Related literature. \(\beta-(\text{BEDT-TTF})_2\text{AuI}_2 \) is an ambient-pressure superconductor with \(T_c \approx 5 \) K (Wang et al., 1985; Carlson et al., 1986; Amberger, Fuchs & Polborn, 1985; Heidmann, Veith, Andres, Fuchs, Polborn & Amberger, 1986; Talham, Kurmoo, Day, Obertelli, Parker & Friend, 1986; Schwenk, Parkin, Lee & Greene, 1986). For a review of superconductivity in organic compounds, see Williams, Beno, Wang, Leung, Emge, Geiser & Carlson (1985). Organic conductors very often exhibit low-temperature phase transitions, i.e., the modulated structure of the superconductor \(\beta-(\text{BEDT-TTF})_2\text{I}_3 \) [which at room temperature is isostructural to \(\beta-(\text{BEDT-TTF})_2\text{AuI}_2 \)] below 175 K (Leung, Emge, Beno, Wang, Williams, Petricek & Coppens, 1985). Since the interesting physical properties in these materials appear at low temperatures, it is essential to know their crystal structures at such temperatures. In addition, the detailed analysis of structure–properties relationships (e.g., band electronic structures, non-bonded donor-to-anion interactions, electron-phonon coupling) require accurate positional parameters which, because of reduced thermal motion, can only be obtained at low temperatures and for this reason this low-temperature study was carried out. In the title compound we find no evidence of any structural change except for a lattice contraction between 298 K (Wang et al., 1985) and 120 K. The present structure determination is more accurate than the room-temperature study, as evidenced by the better agreement factors (\(R = 0.043, wR = 0.033 \) at 298 K) and a reduction in the bond length and angle e.s.d.'s by ca 25%. The major difference is found in the intermolecular S...S contacts which are important for electrical conduction. The S...S distances listed in Table 2 are reduced by 0.046–0.087 Å from their room-temperature values.

Work at Argonne National Laboratory is sponsored by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences, under Contract W-31-109-Eng-38.

References

Structure of 3,4,3',4'-Bis(propylenedithio)-2,2',5,5'-tetraethiaphfulvalene (BPDT-TTF)

By Leigh Christopher Porter, Aravinda M. Kini and Jack M. Williams*

Chemistry and Materials Science Divisions, Argonne National Laboratory, Argonne, Illinois 60439, USA

(Received 30 August 1986; accepted 12 December 1986)

Abstract. \(C_{12}H_{12}S_{38} \), \(M_r = 412.7 \), monoclinic, \(P2_1/c \), \(a = 10.484 \) (1), \(b = 12.308 \) (1), \(c = 13.040 \) (2) Å, \(\beta = 96.553 \) (9)°, \(V = 1671.7 \) (3) Å\(^3\), \(Z = 4 \), \(D_2 \) = 1.64 Mg m\(^{-3}\), \(\lambda(\text{Mo }K\alpha) = 0.7073 \) Å, \(\mu = 1.013 \) mm\(^{-1}\), \(F(000) = 848 \), \(T = 298 \) K. The structure of the neutral organic electron donor molecule, BPDT-TTF, is reported. The overall structure of this product is that of a twisted chair containing fused five- and seven-atom heterocyclic rings. The molecules are arranged in sheets in the lattice and do not display any unusual intermolecular contacts. Convergence to conventional \(R \) values of \(R = 0.060 \) and \(wR = 0.036 \) was obtained using 2952 averaged reflections with \(F_o > 0 \) and 354 variable parameters.

© 1987 International Union of Crystallography
Experimental. BPDT-TTF was prepared by (EtO)$_3$P-induced coupling of 4,5-propylenedithio-1,3-dithiole-2-thione (Mizuno, Garito & Cava, 1978). Crystals suitable for X-ray analysis obtained by crystallization from chlorobenzene. Orange rectangular prism of induced coupling of 4,5-propylenedithio-l,3-dithiole-2-thione (Mizuno, Garito & Cava, 1978). Using the og-scan technique in bisecting geometry setting angles of 25 reflections with $30 < 2\theta < 35^\circ$. Data collection carried out at ambient temperature using the ω-scan technique in bisecting geometry (Nicolet P3F diffractometer, graphite monochromator, Mo Ka radiation). 6475 reflections measured with $4 \leq 2\theta < 50^\circ (+h, \pm k, \pm l, h \leq 12, |k| \leq 14, |l| \leq 15)$ and averaged to give 2952 unique reflections ($wR_{int} = 0.023$). Scan rate variable, $2-30^\circ$ rain$^{-1}$; scan range, $4<2\theta<50^\circ$.

Convergence to conventional R values of $R = 0.060$ and $wR = 0.036$ with a goodness-of-fit indicator of 1.108 obtained using 2952 reflections with $F_o > 0.0$ and 354 variable parameters. Max. shift/σ for final cycle 0.13. Difference Fourier map calculated after last cycle of refinement essentially featureless with a maximum residual electron density of 0.54 eÅ$^{-3}$. A perspective view of the BPDT-TTF molecule is shown in Fig. 1. Atomic positional parameters, bond distances and angles are summarized in Tables 1 and 2.* Fig. 2 is a stereo view showing the packing.

* Lists of structure factors, H-atom coordinates and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43645 (11 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1. Fractional coordinates and equivalent isotropic thermal parameters

The complete temperature factor is $\exp[-8\pi^2 U_{eq}(\sin^2\theta)/\lambda^2]$, where

$$ U_{eq} = \frac{1}{a^2} \sum_{ij} a_i a_j U_{ij} $$

with a_i and a_j in units of Å2.

Table 2. Interatomic distances (Å) and angles (°) with e.s.d.'s in parentheses

![Fig. 1. A view of the BPDT-TTF molecule illustrating the atomic numbering scheme. Thermal ellipsoids have been drawn at the 50% probability level.](image-url)
Fig. 2. A stereoview packing diagram of the unit cell of BPDT-TTF. Hydrogen atoms have been omitted for clarity.

Related literature. The X-ray crystal structures and conductivity properties of (BPDT-TTF)₂I₃ (Kobayashi, Takahashi, Kato, Kobayashi & Sasaki, 1984) and (BPDT-TTF)₂(PF₆)₂ (Kato, Mori, Kobayashi, Sasaki & Kobayashi, 1984) have been reported. The subject of tetrathiafulvalene-based organic synthetic metals has been reviewed (Williams, Beno, Wang, Leung, Emge, Geiser & Carlson, 1985).

This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences under contract No. W-31-109-ENG-38.

References

Structural Chirality of (—)-N-(3,4,4-Trimethyl-5-hexenoyl)camphorsultam*

BY G. BERNARDINELLI

Laboratoire de Cristallographie aux Rayons X, Université de Genève, 24 quai Ernest Ansermet, CH-1211 Genève 4, Switzerland

AND W. OPPOLZER AND P. SCHNEIDER

Département de Chimie Organique, Université de Genève, 30 quai Ernest Ansermet, CH-1211 Genève 4, Switzerland

(Received 25 August 1986; accepted 21 October 1986)

Abstract. The title compound (I) was obtained by BF₃·OEt₂-mediated asymmetric 1,4-addition of PBu₃-stabilized methylcopper to the camphorsultam derivative (E)-10,10-dimethyl-4-(4,4-dimethyl-2,5-hexadienoyl)-3-thia-4-azatricyclo[5.2.1.0²₅]decane 3,3-dioxide (II). (I): C₁₉H₁₈NO₃S, Mᵣ=353.5, orthorhombic, P₂₁₂₂₁, a=11.628(2), b=21.310(7), c=8.057(4) Å, V=1996.6(8) Å³, Z=4, Dx=1.176 g cm⁻³, λ(Mo Kα)=0.71069 Å, μ=1.692 cm⁻¹, F(000)=768, m.p. 405–406 K, [α]₂⁰⁰₀°c=−47.0° (c=1.14% in CHCl₃), room temperature, R=0.049 for 1334 observed reflections [|Fₒ|≥3σ(Fₒ)] and [|Fᵣ|≥8.0]. The structural chirality of enantioselectively pure (I) was confirmed from the known absolute configuration of the camphorsultam moiety as well as by least-squares refinement of the absolute-structure parameter x=−0.02(16) [Bernardinelli & Flack (1985). Acta Cryst. A41, 500–511].

Experimental. Single crystals of (I) were grown from an ethanol solution at room temperature. Colourless crystal of average dimensions 0·24 × 0·28 × 0·30 mm; Philips PW 1100 diffractometer, graphite-monochromated Mo Kα; cell dimensions from 21 reflections (2θ=24–36°); data collection: sinθ/λ ≤ 0.505 Å⁻¹, h 0–10, k 0–20, l 0–8 and all antireflections of these; ω/2θ scans, ω-scan angle 1·2°; two standard

© 1987 International Union of Crystallography