Structure of 5-(Diphenylphosphino)uracil

BY HELMUTH ZIMMERMANN* AND MARTIN GOMM

Institut für Angewandte Physik, Lehrstuhl für Kristallographie der Universität Erlangen-Nürnberg, Bismarckstrasse 10, D-8520 Erlangen, Federal Republic of Germany

AND JOCHEN ELLERMANN AND EBERHARD KÖCK

Institut für Anorganische Chemie der Universität Erlangen-Nürnberg, Egerlandstrasse 1, D-8520 Erlangen, Federal Republic of Germany

(Received 6 March 1987; accepted 21 April 1987)

Abstract. C_{16}H_{13}N_{2}O_{2}P, \(M_p = 296-27 \), monoclinic, \(P2_1/c \), \(a = 12-005 \) (4), \(b = 9-804 \) (2), \(c = 12-628 \) (3) Å, \(\beta = 106-02 \) (2)°, \(V = 1429 \) (2) Å³, \(Z = 4 \), \(\rho = 1.38 \) g cm⁻³, \(\lambda(\text{Mo } K \alpha) = 0.70926 \) Å, \(\mu = 1.91 \) cm⁻¹, \(F(000) = 616 \), room temperature, final \(R = 0.042 \) for 3294 unique reflections including unobserved. The title compound is a modified uracil in which the H atom at position C(5) is replaced by a diphenylphosphine group. The uracil ring has expected bond lengths and angles but deviates from planarity more than usual. The P atom shows normal pyramidal coordination geometry. Hydrogen bonds connect the molecules to form (100) layers in the crystal. These layers are held together by van der Waals forces.

Introduction. The title compound was synthesized in order to study the coordination properties of a diphenylphosphine-substituted uracil molecule. In chemotherapy, C(5)-substituted pyrimidine nucleosides are used as cytostatic drugs, hence it was of interest to test this substance for possible anticancer effects. Experiments showed only a very small antitumour activity (Ellermann & Demuth, 1983), and for this reason the X-ray structure of 5-(diphenylphosphino)uracil is of great interest to our continuing investigations.

Experimental. The compound was prepared using the procedure reported by Ellermann & Demuth (1983). Recrystallization from a mixture of dimethyl sulfoxide and water gave transparent plates of dimensions 0·56 × 0·56 × 0·28 mm. Philips PW 1100 diffractometer (graphite monochromator, Mo Kα radiation); \(\omega-2\theta \) scan mode, scan width \((0-900 + 0-345 \tan \theta)° \), profile analysis with a modified Lehmann & Larsen (1974) procedure; lattice parameters refined by least-squares procedure GIVER (Krogmann, 1966) on the basis of 47 reflections with 17·3 < \(2\theta < 22.6° \); no absorption correction was applied; \(\sin \theta_{\text{max}}/\lambda = 0.65 \) Å⁻¹, index range \(-15 < h < 15\), \(k = 0-12\), \(l = 0-16\); eight standard reflections (intensity variation 0.4%); 13 208 reflections (\(2 \leq \theta \leq 27.5° \)) were measured, after averaging symmetrical equivalents, 3300 reflections (12 unobserveds included, \(I < 3o(I) \)) remained; \(R_{\text{int}} = 0.012 \). Structure solved by direct methods, subsequent Fourier map revealed all non-H atoms and all H atoms could be located from a difference Fourier map; final refinement by blocked least-squares methods (based on \|F\|) of scale factor, coordinates and anisotropic temperature parameters (H atoms isotropic). Reflections with strong extinction effects were omitted. Refinement was concluded with 3294 reflections after omission of 311, 111, 012, 113, 013 and 113. \(R = 0.042, R_w = 0.036, S = 6.93, w = 1/\sigma^2(I) \), max. \(\Delta/\sigma = 0.16 \); \(\Delta p \) in the final difference Fourier synthesis +0·34 and −0·23 e Å⁻³; scattering factors from International Tables for X-ray Crystallography (1974). Computations employed the CRYSTAN system (Burzlaff, Böhme & Gomm, 1977) and ORTEPII (Johnson, 1977) for plotting purposes.

* Author for correspondence.

© 1987 International Union of Crystallography
Discussion. Atomic coordinates and equivalent isotropic temperature factors are given in Table 1. Bond lengths and angles are listed in Table 2.

Fig. 1 shows a perspective view of the molecule with the atomic numbering scheme. The title substance is a 2,4(1H,3H)-pyrimidinedione molecule, in which the H atom at C(5) is replaced by a diphenylphosphine group. The P–C bonds form a pyramidal arrangement and there is no important difference in the geometry around the P atom compared with other phosphines, e.g.

Table 1. Atom coordinates ($\times 10^4$) with e.s.d.'s in parentheses and equivalent isotropic thermal parameters ($A^2 \times 10^2$)

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Ueq</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(1)</td>
<td>2697 (1)</td>
<td>4767 (1)</td>
<td>8338 (1)</td>
<td>3.6</td>
</tr>
<tr>
<td>O(2)</td>
<td>4725 (1)</td>
<td>10262 (1)</td>
<td>8567 (1)</td>
<td>4.7</td>
</tr>
<tr>
<td>N(1)</td>
<td>3691 (1)</td>
<td>6612 (1)</td>
<td>10296 (1)</td>
<td>5.5</td>
</tr>
<tr>
<td>N(2)</td>
<td>3691 (1)</td>
<td>6612 (1)</td>
<td>10296 (1)</td>
<td>5.5</td>
</tr>
<tr>
<td>C(2)</td>
<td>4323 (1)</td>
<td>9110 (1)</td>
<td>8518 (1)</td>
<td>4.0</td>
</tr>
<tr>
<td>C(3)</td>
<td>3736 (1)</td>
<td>7123 (1)</td>
<td>9428 (1)</td>
<td>3.6</td>
</tr>
<tr>
<td>C(4)</td>
<td>3306 (1)</td>
<td>6479 (1)</td>
<td>8359 (1)</td>
<td>3.6</td>
</tr>
<tr>
<td>C(5)</td>
<td>3478 (1)</td>
<td>7136 (1)</td>
<td>7488 (1)</td>
<td>3.6</td>
</tr>
<tr>
<td>C(6)</td>
<td>1216 (1)</td>
<td>5109 (1)</td>
<td>8410 (1)</td>
<td>3.6</td>
</tr>
<tr>
<td>C(11)</td>
<td>872 (1)</td>
<td>6272 (1)</td>
<td>8860 (1)</td>
<td>4.6</td>
</tr>
<tr>
<td>C(12)</td>
<td>2433 (1)</td>
<td>4339 (1)</td>
<td>6879 (1)</td>
<td>4.6</td>
</tr>
<tr>
<td>C(13)</td>
<td>3055 (1)</td>
<td>3251 (1)</td>
<td>5542 (1)</td>
<td>5.4</td>
</tr>
<tr>
<td>C(14)</td>
<td>2954 (1)</td>
<td>2905 (2)</td>
<td>5542 (1)</td>
<td>5.4</td>
</tr>
<tr>
<td>C(15)</td>
<td>2236 (2)</td>
<td>3645 (2)</td>
<td>4708 (1)</td>
<td>7.5</td>
</tr>
<tr>
<td>C(16)</td>
<td>1592 (1)</td>
<td>4703 (2)</td>
<td>4937 (1)</td>
<td>7.5</td>
</tr>
<tr>
<td>C(21)</td>
<td>1675 (1)</td>
<td>5046 (1)</td>
<td>6023 (1)</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Table 2. Selected bond distances (Å) and angles (°) E.s.d.'s are given in parentheses.

- Phenyl rings
 - N(1)–H(1): 0.87 (1)
 - C(1)–N(1): 1.361 (1)
 - C(2)–N(2): 1.370 (2)
 - N(3)–H(3): 0.91 (1)
 - C(4)–C(5): 1.383 (2)
 - C(6)–N(1): 1.384 (2)
 - C(5)–P: 1.829 (1)
 - C(11)–P: 1.837 (1)
 - C(21)–P: 1.837 (1)
 - C(5)–C(6): 1.340 (2)

- Phenyl C–C
 - C–C (mean): 1.370 (2)–1.391 (2)

We thank Dr A. A. M. Demuth for preparation of the compound. The work was supported by the Deutsche Forschungsgemeinschaft, the Verband der Chemischen Industrie and Fonds der Chemischen Industrie.
Fig. 2. Molecular packing in the crystal of 5-(diphenylphosphino)uracil; the phenyl rings are symbolized for clarity.

References

The Structure of a Five-Membered Cyclic Sultone

BY D. S. BROWN, H. HEANEY AND K. G. MASON
Loughborough University of Technology, Loughborough, Leics. LE11 3TU, England

(Received 30 March 1987; accepted 11 May 1987)

Abstract. 1,5-Dihydro-3a,5-dimethyl-1H-1,5-methano
naptho[2,1-e][1,2]oxathiol-4(3aH)-one 3,3-dioxide, C_{14}H_{14}O_{5}S, M_r = 278.2, monoclinic, Cc, a = 7.450 (10), b = 25.246 (10), c = 6.980 (5) Å, \(\beta \) = 104.6 (1)°, \(U = 1270.7 \) Å\(^3\), Z = 4, \(D_x = 1.455 \) g cm\(^{-3}\), \(\lambda(\text{MoK}α) = 0.7107 \) Å, \(μ = 2.5 \) cm\(^{-1}\), \(F(000) = 584\), \(T = 293 \) K, \(R = 0.062 \) for 1012 reflexions with \(I > 3σ(I) \).
The structure contains a five- and a seven-membered saturated sultone ring. It is compared with known structures of saturated and partially unsaturated sultone rings. Bond lengths of interest are: mean acyclic S–O 1.415 (5), cyclic S–O 1.58 (1) and S–C 1.78 (1) Å.

Introduction. In our studies of the rearrangement reactions of 1-methoxy-2,6-dimethylbenzobarrelene derivatives in sulfuric acid we obtained the sultone (1) whose structure was established by X-ray diffraction (Brown, Heaney & Mason, 1984). The product was thought to arise by sulfonation of an olefin (Roberts & Williams, 1987) concurrently with a 1,2-acyl shift. Since the complex formed between dioxan and sulfur trioxide is known to have electrophilic properties (Wolinsky, Dimmel & Gibson, 1967; Dimmel & Fu, 1973) we have studied the reaction of the ketone (2) with that reagent. The sultone (1) was formed but in addition we isolated a second sultone (3) whose X-ray crystal structure is now reported.

Experimental. Preparation by the method of Brown, Heaney, Ley, Mason & Singh (1978); colourless acicular crystals grown from ethanol, crystal (1.0 × 0.1 × 0.2 mm) mounted about c; Stoe Weissenberg diffractometer, (sinθ)/λ < 0.6 Å\(^{-1}\); lattice parameters from maximizing fit of axial row reflexions 10 < 2θ < 30°; 1186 unique reflexions measured, 1012 with

© 1987 International Union of Crystallography