Abstract. \(M_r = 562.5 \), orthorhombic, \(P2_12_12_1 \), \(a = 13.310 (1) \), \(b = 14.0005 (9) \), \(c = 15.626 (1) \) Å, \(V = 2911.9 (6) \) Å\(^3\), \(Z = 4 \), \(D_x = 1.28 \) Mg m\(^{-3}\), \(Cu \) K\(\alpha \), \(\lambda = 1.5424 \) Å, \(\mu = 0.93 \) mm\(^{-1}\), \(F(000) = 1192 \), room temperature, \(R = 0.045 \), 1434 independent observed reflections. The title compound, which is readily available through a free-radical process, exhibits a spiro ortho-ester linkage at the anomeric carbon which characterizes a new class of antibiotics (orthosomycines). There are no unusual interatomic distances or angles.

Introduction. Les orthosomycines (Wright, 1979) sont des antibiotiques ayant une structure spiro C(1) ortho-ester glycosidique, accessible par une méthode d’hétérocyclisation radicale mise au point au laboratoire (Praly & Descotes, 1982). Afin de préciser la stéréosélectivité de cette transformation, nous avons étudié le comportement des \(\beta \)-glycosides (1) et (2) (Praly, Descotes, Grenier & Metras, 1983) obtenus par réaction de Koenigs-Knorr entre le bromure d’\(\text{O-4TaraO-acétyl-2,3,4,6 désoxy-1-D-glucopyranosyle} \) et le \(\text{O-isopropyldéné-1,2-Méthyl-3-\(\alpha \)-D-Glucofuranose} \) (Fig. 1). Par traitement photochimique, (1) conduit à un seul ortho-ester (3), alors que (2) évolue vers un mélange contenant (3) et (4). Leurs spectres de RMN

1H et 13C présentent des déplacements chimiques très voisins qui ne permettent pas de les distinguer. L’attribution de leur configuration anomérique a donc nécessité la détermination de la structure cristalline de (3).

Partie expérimentale. Cristal incolore (éther diéthylique) 0,2 x 0,5 x 0,5 mm; diffractomètre Nonius CAD-4, monochromateur en graphite, \(\omega-2\theta \) en balayage. 3268 réflexions indépendantes, \(20 \leq 146^\circ \), \(0 \leq k \leq 16 \), \(0 \leq l \leq 19 \); 1434 observées d’après \(I > 1.2(I_o) \) et en plus \(I > 1.3((I_o)_{av}) \). Paramètres de maille affinés à partir des 25 réflexions. Contrôle 172: variation maximale de 5% autour de la moyenne. Corrections \(Lp \), absorption ignorée. Méthode directe: programme MULTAN78 (Main, Hull, Lessinger, Germain, Declarcq & Woolfson, 1978). Affinements sur F. H à partir de synthèses \(\Delta F \), munis de \(B \) égal au \(B_{eq} \) du carbone porteur. Itérations finales sur les \(x, y, z \) de tous les atomes; \(R_w = 0.049 \) avec \(w = (a + b \cdot F_0)^{1/2} \), \(S = 0.72 \), \((\Delta \sigma)_{\text{max}} \) pour les \(x, y, z \) des C et des O = 0,84. Résidu maximum de la synthèse \(\Delta F = 0,10 e \) Å\(^{-3}\). Pris dans International Tables for X-ray Crystallography (1974).
Tableau 1. Coordonnées relatives affinées et paramètres \(B_{eq} \)

\[
B_{eq} = \sum_j \sum_i \beta_j \alpha_{ij} a_{ij}
\]

\[
\begin{array}{cccc}
 x & y & z & B_{eq}(\AA^2) \\
 O(1) & 0.0393 (2) & 0.4348 (2) & -0.0002 (2) \\
 C(1) & -0.0901 (2) & 0.4873 (2) & 0.0049 (2) \\
 C(2) & -0.0588 (3) & 0.5697 (3) & -0.0243 (3) \\
 C(3) & 0.0338 (3) & 0.6160 (3) & -0.0083 (3) \\
 C(4) & 0.1283 (3) & 0.7665 (3) & 0.0143 (3) \\
 C(5) & 0.1279 (3) & 0.4876 (3) & 0.0046 (2) \\
 C(6) & 0.2172 (4) & 0.4211 (4) & -0.0079 (4) \\
 O(2) & 0.2254 (2) & 0.4474 (2) & 0.0060 (2) \\
 C(7) & 0.3154 (4) & 0.4310 (4) & 0.1169 (3) \\
 O(3) & 0.3849 (3) & 0.4013 (3) & 0.0781 (3) \\
 C(8) & 0.3194 (6) & 0.4595 (9) & 0.2073 (4) \\
 O(4) & 0.2116 (2) & 0.6119 (2) & -0.0098 (2) \\
 C(9) & 0.2916 (4) & 0.6077 (3) & 0.0493 (3) \\
 O(5) & 0.2966 (2) & 0.6515 (3) & 0.0277 (3) \\
 C(10) & 0.3703 (5) & 0.6762 (6) & 0.1090 (6) \\
 O(6) & 0.3063 (2) & 0.7176 (2) & -0.0666 (2) \\
 C(11) & 0.0202 (4) & 0.7448 (3) & -0.1346 (4) \\
 O(7) & 0.0017 (5) & 0.7466 (3) & -0.2041 (3) \\
 C(12) & 0.0291 (5) & 0.8773 (4) & -0.1125 (4) \\
 O(8) & -0.1448 (2) & 0.6005 (2) & -0.0916 (2) \\
 C(13) & -0.2289 (3) & 0.6727 (4) & -0.0488 (4) \\
 O(9) & -0.2337 (2) & 0.6372 (3) & 0.0269 (3) \\
 C(14) & -0.3074 (5) & 0.5602 (3) & 0.1102 (5) \\
 O(10) & -0.1290 (2) & 0.4186 (2) & -0.0008 (2) \\
 C(15) & -0.1622 (3) & 0.3357 (3) & 0.0304 (3) \\
 O(11) & -0.0841 (3) & 0.3926 (4) & 0.1213 (5) \\
 C(16) & -0.0513 (2) & 0.4279 (2) & 0.1286 (2) \\
 O(17) & -0.2600 (3) & 0.3587 (3) & 0.0835 (3) \\
 C(18) & -0.2375 (2) & 0.3783 (3) & 0.1877 (3) \\
 O(19) & -0.3362 (3) & 0.3165 (3) & 0.3115 (2) \\
 C(20) & -0.2810 (2) & 0.3381 (3) & 0.1415 (3) \\
 O(21) & -0.4070 (3) & 0.2722 (4) & 0.1272 (4) \\
 C(22) & -0.2989 (2) & 0.3775 (2) & 0.1266 (2) \\
 O(23) & -0.4441 (2) & 0.2973 (2) & 0.1209 (3) \\
 C(24) & -0.4676 (2) & 0.4270 (2) & 0.1237 (2) \\
 C(25) & -0.4279 (6) & 0.3879 (6) & -0.0034 (3) \\
 O(26) & -0.4594 (16) & 0.4534 (12) & -0.2699 (6) \\
 C(27) & -0.6075 (8) & 0.3656 (11) & -0.2068 (10) \\
\end{array}
\]

Discussion. Les paramètres atomiques sont donnés dans le Tableau 1,* les distances et angles y sont reportés dans le Tableau 2.

La molécule d’isomère (3) (Fig. 2) a été dessinée au moyen du programme ORTEP (Johnson, 1965); elle présente une spiro-annulation au niveau du carbone C(1) de configuration S correspondant à une structure ortho-ester. L’obtention de ce seul composé à partir du β-glucoside (1) montre que le squelette axial créé C(1)–O(11) résulte d’une attaque stéréosélective par la face α du cycle glucopyranosidique. Ceci peut s’expliquer par l’homolyse aisée des liaisons C–H d’orientation axiale (Beckwith & Easton, 1981; Malatesta & Ingold, 1981) et par la stabilité conformationnelle de l’intermédiaire radicalaire qui favorise l’orientation axiale de l’orbitale semi-occupée (Malatesta, McKelvey, Babcock & Ingold, 1979). Une attaque stéréosélective par la face α a été signalée pour diverses réactions radicales intra- ou inter-moléculaires, au niveau du carbone anomère osidique (Descotes, 1982; Praly, 1983). Les calculs relatifs aux plans moyens des différents cycles ont été déposés.

Références

