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Several methods for absolute structure refinement were tested

using single-crystal X-ray diffraction data collected using

Cu K� radiation for 23 crystals with no element heavier than

oxygen: conventional refinement using an inversion twin

model, estimation using intensity quotients in SHELXL2012,

estimation using Bayesian methods in PLATON, estimation

using restraints consisting of numerical intensity differences in

CRYSTALS and estimation using differences and quotients in

TOPAS-Academic where both quantities were coded in terms

of other structural parameters and implemented as restraints.

The conventional refinement approach yielded accurate

values of the Flack parameter, but with standard uncertainties

ranging from 0.15 to 0.77. The other methods also yielded

accurate values of the Flack parameter, but with much higher

precision. Absolute structure was established in all cases, even

for a hydrocarbon. The procedures in which restraints are

coded explicitly in terms of other structural parameters enable

the Flack parameter to correlate with these other parameters,

so that it is determined along with those parameters during

refinement.
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1. Introduction

When applied in crystallography the term absolute structure

refers to the spatial arrangement of the atoms of a physically

identified non-centrosymmetric crystal and its description by

way of unit-cell dimensions, space group and representative

coordinates of all atoms (Flack & Bernardinelli, 1999, 2008b).

Since inverted images of a non-centrosymmetric crystal

structure are different, the question of absolute structure

arises during analysis of any non-centrosymmetric crystal

structure. The most important practical application of absolute

structure refinement is, however, in the crystallographic

determination of the absolute configuration of chiral mole-

cules.

The fact that absolute structure can be obtained at all in a

crystal structure determination is the result of resonant scat-

tering, also known as anomalous scattering or anomalous

dispersion, which introduces small differences in intensity

between reflections h and �hh which carry the information on

absolute structure. Methods for absolute structure determi-

nation most commonly used today are based on a formulation

first described by Flack (1983), in which the crystal under

investigation is considered to be an inversion twin in which the

reference domain has the absolute structure of the current

refinement model, and the other domain is inverted. Measured

intensities are then modelled according to

ImodelðhÞ ¼ ð1� xÞjFsingleðhÞj
2
þ xjFsingleð

�hhÞj2; ð1Þ
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where |Fsingle(h)|2 and |Fsingle( �hh)|2 are model quantities based

on a single crystal comprised of the reference domain. The two

alternative absolute structures can be refined competitively

against one another by refining the twin scale factor, x, which

in this application is referred to as the Flack parameter.

The Flack parameter has a physically meaningful value in

the range of 0–1, and represents the fraction of the inverted

structure present in the crystal. A value of x = 0 implies that

none of the crystal is in the inverted form and the model has

the correct absolute structure; if x = 1 then all of the crystal is

in the inverted form. Intermediate values of x point to inver-

sion twinning.

It is important to interpret the value of the Flack parameter

in the context of its standard uncertainty. From a statistical

point of view, a value of 0.2 (8) has such a large standard

uncertainty (0.8) that one neither knows whether the crystal is

twinned by inversion or not, nor whether it is inverted or not.

Further analysis shows that before any conclusions regarding

absolute structure can be made, the standard uncertainty of

the Flack parameter should be less than 0.1, even if a material

is known to be enantiopure (Flack & Bernardinelli, 2000).

The ability to achieve a low standard uncertainty for the

Flack parameter depends in part on the resonant scattering

effects having sufficient magnitude to lead to measurably

different intensities for Friedel pairs of reflections with indices

h and �hh. This depends on the chemical elements present in the

crystal and the wavelength of the X-rays used to collect the

diffraction data. The magnitude of resonant scattering effects

in a given experiment can be conveniently quantified by the

Friedifstat parameter (Flack & Shmueli, 2007).

If Friedifstat has a value of � 80 or more, absolute structure

determination presents little problem (Flack & Bernardinelli,

2008a). However, resonant scattering effects for elements such

as C, N and O are small for commonly available X-ray ener-

gies making it difficult to determine the Flack parameter with

sufficient precision to establish absolute structure for many

organic compounds. For example, the value of Friedifstat for

the amino acid l-alanine with Cu K� radiation is only 34.

Accordingly, the value of the Flack parameter obtained from a

conventional refinement of l-alanine was �0.04 (27). The

data-set was of excellent quality, yielding low merging and

refinement residuals, yet the precision of the Flack parameter

is too low to enable a definitive statement to be made

regarding the absolute structure (Flack & Bernardinelli,

2000).

The ability to determine absolute structure precisely also

depends on low levels of random and systematic errors in

intensity measurements. Analysis of non-centrosymmetric

crystal structures published in Acta Cryst. C in 2007, 2011 and

2012 has shown that even the intensity data of structures with

large Friedifstat values may be entirely dominated by random

uncertainties and systematic errors (Flack, 2012; Flack et al.,

2011).

There is a long-standing interest in finding ways to improve

the precision of the Flack parameter in light-atom structures.

A post-refinement Bayesian statistical procedure has been

described by Hooft et al. (2008, 2010), which can be used

either to define a probability that a refined absolute structure

is correct or to obtain an estimate of the Flack parameter.1

Methods in which refinement weights are modified for data in

proportion to their sensitivity to the Flack parameter have

also been described (Bernardinelli & Flack, 1985; Parsons,

Wagner et al., 2012). It has further been shown that precision

may be improved by the use of aspherical scattering factors

(Dittrich et al., 2006).

While each of the methods described has been shown to

yield lower standard uncertainties on Flack parameters than

conventional refinement, all are open to potential criticisms.

The Hooft method, being a post-refinement method, does not

formally allow x to correlate with other parameters during

refinement, and this, theoretically at least, may compromise

values of the standard uncertainty obtained (Hooft et al.,

2008). Reweighting methods, involving the selection of data

for up-weighting, can magnify errors in the intensity

measurements, so that values of x can be precise but inaccu-

rate. Parsons, Wagner et al. (2012), for example, refer to one

structure where the elimination of just two poorly measured

data points shifted the Flack parameter from 0.35 (12) to

0.02 (14). Use of aspherical scattering factors yields

improvements in precision, but in most of the examples tested

the change was too small to enable sufficiently precise abso-

lute structure determination for light-atom compounds (see

Table 3 in Dittrich et al., 2006). This said, the use of invariom

models in combination with other methods, described above

and herein, merits further investigation.

In this paper we will describe methods based on intensity

differences and quotients that enable x to be refined along

with all other parameters. The purpose of this paper is to

demonstrate that this leads to more precise estimates of x than

conventional refinement methods while avoiding the potential

criticisms discussed above.

2. Definitions of intensity differences and quotients

2.1. Differences

Differences between the observed intensities of Friedel

pairs of reflections

DobsðhÞ ¼ IobsðhÞ � Iobsð
�hhÞ ð2Þ

can be modelled following equation (1) with

DmodelðhÞ ¼ ImodelðhÞ � Imodelð
�hhÞ

¼ ð1� 2xÞ½jFsingleðhÞj
2
� jFsingleð

�hhÞj2�

¼ ð1� 2xÞDsingleðhÞ; ð3Þ

where DsingleðhÞ ¼ ½jFsingleðhÞj
2
� jFsingleð

�hhÞj2�. The quantities

D, which are also referred to as Friedel or Bijvoet differences,

have been used in strategies for absolute structure determi-

nation described by Hooft et al. (2008, 2010) and Le Page et al.

(1990), in a procedure available in the DIRDIF suite of
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parameter and given the symbol y.



programs (Beurskens et al., 1996) and in the procedure

described by Thompson & Watkin (2011).

2.2. Quotients

In principle, on a four-circle diffractometer equipped with a

point detector it is possible to measure the intensities of

reflections h and �hh at setting angles (2�, !, � and ’) and (�2�,

�!, � and ’) (Le Page et al., 1990). The first set of setting

angles is appropriate for reflection hkl and the second set for
�hh �kk�ll. In the second set, both the incident and reflected beam

directions are reversals of those of the first set. If a crystal has

a centrosymmetric habit then the beam paths through the

crystal of these two measurements are identical. Conse-
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Table 1
Results of absolute structure refinements using the methods outlined in the text.

R1[|F| > 4�(|F|)] is the unweighted R factor based on |F| for the intensity data only. The x(twin) column contains values of the Flack parameter (x) calculated in the
‘conventional’ manner against intensity data merged in the relevant non-centrosymmetric point group (SHELXL2012); the output of these refinements was used
to calculate y(Hooft) using Bayesian methods (PLATON) and the value of R1[|F| > 4�(|F|)]. In the x(quotient) column the top figure refers to post-refinement
calculation of x as described in x4.2 (SHELXL2012) and x4.1; the bottom figure refers to the refinement performed as in x4.3 with the intensity quotients applied as
restraints during refinement (TOPAS). The top figure in the x(difference) column was obtained from the numerical restraints method implemented in CRYSTALS
and the bottom figure to the fully coded difference restraints (x4.4) in TOPAS. The superscripts A and B in the ‘Structure code’ column refer to data collected with
Agilent or Bruker instruments, respectively. Samples TWA16a and TWA16b are polymorphs; TWA17c is a recollection of TWA17a with a different sample; R- and
S-CYCLO, FYO11 and FYO12, and TWA17 and TWA20 are enantiomers.

Structure code
Chemical
formula Friedifstat

Space
group Redundancy R1[|F| > 4�(|F|)] x (twin) y (Hooft) x (quotient) x (difference)

R-Mandelic acidA C8H8O3 36 P21 11 0.0511 0.12 (46) 0.03 (6) 0.00 (11) �0.04 (5)
�0.01 (9) 0.00 (9)

l-AlanineB C3H7NO2 34 P212121 25 0.0219 �0.04 (27) 0.01 (4) 0.01 (4) 0.04 (3)
0.01 (3) 0.01 (3)

l-AlanineA C3H7NO2 34 P212121 15 0.0181 0.06 (26) 0.06 (5) 0.05 (4) 0.04 (3)
0.08 (4) 0.07 (4)

GlutamineB C5H8N2O2 33 P212121 28 0.0248 0.09 (25) 0.07 (3) 0.07 (3) 0.04 (2)
0.09 (3) 0.07 (3)

GKO02B C25H31NO5 32 P212121 15 0.0247 0.01 (15) 0.03 (3) 0.02 (3) 0.02 (2)
0.03 (3) 0.02 (3)

A0030aB C21H26N2O3 29 P212121 11 0.0263 �0.10 (21) �0.07 (5) �0.07 (6) �0.05 (3)
�0.07 (5) �0.07 (5)

A0034aB C18H25O2.5 29 P21212 11 0.0274 0.00 (21) 0.02 (3) 0.02 (3) 0.06 (2)
0.02 (2) 0.02 (2)

A0034bB C18H25O2.5 29 P21212 35 0.0268 �0.01 (22) �0.02 (3) �0.02 (3) �0.01 (3)
�0.02 (2) �0.02 (2)

LRE01aB C14H19NO 24 P212121 22 0.0278 �0.01 (33) �0.03 (5) �0.04 (6) �0.04 (3)
�0.02 (5) �0.03 (5)

TWA18aB C16H20N2O 23 P212121 17 0.0253 0.04 (26) 0.04 (3) 0.07 (3) 0.00 (2)
0.04 (3) 0.04 (3)

R-CYCLOA C19H26N6O 21 P212121 14 0.0425 �0.02 (27) �0.02 (4) 0.00 (4) 0.02 (4)
�0.02 (4) �0.02 (4)

S-CYCLOA C19H26N6O 21 P212121 16 0.0409 �0.03 (20) �0.04 (3) �0.04 (3) 0.01 (3)
�0.04 (2) �0.02 (4)

TWA21aB C21H29N3 14 P212121 17 0.0248 0.00 (40) 0.00 (4) �0.01 (4) �0.05 (4)
0.00 (3) 0.00 (3)

TWA20cB C19H19N2 12 P32 26 0.0231 �0.02 (46) �0.01 (5) 0.01 (6) 0.00 (4)
0.00 (5) �0.01 (5)

TWA16aB C16H18N2 13 P32 13 0.0283 0.00 (69) 0.02 (7) 0.18 (8) 0.04 (5)
0.14 (8) 0.05 (7)

TWA16bB C16H18N2 13 P21 8 0.0286 0.02 (37) 0.05 (6) 0.06 (6) �0.05 (5)
0.07 (6) 0.06 (6)

TWA17aB C19H18N2 12 P31 9 0.0300 0.00 (60) 0.06 (8) 0.04 (9) �0.06 (7)
0.04 (8) 0.06 (9)

TWA17cB C19H18N2 12 P31 15 0.0319 0.00 (63) 0.04 (5) 0.05 (7) �0.12 (11)
0.10 (7) 0.02 (7)

TWA22aB C21H22N2 12 P212121 11 0.0262 0.01 (41) 0.04 (7) 0.06 (6) 0.00 (6)
0.05 (6) 0.05 (6)

FYO12dB C21H22N2 12 P212121 35 0.0246 0.07 (53) 0.04 (9) 0.09 (9) 0.05 (6)
0.04 (8) 0.04 (8)

FYO12eB C21H22N2 12 P212121 35 0.0252 0.17 (54) 0.01 (8) 0.04 (9) 0.10 (6)
0.01 (8) 0.02 (8)

FYO11dB C21H22N2 12 P212121 18 0.0257 0.08 (53) 0.03 (6) 0.03 (5) 0.04 (5)
0.03 (5) 0.02 (5)

CholestaneB C27H48 9 P21 18 0.0288 �0.01 (77) �0.04 (9) �0.01 (13) �0.02 (8)
0.00 (11) �0.03 (11)

Reduced �2 0.03 0.83 1.22 1.47
1.47 0.86



quently, their absorption and extinction corrections are iden-

tical, and the quotient Iobs(h)/Iobs( �hh) is absorption and

extinction (and scale) free.

The corresponding model quotient can be written in terms

of |Fsingle(h)|2 and |Fsingle( �hh)|2

ImodelðhÞ

Imodelð
�hhÞ
¼
ð1� xÞjFsingleðhÞj

2
þ xjFsingleð

�hhÞj2

ð1� xÞjFsingleð
�hhÞj2 þ xjFsingleðhÞj

2
: ð4Þ

While this type of formulation has been used in the structure

refinement of the kinase inhibitor roscovitine (Wang et al.,

2001), it is non-linear in x, and the standard uncertainties of

quotients defined for h and �hh are not the same. These

problems are removed, and the independence from absorp-

tion, extinction and scale maintained, by reformulating the

quotients in terms of sums and differences of Friedel-pair

intensities, so that the observed quotients

QobsðhÞ ¼
IobsðhÞ � Iobsð

�hhÞ

IobsðhÞ þ Iobsð
�hhÞ
¼

DobsðhÞ

2AobsðhÞ
ð5Þ

are modelled with

QmodelðhÞ ¼
ImodelðhÞ � Imodelð

�hhÞ

ImodelðhÞ þ Imodelð
�hhÞ
¼

DmodelðhÞ

2AmodelðhÞ

¼ ð1� 2xÞQsingleðhÞ ð6Þ

where

QsingleðhÞ ¼
jFsingleðhÞj

2
� jFsingleð

�hhÞj2

jFsingleðhÞj
2
þ jFsingleð

�hhÞj2
;

2AobsðhÞ ¼ IobsðhÞ þ Iobsð
�hhÞ and

2AmodelðhÞ ¼ ImodelðhÞ þ Imodelð
�hhÞ:

All of the test data-sets used in this study were collected

using modern diffractometers equipped with area detectors.

These do not in general perform reversed beam-path

measurements, and so our initial contention that quotients can

be measured in such a way that errors cancel does not hold.2

For such data we follow Parsons, Pattison & Flack (2012) in

writing

IobsðhÞ ¼ ½sðhÞ þ�sðhÞ�ImodelðhÞ ð7Þ

Iobsð
�hhÞ ¼ ½sðhÞ ��sðhÞ�Imodelð

�hhÞ; ð8Þ

where s(h) and �s(h) are the average and half-difference of

the systematic errors in reflections Iobs(h) and Iobs( �hh)

remaining after the application of a multi-scan correction. If

the term QmodelðhÞ½�sðhÞ=sðhÞ� is small enough that

1�QmodelðhÞ½�sðhÞ=sðhÞ�ð Þ is a good approximation for

1þQmodelðhÞ½�sðhÞ=sðhÞ�ð Þ
�1, this leads to

QobsðhÞ ’QmodelðhÞ þ ½1�Q2
modelðhÞ�

�sðhÞ

sðhÞ

�QmodelðhÞ
�sðhÞ

sðhÞ

� �2

: ð9Þ

In practice |Qmodel(h)| is usually considerably less than 1, and

so provided the difference in systematic errors in Iobs(h) and

Iobs( �hh) is small relative to the overall systematic error, the

assumption that Qmodel(h) = Qobs(h) should still hold

approximately.

Equation (6) can also be interpreted as being equivalent to

equation (3) with an additional weighting term, 1/2Amodel(h).

The incorporation of this term can be justified on the basis of

the leverage analysis presented in Parsons, Wagner et al.

(2012), in which it was shown that the data with the greatest

influence on the precision of the Flack parameter were those

with weak to moderate intensities. The factor 1/2Amodel(h) up-

weights these data. Very weak data, which have little leverage

on the Flack parameter but high values of Qobs(h) on account

of a small value of Aobs(h), should be omitted from an analysis

based on quotients.

3. Experimental

3.1. Data-sets

A series of test data-sets was used in this study; selected

crystal data are given in Table 1. The compounds selected for

study contain no element heavier than oxygen, and all have

Friedifstat of 36 or less for Cu K� radiation. R-Mandelic acid

and l-alanine were obtained from Sigma–Aldrich and were

used as received; for other samples solution-phase optical

rotation measurements or chiral separation established

enantiomeric excesses of > 98%. Resonant scattering factors f 0

and f 00 are independent of resolution, and the contribution of

resonant relative to non-resonant scattering is therefore

greatest at high values of sin �/�. For this reason the test data-

sets were collected at low temperature. Data-sets were highly

redundant, with average multiplicities of observations

between 8 and 35.

Data-sets for the samples listed in Table 1 carrying the

superscript A were collected with Cu K� radiation on an

Agilent Technologies SuperNova incorporating a microsource

generator. The temperature of data collection was 150 K

except for R-mandelic acid. This material crystallizes as plates,

and cooling to 150 K was found to cause strain-broadening,

and so data were collected at 220 K. Processing, including

integration and a multi-scan absorption correction (Blessing,

1995), was accomplished with CrysAlis PRO (Oxford

Diffraction Ltd, 2010).

Data-sets carrying the superscript B were collected using

Cu K� radiation at 100 K using a Bruker Microstar fine-focus

rotating anode generator with a SMART 6000 CCD detector

or a Bruker D8 microsource, also equipped with a SMART

6000 detector. Data were processed with SAINT (Bruker–

Nonius, 2006) and corrected for absorption and other
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pairs fall on the same pixels of the detector eliminating another source of
possible systematic error. The use of data collected in this way for measuring
Qobs(h) is a very interesting avenue for further work.



systematic errors using the multi-scan procedure SADABS

(Bruker-Nonius, 2006; Sheldrick, 2008a).

Data were merged using SORTAV with unit weights and

robust-resistant down-weighting of outliers (Blessing,

1997).3

3.2. Absolute structure refinement in SHELXL2012

Structures were solved using direct methods (SHELXS;

Sheldrick, 2008b) or charge flipping (SUPERFLIP; Palatinus

& Chapuis, 2007) and refined against |F|2 in SHELXL2012

(beta test version 2012/9) using all data (Sheldrick, 2012).

Data were merged in point groups 2, 222 or 3 for the mono-

clinic, orthorhombic and trigonal structures, respectively.

Isopropyl groups in structures R- and S-CYCLO are disor-

dered over two orientations (Wang et al., 2001). The disorder

components were restrained to have similar bond distances

and angles. The water of crystallization in structure A0034a is

disordered about a crystallographic twofold axis, which also

induces disorder in two hydroxyl H-atom positions. All full-

weight non-H atoms were refined with anisotropic displace-

ment parameters. Full weight H atoms were refined freely;

those part of disordered groups were either refined with

restraints (A0034a) or placed in ideal positions (R- and S-

CYCLO). The Flack parameter was refined either by full-

matrix least squares (i.e. using the TWIN/BASF commands in

the SHELXL .ins file) or post-refinement based on quotients

defined in x2.2. The results of the first of these refinements

were used to calculate the Hooft parameter via the BIJVOET

routine in PLATON. In all cases a Gaussian prior was used

(Hooft et al., 2008; Spek, 2003).

3.3. Absolute structure refinement in CRYSTALS

The same models as described above were refined in

CRYSTALS (Version 14.40; Betteridge et al., 2003) and the

Flack parameter estimated via the procedure described by

Thompson & Watkin (2011).

3.4. Absolute structure refinement in TOPAS-Academic

TOPAS-Academic, Version 5 (Coelho, 2012), allows user-

equations to be written in the form of a function, in a similar

way to the definition of a function or subroutine in a

programming language such as Fortran or C++ (Coelho et al.,

2011). These equations can then be used in restraints or to

define other parameters. This option enables equation (6) to

be incorporated into the refinement in the form of a set of

restraints where the equation is coded in terms of atomic

positional, displacement and occupancy parameters for each

quotient.

The quotients Qobs(h) were calculated from the integrated

data-sets using reflections for which both Iobs(h) and Iobs( �hh)

were greater than three times their respective uncertainties.

This cut-off condition eliminates quotients which are large

because the term Aobs(h) is small (see x2.2). Qobs(h) may also

be calculated using XPREP (Sheldrick, 2001). Outlier data for

which |Dobs(h)| was greater than twice the maximum value of

|Dsingle| were also excluded. This condition mirrors the

procedure used for outlier detection in the Bijvoet routine in

PLATON (Spek, 2003). For surviving data the standard

uncertainty u[Qobs(h)] was propagated from the values of u

[Iobs(h)] and u [Iobs( �hh)] obtained from merging

u½QobsðhÞ� ¼

2

½IobsðhÞ þ Iobsð
�hhÞ�2
fI2

obsðhÞu
2
½Iobsð

�hhÞ� þ I2
obsð

�hhÞu2
½IobsðhÞ�g

1=2:

The observations used in TOPAS for refinement took the

form of Friedel-averaged intensity data, Aobs(h), and quoti-

ents, Qobs(h), the latter in the form of restraints.

The values of Aobs(h) and their uncertainties were obtained

by merging the centric and paired acentric data in the relevant

Laue group (e.g. mmm for an orthorhombic structure). Any

unpaired acentric data were omitted. The structure was first

refined in CRYSTALS against Aobs(h) only, and the weighting

scheme optimized. This weighting scheme was then held fixed

in subsequent refinement in TOPAS. The Aobs(h) values were

modelled both in CRYSTALS and TOPAS using a Flack

parameter equal to 0.5 in order to correctly account for the

averaging of Friedel-pair intensities.

The quotient data, Qobs(h), were modelled with equation

(6) using a second Flack parameter; it is this parameter which

characterizes the absolute structure. The quotient restraints

were initially given a weight, wrestraint(h) = 1/u2 [Qobs(h)]. After

initial cycles of refinement the values of the deviates

w
1=2
restraintðhÞ½QobsðhÞ �QmodelðhÞ� were used to calculate a

reduced �2 statistic. The structure was then re-refined with the

quotient restraint weights scaled by 1/�2. A normal probability

plot (Abrahams & Keve, 1971) of deviates was also inspected

to detect further outliers and for validation purposes.

The same procedure was applied to the refinement using

difference restraints based on equation (3). No cut-off

condition based on values of Iobs(h)/u(Iobs(h)) was applied, but

outliers were detected as described above. The initial restraint

weights were wrestraint(h) = 1/u2 [Dobs(h)] = 1/(u2 [Iobs(h)] +

u2[Iobs( �hh)]), but these were rescaled after initial cycles of

refinement, also as described above.

Clearly it is only possible to calculate Qobs(h) and Dobs(h)

for acentric data where both Iobs(h) and Iobs( �hh) have been

measured; coverage statistics along with numbers of data

omitted as outliers are given in Table 2. Input files for quotient

refinement of L-alanineB in TOPAS-Academic are available

in the supplementary material.

Programs written to calculate Qobs(h) and Dobs(h), detect

outliers and write files of symbolic restraints made use of

subroutines available in the CrysFML Fortran library

(Rodrı́guez-Carvajal & González Platas, 2009).
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3 Supplementary data for this paper are available from the IUCr electronic
archives (Reference: GP5062). Services for accessing these data are described
at the back of the journal.



4. Results and discussion

4.1. Conventional refinement of the Flack parameter

The results of ‘conventional’ refinement of x, that is as a

twin factor in full-matrix least squares, are listed in Table 1 in

the column x(twin). They are completely consistent with the

results of Flack & Bernardinelli (2008a), which indicates that

compounds with Friedifstat in the range 9–36 would be

expected to yield standard uncertainties of the Flack para-

meter of between 0.8 and 0.2. None of the conventional

refinements yields a Flack parameter with sufficient precision

to enable a conclusion to be made about the absolute struc-

tures of the crystals being studied.

It is, however, remarkable that the values of the Flack

parameter in Table 1 cluster around zero much more tightly

than would be anticipated on the basis of their high standard

uncertainties. The reduced �2 calculated from the data in the

x(twin) column (assuming the true value of x is zero in each

case) is only 0.031, suggesting that the uncertainties are

overestimated by a factor of 5.5, meaning that more infor-

mation about absolute structure is present in the data than

implied by the uncertainties calculated by least squares. While

this finding runs counter to the general underestimation of

standard uncertainties in crystallographic least squares

(Hamilton & Abrahams, 1970), it is consistent with Thompson

& Watkin’s (2011) histogram of Flack parameters obtained

from refinements of 150 structures with Friedifstat in the range

3.4–10.8. The histogram was centred at zero; had the data been

devoid of absolute structure informa-

tion, the histogram should have been

centred about 0.5.

It appears that conventional refine-

ment of x yields rather pessimistic

uncertainty estimates. Although the

data quoted in Table 1 were derived

using SHELXL2012, similar results

were obtained with CRYSTALS and

TOPAS. The methods published

elsewhere by Hooft et al. (2008,

2010), Thompson & Watkin (2011)

and Parsons, Wagner et al. (2012)

and those described below attempt

to obtain more realistic uncertainty

estimates.

4.2. Post-refinement estimation of the
Flack parameter using quotients

Values of Qobs(h) [equation (5)] can

be calculated using the observed inten-

sity data, while values of QsingleðhÞ

[equation (6)] can be calculated from

the refinement model. A ‘Q plot’ of

Qobs(h) against QsingleðhÞ should be a

straight line passing through the origin

with a gradient of (1 � 2x). Similarly, a

‘D plot’ of Dobs(h) [equation (2)]

against DsingleðhÞ [equation (3)] should also be linear with a

gradient of (1 � 2x).

The method can be illustrated with reference to the data

collected for l-alanine. The gradient of the weighted least-

squares best straight line in the Q plot shown in Fig. 1(a) is

0.984 (68), which yields a value of the Flack parameter of

0.01 (3). This estimate is very much more precise than that

obtained with the same data in a conventional refinement.

Some of the error bars in Fig. 1 are huge, but these points have

little influence on the (weighted) fit. Much more important is

the very clear unit slope in the bulk of the data points.

As the effects of resonant scattering become smaller, the

trend in Q-plots becomes harder to discern by eye, as illu-

strated in the plot for cholestane (Friedifstat = 9) in Fig. 1(b).

The least-squares fit for the data shown nevertheless yields a

Flack parameter of�0.02 (12). Part of the problem in Fig. 1(b)

is that the majority of points have little influence on the fit. Fig.

1(c) shows the 200 most influential points in Fig. 1(b) (as

measured by their leverages; Parsons, Wagner et al., 2012;

Prince, 2004; Merli et al., 2000). The noticeable gap in the

middle of the plot occurs because for a one-parameter linear

fit the leverages are proportional to Q2
singleðhÞ; other missing

points in Fig. 1(c) have a low leverage on account of their high

error bars. Although not exactly obvious, the trend in Fig. 1(c)

is a little clearer than it is in Fig. 1(b). More significantly the

value of x obtained for these points is 0.09 (15): even though

we are only working with � 5% of the data, the precision is

only marginally affected.
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Table 2
Data-set statistics.

The columns contain the compound identifier, the total number of data measured, the number of centric
data, the number of paired acentric data used for generating difference and quotient restraints, the
number of unpaired acentric data, the number of outlying pairs for which |Dobs(h)| > 2|Dsingle, max|, and the
number of difference and quotient restraints used. The figures in brackets in the last two columns are the
number of outliers omitted after normal probability plot analysis.

Code Measured Centric
Paired
acentric

Unpaired
acentric

Outlying
pairs Differences Quotients

R-Mandelic acidA 2858 298 2546 8 3 1273 1140
l-AlanineB 776 189 570 5 6 285 284
l-AlanineA 740 184 540 0 8 270 270
GlutamineB 1177 265 898 2 6 449 449
GKOB 4073 588 3450 1 17 1725 1685
A0030aB 3333 518 2770 3 21 1385 1331
A0034aB 2757 470 2256 3 14 1128 1127
A0034bB 2673 463 2202 0 4 1101 1099
LRE01aB 2261 418 1800 3 20 900 894
TWA18aB 2488 407 2046 1 17 1023 1021
R-CYCLOA 7983 921 7008 12 21 3504 3454
S-CYCLOA 8240 939 7242 9 25 3620 [1] 3606 [1]
TWA21aB 3071 471 2520 6 37 1260 1258
TWA20cB 2545 0 2476 1 34 1238 1238
TWA16aB 2167 0 2082 73 6 1041 1036 [5]
TWA16bB 4711 220 4034 29 214 2017 1984
TWA17aB 2657 0 2580 3 37 1290 1286
TWA17cB 2657 0 2572 1 42 1286 1283 [3]
TWA22aB 2920 508 2344 4 32 1172 1168
FYO12dB 2901 463 2372 0 33 1186 1158
FYO12eB 2894 458 2380 4 26 1190 1167
FYO11dB 2887 453 2366 2 33 1183 1173
CholestaneB 8266 478 7120 2 333 3560 3546



This linear Q-fitting method has been incorporated into

SHELXL2012, and the results for the other compounds

studied are the top values listed in the column labelled

‘x(quotient)’ in Table 1. Also included in Table 1 [in column

y(Hooft)] are the estimates of Hooft’s Bayesian method. The

results of the two procedures are in excellent agreement, both

showing consistently higher precision than conventional

methods [x(twin)].

4.3. Estimation of the Flack parameter using quotient data

Although the method described in x4.2 yields precise and

accurate values of the Flack parameter, like other post-

refinement methods, it has the disadvantage that x is not

allowed to correlate with other parameters. A way around this

difficulty is to incorporate equation (6) into the structure

refinement (Murphy et al., 2010; Parsons & Flack, 2004; Wang

et al., 2001). Values of Qobs(h) defined in equation (5) are

calculated from the intensity data, as before, but facilities

available in TOPAS enable Qsingle(h) to be written in terms of

the parameters of the refinement model (atomic coordinates,

displacement parameters and occupancies) and built into the

refinement as an equation of restraint; an example is provided

in the supplementary material. The Flack parameter can now

correlate with other parameters during refinement.

A quotient can be defined for each Friedel pair of inten-

sities in the data-set so that the observations in the refinement

now take the form of Friedel-averaged intensity measure-

ments, Aobs(h), and the quotients, Qobs(h). The values of

Aobs(h) are obtained by merging the centric and paired

acentric data in the centrosymmetric Laue group, and all

absolute structure information is contained in the quotients.

The number of quotients used in the test examples lay

between a few hundred to several thousand depending on the

size of the structure (details are in Table 2).

The bottom values listed in the x(quotient) column of Table

1 show the results. They are very similar to those obtained with

the post-refinement procedure described in x4.2, and much

more precise than those obtained with the conventional

refinement technique. Acceptable precision has been obtained

for data-sets with Friedifstat as low as 12.

The Flack parameter is sensitive to outliers in the data, and

it is important that these are detected and eliminated. The

sensitivity to outliers can be illustrated using the data-set

TWA16a. A refinement performed with no outlier elimination

at all yielded a Flack parameter equal to 0.18 (8). A normal

probability plot calculated for this refinement (Fig. 2) was

linear, but with one point (at the bottom left in Fig. 2)

deviating substantially from the straight line. Elimination of

this one observation changed the value of x to 0.08 (8).

Normal probability plots are a powerful means for detecting

outliers, although in this work we follow Spek’s procedure in

PLATON in eliminating Friedel pairs with |Dobs(h)| more than

twice the maximum calculated absolute difference for the

entire data-set. This is a more objective procedure, although it

means that more data are omitted the lower the value of

Friedifstat. The numbers of outliers omitted are given in Table

2.

4.4. Estimation of the Flack parameter using difference data

An alternative procedure is to base the restraints on

differences rather than quotients. The target value for each

restraint is Dobs(h) as defined in equation (2). The model value
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Figure 1
Plot of Qobs(h) against Qsingle(h) [as defined in equations (5) and (6)] for
(a) l-alanine and (b) cholestane. (c) as (b), but only the top 200 most
influential points are shown; the axes are chosen to be the same as (b).



Dmodel(h) is defined in equation (3) and written in terms of the

refinement parameters. The procedure was otherwise identical

to that described in x4.3.

A similar procedure is available in CRYSTALS. Here

refinement is carried out against |Fobs(h)|2 data merged in the

appropriate crystal (as opposed to Laue) point group and

Dmodel(h) is a numerical value calculated from the current

model (see Fig. 2 in Thompson & Watkin, 2011).

The results of the two procedures

are listed in the x(difference) column

of Table 1; the top value is obtained

from the CRYSTALS procedure, the

bottom via explicit restraints. The

results are in agreement with each

other and those obtained for quoti-

ents.

4.5. The extent of error cancellation
on taking quotients

The differences defined in equa-

tions (2) and (3) are used in the

Bayesian and numerical restraint

methods for estimation of the Hooft

or Flack parameters available in

PLATON and CRYSTALS. Our

original idea of basing absolute

structure analysis on quotients was

conceived about a decade ago, when

four-circle instruments with point

detectors were still in common use.

The cancellation of absorption and

extinction errors which occurs on

taking intensity quotients using

reverse-beam measurements of

Friedel pair intensities cannot in

general be achieved with modern area-detector instruments

(but see footnote 2, x2.2). The analysis presented in x2 suggests

that some approximate cancellation of errors occurs provided

the difference in systematic errors in Iobs(h) and Iobs( �hh) is small

relative to the overall systematic error.

One means for assessing whether error cancellation is

achieved in practice with area-detector data is to compare R

factors based on the observed and model values of quotients

or differences [equation (10)]. If errors are really cancelled

R(Q) should be systematically lower than R(D).

RðQÞ ¼

P
jQobsðhÞ �QmodelðhÞjP

jQobsðhÞj

RðDÞ ¼

P
jDobsðhÞ �DmodelðhÞjP

jDobsðhÞj
ð10Þ

Values of R(Q) and R(D) are listed for each data-set in Table

3. The differences are mostly quite marginal, a finding

consistent with a similar listing in Table 10 of Parsons, Pattison

& Flack (2012).

A second method for assessing the presence of systematic

errors is to examine normal probability plots based on the

weighted residuals w
1=2
restraintðhÞ½QobsðhÞ �QmodelðhÞ� and

w
1=2
restraintðhÞ½DobsðhÞ �DmodelðhÞ� for the quotient and difference

refinements, respectively. Systematic errors shift the intercept

of the plot away from the origin and cause the plot itself to

deviate from linearity. The intercepts, gradients and Pearson

correlation coefficients (r2) of normal probability plots for

quotient and difference refinements are also listed in Table 3.

There is generally rather little systematic difference between
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Table 3
Fitting statistics for the refinements based on quotients and differences.

In the ‘Quotient restraints’ columns, the intercept, gradient and Pearson r2 refer to normal probability plots
calculated using weighted residuals for the restraints, w1=2

restraintðhÞ½QobsðhÞ �QmodelðhÞ�. Equivalent formulae
were used for the ‘Difference restraints’ columns. R(Q) and R(D) are defined in equation (10).

Quotient restraints Difference restraints
Code Intercept Gradient r2 R(Q) Intercept Gradient r2 R(D)

R-Mandelic acidA 0.0461 0.993 0.986 1.003 0.0501 0.992 0.985 0.982
l-AlanineB

�0.0127 0.995 0.982 0.776 �0.0118 0.994 0.980 0.825
l-AlanineA

�0.0503 1.002 0.997 0.892 �0.0471 1.002 0.997 0.907
GlutamineB

�0.0158 1.002 0.998 0.913 �0.0219 1.002 0.998 0.904
GKOB 0.0019 1.000 0.998 0.925 0.0072 1.000 0.998 0.951
A0030aB

�0.0517 0.998 0.997 0.965 �0.0525 0.998 0.997 0.964
A0034aB 0.0036 1.000 0.997 0.873 0.0070 1.000 0.997 0.923
A0034bB 0.0547 0.999 0.998 0.832 0.0555 0.999 0.998 0.878
LRE01aB 0.1018 0.995 0.996 0.959 0.1057 0.994 0.996 0.931
TWA18aB 0.0175 0.999 0.996 0.886 0.0166 0.999 0.996 0.921
R-CYCLOA

�0.0300 0.999 0.997 0.979 �0.0269 0.999 0.998 0.981
S-CYCLOA

�0.0017 1.000 0.999 0.944 �0.0019 1.000 0.999 0.967
TWA21aB 0.0015 0.999 0.996 0.916 0.0002 1.000 0.996 0.962
TWA20cB 0.0138 1.000 0.998 0.961 0.0153 1.000 0.998 0.990
TWA16aB 0.0016 1.000 0.996 1.001 0.0030 1.000 0.993 0.998
TWA16bB

�0.0106 0.999 0.997 0.991 �0.0027 0.998 0.994 0.987
TWA17aB

�0.0078 0.999 0.996 0.981 �0.0079 0.999 0.996 0.990
TWA17cB 0.0159 1.000 0.998 0.990 0.0132 1.000 0.997 0.984
TWA22aB

�0.0456 0.997 0.994 0.986 �0.0440 0.997 0.994 0.984
FYO12dB

�0.0697 0.997 0.995 0.998 �0.0704 0.996 0.995 0.997
FYO12eB

�0.0042 0.998 0.993 0.994 0.0011 0.997 0.993 0.998
FYO11dB

�0.0196 0.998 0.994 0.964 �0.0241 0.998 0.994 0.988
CholestaneB

�0.0046 1.000 0.998 0.996 �0.0048 1.000 0.998 0.999

Figure 2
Outlier detection. Normal probability plot calculated using observed
quotient restraint deviates w

1=2
restraintðhÞ½QobsðhÞ �QmodelðhÞ� for TWA16a.

The extreme point at the bottom left was omitted as an outlier. This plot
was calculated prior to rescaling of weights.



the intercepts calculated for quotients or differences, all falling

very close to the origin. There is no systematic difference

between the correlation coefficients for the quotient and

difference plots. The gradients are all near the ideal value of

unity, but this is a consequence of the weight-scaling described

in x3.4.

The R-factor and normal probability calculations indicate

that cancellation of systematic errors can occur on taking

quotients of intensities collected with area detectors, but the

improvement, if present, is usually small and the results of

using either method essentially the same. This is possibly

because the assumptions about relative systematic errors

referred to above are not met or because absorption and

extinction are not the principal systematic errors present.

The linearity and small intercepts of the normal probability

plots listed in Table 3 indicate that the weights applied to the

quotients and differences reflect the uncertainties in the data.

The values of reduced �2 listed in Table 1 are near unity for

both quotient and difference-based methods, indicating that

the magnitudes of the standard uncertainties are realistic.

Taken with the accuracy of the values of the Flack parameters

listed in Table 1 this shows that quotient and difference

methods are both appropriate for absolute structure deter-

mination.

4.6. Leverage analysis

Some insight into why the methods presented increase the

precision in x can be gained by considering the relative

influences of the observations Aobs(h) and Qobs(h) or Dobs(h)

on the structural and Flack parameters. Leverage analysis was

carried out on the refinement of l-alanineB using CRYSTALS

(Parsons, Wagner et al., 2012).

Fig. 3(a) is a histogram of leverages for the |Fobs(h)|2

(orange) and the Dobs(h) (green) data. The Dobs(h) leverages

cluster near zero showing that they have rather little effect on

the overall data-fitting. The insensitivity of the structural

parameters to the Friedel difference intensities reflects a

similar finding described in x4.1 of Flack et al. (2011).

Fig. 3(b) shows a histogram of the quantity T, which

measures the influence of observations on the precision of the

Flack parameter (David, 2004; David et al., 1993; Parsons,

Wagner et al., 2012; Prince, 2004). Here the situation seen in

the leverage plot is reversed, the orange |Fobs(h)|2 data cluster

about zero, whereas the green Dobs(h) data span the range

�100.

The improvement in the precision of the Flack parameter

which is gained by using differences or quotients is the result

of transforming the observations into one set [Aobs(h)] which

is sensitive to the structure but independent of the Flack

parameter, and another [Dobs(h) or Qobs(h)] which is sensitive

to the Flack parameter, but very insensitive to the atomic

parameters. The transformation means that correlation

between the Flack parameter and the other refined para-

meters is essentially absent, and this explains why the results

of the post-refinement methods are so similar to those

obtained with the method outlined above.

5. Concluding remarks

Absolute structure refinements have been carried out for a

series of 23 light-atom crystal structures with Friedifstat values

for Cu K� radiation of between 9 and 36. Accurate values of

the Flack parameter and its standard uncertainty were

obtained, but with a precision higher and more realistic than

conventional refinement. The results of the methods imple-

mented in SHELXL2012, CRYSTALS and PLATON are

essentially the same as those obtained when quotients or

differences are explicitly coded into the refinement in TOPAS.

We conclude that the potential problems discussed in x1

associated with a lack of correlation between the Flack

parameter and the other structural parameters are not

significant in absolute structure determinations of light-atom

compounds. This justifies the use of post-refinement algo-

rithms for absolute structure determination provided a

complete set of Friedel pair intensity measurements is avail-

able.

On the basis of the results presented in the current paper,

and those cited herein, it is possible to provide an outline of

the treatment of diffraction data which leads to a reliable

value of the Flack parameter with as low and realistic standard
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Figure 3
Leverage analysis for l-alanineB. (a) Leverages of |Fobs(h)|2 and
difference data, Dobs(h). (b) Relative influences of |Fobs(h)|2 and
Dobs(h) on the precision of the Flack parameter (as expressed by the
quantity T). In each case |Fobs(h)|2 data are shown in orange and Dobs(h)
data in green.



uncertainty as possible. The steps are described below in terms

of intensity differences (D), although they could equally well

be applied to quotients (Q)

(i) The reflection data-set is separated into three disjoint

classes consisting of centric reflections (class c), pairs of

Friedel opposites of acentric reflections (class ap) and

unpaired acentric reflections (class au). If the data-set contains

an unacceptably large proportion of unpaired acentric

reflections, the diffraction data should be recollected with a

revised collection strategy. The data in class au are omitted

from further analysis.

(ii) The intensities of the pairs of acentric reflections (class

ap), are transformed into averages, Aobs(h), and differences,

Dobs(h).

(iii) Least-squares refinement of the structural parameters

is undertaken using as data the centric reflections (class c) and

the average intensities of the paired Friedel opposites

[Aobs(h)]. This refinement corresponds to a crystal twinned by

inversion in a proportion of 50:50, so a value of the Flack

parameter fixed at 0.5 should be used. The resulting atomic

parameters are unbiased by the effects of resonant scattering

and inversion twinning.

(iv) Using the atomic parameters obtained from stage (iii)

and a Flack parameter of 0.0, structure-factor amplitudes are

calculated for the pairs of Friedel opposites in class ap. This

leads to model values Dsingle(h) corresponding to a single

crystal untwinned by inversion.

(v) From a plot of Dobs(h) against Dsingle(h) one has a

powerful tool for validating the absolute-structure determi-

nation and obtaining a value of the Flack parameter from a

least-squares fit to a straight line passing through the origin.

Critical to the success of this fit is the choice of a suitable

weighting scheme and the elimination of outliers. The texts of

the current paper, and those cited, contain the corresponding

information.

The transformation of the data described in (ii) yields one

set of observations [the centric data and Aobs(h)] which is

sensitive to the structure but independent of the Flack para-

meter, and another [Dobs(h) or Qobs(h)] which is sensitive to

the Flack parameter, but highly insensitive to the atomic

parameters. The agreement between Aobs(h) and Amodel(h) is

usually much better than between Dobs(h) and Dmodel(h) or

their equivalents based on quotients (e.g. Flack et al., 2011;

Parsons, Pattison et al., 2012); one advantage of the transfor-

mation of data into A and D (or Q) is that different schemes

for the selection of outliers and weights can be applied to each.

A conventional refinement is compatible only with a single

‘one-size-fits-all’ weighting scheme. Use of the transformed

data also removes correlation between the Flack parameter

and the other structural parameters.

All data in this work were collected with Cu K� radiation,

although there is no reason why the methods described could

not be applied to data from more than one source, for

example, Cu K� radiation for the Friedel-averaged intensity

data Aobs(h) and Cr K� radiation for the difference or

quotient data Dobs(h) or Qobs(h). This will be investigated in

due course.
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