performance of the modified algorithm is not compared with

the standard algorithm without the treatment of the over-

lapping reflections. The unmodified algorithm was shown to

work well several times for powder diffraction data if the

structures are not too complex and if the degree of overlap

does not exceed the critical limit (Baerlocher, Gramm et al.,

2007; Le Bail et al., 2009). It is thus difficult to judge how

important the repartitioning scheme employed in this algo-

rithm was for the solution of the examples presented.

Another approach to the repartitioning problem was

adopted by Baerlocher, McCusker & Palatinus (2007). In

order to obtain a more reliable partitioning of the overlapped

reflections, the charge-flipping iteration was combined with

additional external information, namely with the known

histogram of the density. The histogram matching procedure

was first adopted in macromolecular crystallography as part of

the phase-refinement process (Zhang & Main, 1990), but here

it was employed to update both the phases and intensities of

the overlapping reflections. The powder charge-flipping

scheme is shown in Fig. 3. The histogram-matching procedure

is applied after every n cycles of the basic charge-flipping

iteration, n being typically 10–50. The current density values

are modified by a piece-wise linear transformation to match

the expected density histogram. Such modified density is

Fourier-transformed to yield a new set of Fourier coefficients

FHM
j . Then an operation analogous to equation (33) is

performed, but using FHM
j instead of Fold

j for the repartitioning

Fnew
j ¼

jFo
j
j

jFHM
j
j
FHM

j if hj 2 M and not overlappedffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
overlap

jFo
j
j2P

overlap
jFHM

j
j2

s
FHM

j if hj 2 M and overlapped

0 otherwise

8>>><
>>>:

:

ð34Þ

Thus the overlapped reflections are repartitioned so that the

sum of their squared magnitudes equals the experimentally

determined sum, but their ratios correspond to the ratios of

FHM
j obtained after the histogram matching step. As the

histogram matching procedure is expected to improve the

current �, also the ratios of the Fourier magnitudes of the

overlapped reflections should be improved, and the whole

procedure should lead to a better repartitioning of the over-

lapped intensities. After the histogram matching step, the

standard charge-flipping iteration continues with the updated

magnitudes of the Fourier coefficients.
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Figure 3
The flow chart of the powder CFA with histogram matching. For the
detailed description of the histogram matching step, see Baerlocher,
McCusker & Palatinus (2007), equations (1), (2) and (3).

1 In the original publication (Wu et al., 2006), the factor in the second of the
three options in equation (33) is incorrectly defined asP

overlap jF
o
j j=
P

overlap jF
old
j j. This is a typo in the publication, and the form

presented here in equation (33) is the correct form used in the algorithm (Wu,
2012).



This method was shown to be a very powerful extension of

the standard CFA. Baerlocher, McCusker & Palatinus (2007)

have demonstrated the solution of several structures, ranging

from relatively simple ones to quite complex structures like

the zeolite ZSM-5 with 38 atoms in the asymmetric unit (288 in

the unit cell). This method was then successfully used to solve

a number of structures, mainly of zeolites and other frame-

work materials (Massueger et al., 2007; Koyama et al., 2008;

Xie et al., 2009; McCusker et al., 2009; Liu et al., 2009; Park et

al., 2011; Gandara et al., 2012).

Despite the substantial improvement, the powder CFA was

not sufficiently strong to solve some of the true challenges of

contemporary powder diffraction, especially among zeolite

structures. Means were therefore sought to further improve

the algorithm. A solution was found in incorporating the

additional knowledge about the structures from high-resolu-

tion transmission electron microscopy (HRTEM). Properly

acquired HRTEM images on sufficiently thin samples at

special projections allow estimating the phases of corre-

sponding Fourier coefficients (Zou et al., 2011). Combining the

estimated phases with the magnitudes of a few low-resolution

reflections yields a low-resolution electron density map – a

structure envelope (Brenner et al., 2002). Both the phases and

the envelope can be used as additional information in the

charge-flipping iteration. The complete flow chart of the

method is complicated, and details can be found in the original

works (Baerlocher et al., 2007a; Baerlocher et al., 2008;

McCusker & Baerlocher, 2009). In general terms, the envelope

is used to eliminate the density outside the envelope. The

known phases are used to generate a non-random starting

model. In practice, the known phases are fixed for a certain

number of iteration cycles, and then released to give the model

more freedom to develop, and to correct possible errors in the

supposedly known phases. Using this combination of charge

flipping, histogram matching, structure envelope and known

phases, some of the most complex zeolite structures could be

elucidated (Baerlocher, Gramm et al., 2007; Baerlocher et al.,

2008; Koyama et al., 2008; Sun et al., 2009).

A curious but surprisingly effective method for the deter-

mination of a subset of Fourier phases directly from the

powder diagram was developed by Xie, McCusker & Baer-

locher (2011). They noticed that quite reliable Fourier phases

can be obtained by running the CFA in two dimensions using

only reflections from a planar section passing through the

origin of reciprocal space. The result of such a reconstruction

is the structure projection on the selected plane. In the tests on

centrosymmetric zeolite structures, this technique yielded

� 60% of correctly determined phases, corresponding to

� 75% of the scattering power. These numbers are compar-

able with the accuracy obtained from HRTEM images.

Intuitively, this technique should work best for special struc-

ture projections with many empty spaces between projected

atomic positions. Such projections yield the strongest reflec-

tion intensities. This intuition must be correct to a certain

extent but, surprisingly, the published tests do not show this

effect. Comparable results were obtained for different

projections with different contrast. The method has been used

to solve an unknown zeolite SSZ-82 (Xie, Baerlocher &

McCusker, 2011). Its full potential and limitations still remain

to be explored.

It is worth noting that most of the variants and improve-

ments of the basic CFA described in x3 are not useful for

powder diffraction data. Even the most complex structures

solved from powder data would be very easy to solve from

single-crystal data. What is needed is more external informa-

tion that allows us to augment the degraded intensity infor-

mation in the powder diagram. Histogram matching, structure

envelope and known phases are efforts going in this direction,

as well as the application of symmetry constraints during the

iteration (see x4).

7.4. Macromolecular crystallography

The ab-initio structure solution of macromolecular crystals

is very challenging due to the large number of mainly light

atoms in the unit cell, and generally low-resolution diffraction

data. With low-resolution data the atomicity of the corre-

sponding density map is not guaranteed, and the amount of

nearly zero electron density is insufficient for the use of

positivity projection in dual-space algorithms. If high-resolu-

tion data are available, methods for ab initio phasing of

macromolecular crystals exist (Weeks & Miller, 1999; Foadi et

al., 2000; Burla et al., 2004, 2006; Sheldrick, 2008). The CFA

was shown to also be applicable in these cases, if at least a

couple of heavy atoms (calcium or heavier) are present

(Dumas & van der Lee, 2008). The best results were obtained

with the �-half variant [equation (27)], with normalized

diffraction data, and with relatively high ked ’ 1:2.2

Another commonly appearing task in macromolecular

crystallography is the solution of heavy-atom substructures

from anomalous or isomorphous difference data. Such data

can be understood as being very noisy corresponding only to

the heavy-atom substructure. The CFA was applied to a

selection of 5 such data sets comprising between 8 and 120

heavy atoms in the asymmetric unit (Dumas & van der Lee,

2008), and a complete solution was found in all of them. It

appears that the CFA can compete with established methods

of substructure phasing for complex substructures. Interest-

ingly, the procedure fails to solve some simple test cases,

indicating that a certain complexity of the structure is neces-

sary, and too few heavy atoms in the unit cell do not provide

sufficient support to stabilize the solution.

7.5. Single-particle imaging

Imaging of non-periodic objects is not a crystallographic

problem in the strict sense, but the two fields share a lot of

their experimental and computational aspects. Charge flipping
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2 In the paper, the reported optimal ked is 1.3. This value is found if �ð�Þ is
calculated only once at the begining of the iteration and is assumed to be
constant during the iteration. This method was used in the version of Superflip
used in the tests, and is valid for the standard CFA and for the magnitude
projector (6). If, however, the Fourier magnitudes change during the iteration
[as with equation (5) or with the AAR scheme], �ð�Þ should be updated every
cycle. With this approach it was found that optimal ked is actually 1.2 instead of
1.3 (Dumas, 2011).



has also found some applications in this field and it therefore

deserves a short notice. The first applications of the CFA to

the solution of the phase problem of non-periodic images are

due to Wu and coworkers (Wu, Weierstall et al., 2004; Wu &

Spence, 2005b). Traditionally, the phase retrieval algorithms

required some sort of object support to be known or esti-

mated, and the phase retrieval then used the support

constraint. The attractive feature of the CFA is that the

support can be found dynamically during the iteration.

Because the basic CFA is prone to stagnation, it was combined

with the HIO algorithm. The charge-flipping part was used to

determine the support of the particle, and the HIO algorithm

then allowed the determination of the fine structure inside the

support. Later various modifications of this basic principle

were proposed for phasing single-particle diffraction data (Wu

& Spence, 2005a; Fung et al., 2009). Saldin and coworkers used

the basic CFA in combination with sophisticated data-treat-

ment methods to reconstruct single-particle images from

various types of diffraction patterns of many particles (Saldin,

Poon et al., 2010; Saldin, Shneerson, Howells et al., 2010;

Saldin, Shneerson, Starodub et al., 2010; Saldin et al., 2011).

Recently, Dumas et al. (2013) demonstrated on simulated

noisy data that the CFA alone, especially in its F þ�F or

AAR variant, is capable of reconstructing three-dimensional

images of non-periodic objects from their three-dimensional

X-ray diffraction patterns. Examples range from small poly-

peptides up to a vault or mimivirus. No information on the

support is needed and the algorithm is robust against the

omission of the central part of the diffraction pattern.

In the single particle imaging field, the Fienup’s HIO

algorithm and related algorithms are state-of-the-art. Charge

flipping contributed to the field mainly by drawing attention to

the fact that the positivity projector/reflector is strong enough

to allow phase retrieval without the need to explicitly deter-

mine the support.

8. Conclusions and outlook

In the eight years since its publication, the CFA has marked

the field of crystallography with dozens of reacting metho-

dological publications and hundreds of solved crystal struc-

tures. In retrospect, it may be tempting to claim that the

algorithm did not bring anything new. It was not the first

suggested dual-space algorithm for crystal structure solution,

the potential of the positivity projection with threshold � has

already been demonstrated through the LDE method, and the

role of reflectors in improving the power of dual-space algo-

rithms was known from other fields. While all this is true, the

indisputable contribution of the CFA is that it combined all

these elements in a single, extremely simple, yet elegant and

powerful method. Probably due to its simplicity, elegance and

clarity of the presentation it was the first algorithm of its kind

that attracted the attention of the wide crystallographic

community and soon resulted in successful applications to real

problems. The authors of the algorithm also spent consider-

able effort to provide thorough tests of the algorithm and its

variants. That simplified greatly the implementation of the

algorithm. Therefore, dedicated user-friendly software

appeared quickly, and the method became available to a broad

audience. Thanks to the combination of all these aspects,

charge flipping meant a breakthrough for dual-space methods

in crystallography.

The main problem in the development of phase-retrieval

algorithms is that no solid mathematical theory is available

that would allow the determination of the perfect algorithm.

Much insight can be gained from analogies with convex

optimization theory, but the results are not directly applicable.

Moreover, an algorithm is not just an iteration scheme, but a

combination of the iteration scheme and the exact definition

of the constraints and projections. A successful algorithm is a

fine balance between all components, and a small, seemingly

unimportant change can result in a change of efficiency by

several orders of magnitude. Therefore, it can be hoped that

even more powerful algorithms will be discovered in the

future, and iterative dual-space phasing algorithms will

become, together with other structure solution methods, a

standard tool among the methods used by crystallographers

for crystal structure solution.

The author is indebted to Russel Luke (University of

Göttingen) for helpful discussions and useful informations

about dual-space algorithms. The author would also like to

express his thanks to Gabor Oszlányi (Wigner Research

Centre for Physics, Hungarian Academy of Sciences) for his

readiness to help and openness to share ideas in many

discussions over the past years.
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Chem. Soc. 128, 8392–8393.
Palatinus, L. (2004). Acta Cryst. A60, 604–610.
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
Palatinus, L. & Damay, F. (2009). Acta Cryst. B65, 784–786.
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