data_master_file_afc7*.xtl #------------------------------------------------------------------------------ _audit_creation_date 'Tue Nov 11 19:38:50 1998' _audit_creation_method 'from TEXRAY.INF file' _audit_update_record ? #------------------------------------------------------------------------------ _computing_data_collection 'Rigaku/AFC Diffractometer Control' _computing_cell_refinement 'Rigaku/AFC Diffractometer Control' _computing_data_reduction 'teXsan' _computing_structure_solution 'SHELXS86' _computing_structure_refinement 'teXsan' _computing_publication_material 'teXsan' _computing_molecular_graphics 'ORTEPII' #------------------------------------------------------------------------------ _chemical_compound_source ? _chemical_name_common ? _chemical_formula_weight 340.46 _chemical_formula_analytical ? _chemical_formula_sum 'C12 H4 O2 S5 ' _chemical_formula_moiety 'C12 H4 O2 S5 ' _chemical_formula_structural ? _chemical_melting_point ? #------------------------------------------------------------------------------ _cell_length_a 8.649(2) _cell_length_b 9.679(2) _cell_length_c 15.721(2) _cell_angle_alpha 90 _cell_angle_beta 94.82(1) _cell_angle_gamma 90 _cell_volume 1311.4(4) _cell_formula_units_Z 4 _cell_measurement_temperature 293.2 _cell_measurement_reflns_used 25 _cell_measurement_theta_min 27.7 _cell_measurement_theta_max 28.3 #------------------------------------------------------------------------------ _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M 'P 21/c ' _symmetry_Int_Tables_number 14 _symmetry_space_group_name_Hall ? loop_ _symmetry_equiv_pos_as_xyz x,y,z -x,1/2+y,1/2-z -x,-y,-z x,1/2-y,1/2+z #------------------------------------------------------------------------------ _exptl_crystal_description 'prismatic' _exptl_crystal_colour 'dark red' _exptl_crystal_size_max 0.120 _exptl_crystal_size_mid 0.100 _exptl_crystal_size_min 0.050 _exptl_crystal_density_diffrn 1.724 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 688.00 _exptl_absorpt_coefficient_mu 8.091 _exptl_absorpt_correction_type psi-scan _exptl_absorpt_process_details '(North, Phillips & Mathews, 1968)' _exptl_absorpt_correction_T_min 0.633 _exptl_absorpt_correction_T_max 0.996 _exptl_special_details ; ? ; #------------------------------------------------------------------------------ _diffrn_special_details ; ? ; _diffrn_ambient_temperature 293.2 _diffrn_radiation_wavelength 1.5418 _diffrn_radiation_type 'Cu K\a' _diffrn_radiation_source 'Rigaku rotating anode' _diffrn_radiation_monochromator graphite _diffrn_radiation_detector 'scintillation counter' _diffrn_measurement_device_type 'Rigaku AFC7R' _diffrn_measurement_method \w-2\q _diffrn_standards_number 3 _diffrn_standards_interval_count 150 _diffrn_standards_decay_% 0.27 loop_ _diffrn_standard_refln_index_h _diffrn_standard_refln_index_k _diffrn_standard_refln_index_l -1 2 0 -2 2 0 -1 3 -1 _diffrn_reflns_number 2604 _reflns_number_total 2439 _reflns_number_gt 2099 _reflns_threshold_expression >2.0sigma(I) _diffrn_reflns_av_R_equivalents 0.099 _diffrn_reflns_av_sigmaI/netI 0.040 _diffrn_reflns_limit_h_min 0 _diffrn_reflns_limit_h_max 10 _diffrn_reflns_limit_k_min 0 _diffrn_reflns_limit_k_max 11 _diffrn_reflns_limit_l_min -18 _diffrn_reflns_limit_l_max 18 _diffrn_reflns_theta_min 2.82 _diffrn_reflns_theta_max 70.03 _diffrn_reflns_reduction_process 'Lp corrections applied' _diffrn_orient_matrix_UB_11 -0.09821 _diffrn_orient_matrix_UB_12 0.04973 _diffrn_orient_matrix_UB_13 -0.01903 _diffrn_orient_matrix_UB_21 -0.05978 _diffrn_orient_matrix_UB_22 -0.08766 _diffrn_orient_matrix_UB_23 0.00495 _diffrn_orient_matrix_UB_31 -0.01566 _diffrn_orient_matrix_UB_32 0.02274 _diffrn_orient_matrix_UB_33 0.06073 #------------------------------------------------------------------------------ loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.018 0.009 ;International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1) ; 'H' 'H' 0.000 0.000 ;International Tables for Crystallography (1992, Vol. C, Table 6.1.1.2) ; 'S' 'S' 0.333 0.557 ;International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1) ; 'O' 'O' 0.049 0.032 ;International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1) ; #------------------------------------------------------------------------------ loop_ _atom_site_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_thermal_displace_type _atom_site_calc_flag _atom_site_calc_attached_atom _atom_site_occupancy _atom_site_refinement_flags S1 0.10196(8) 0.23902(7) 1.01948(5) 0.0387(2) Uani d . 1.00 . S2 0.28114(9) -0.02247(7) 1.01794(5) 0.0463(2) Uani d . 1.00 . S3 0.03102(7) 0.17530(7) 1.20584(4) 0.0346(2) Uani d . 1.00 . S4 0.20830(8) -0.07799(7) 1.20373(5) 0.0388(2) Uani d . 1.00 . S5 0.07438(8) 0.00490(8) 1.36362(5) 0.0436(2) Uani d . 1.00 . O1 0.1931(3) 0.0980(2) 0.8342(1) 0.0483(6) Uani d . 1.00 . O2 0.4731(3) 0.2466(3) 1.0885(2) 0.0638(8) Uani d . 1.00 . C1 0.2755(3) 0.1566(3) 0.9824(2) 0.0344(7) Uani d . 1.00 . C2 0.1112(3) 0.1359(3) 1.1118(2) 0.0345(6) Uani d . 1.00 . C3 0.1928(3) 0.0182(3) 1.1113(2) 0.0375(7) Uani d . 1.00 . C4 0.1014(3) 0.0312(3) 1.2628(2) 0.0322(6) Uani d . 1.00 . C5 0.2779(3) 0.1629(3) 0.8842(2) 0.0327(6) Uani d . 1.00 . C6 0.4223(3) 0.2388(3) 1.0155(2) 0.0376(7) Uani d . 1.00 . C7 0.4853(3) 0.3019(3) 0.9407(2) 0.0337(6) Uani d . 1.00 . C8 0.6124(3) 0.3893(3) 0.9377(2) 0.0476(8) Uani d . 1.00 . C9 0.6522(4) 0.4310(4) 0.8590(3) 0.0536(9) Uani d . 1.00 . C10 0.5722(4) 0.3837(4) 0.7840(2) 0.0502(9) Uani d . 1.00 . C11 0.4485(3) 0.2952(3) 0.7859(2) 0.0409(8) Uani d . 1.00 . C12 0.4047(3) 0.2564(3) 0.8660(2) 0.0313(6) Uani d . 1.00 . H8 0.671(4) 0.426(4) 0.994(2) 0.047(9) Uiso calc . 1.00 . H9 0.743(6) 0.489(5) 0.856(3) 0.07(1) Uiso calc . 1.00 . H10 0.608(5) 0.413(4) 0.731(3) 0.07(1) Uiso calc . 1.00 . H11 0.397(4) 0.259(4) 0.734(3) 0.054(10) Uiso calc . 1.00 . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_12 _atom_site_aniso_U_13 _atom_site_aniso_U_23 S1 0.0387(4) 0.0346(4) 0.0438(4) 0.0093(3) 0.0103(3) 0.0074(3) S2 0.0580(5) 0.0305(4) 0.0539(5) 0.0110(3) 0.0258(4) 0.0053(3) S3 0.0328(3) 0.0315(4) 0.0402(4) 0.0044(2) 0.0077(3) -0.0009(3) S4 0.0385(4) 0.0301(4) 0.0493(4) 0.0059(3) 0.0118(3) 0.0088(3) S5 0.0449(4) 0.0478(4) 0.0380(4) -0.0047(3) 0.0029(3) 0.0016(3) O1 0.045(1) 0.051(1) 0.048(1) -0.0151(10) -0.0027(9) -0.0072(10) O2 0.060(1) 0.096(2) 0.035(1) -0.008(1) -0.003(1) -0.001(1) C1 0.035(1) 0.030(1) 0.039(1) 0.005(1) 0.009(1) 0.002(1) C2 0.034(1) 0.029(1) 0.042(1) 0.003(1) 0.008(1) 0.003(1) C3 0.039(1) 0.029(1) 0.046(2) 0.003(1) 0.013(1) 0.006(1) C4 0.025(1) 0.029(1) 0.043(1) -0.0044(9) 0.002(1) -0.001(1) C5 0.032(1) 0.032(1) 0.035(1) 0.002(1) 0.0028(10) -0.001(1) C6 0.036(1) 0.041(1) 0.036(2) 0.004(1) 0.000(1) -0.003(1) C7 0.028(1) 0.031(1) 0.041(1) 0.004(1) -0.001(1) -0.002(1) C8 0.033(1) 0.043(2) 0.067(2) -0.003(1) 0.000(1) -0.005(1) C9 0.035(1) 0.045(2) 0.082(3) -0.006(1) 0.013(2) 0.006(2) C10 0.039(1) 0.055(2) 0.059(2) 0.006(1) 0.017(1) 0.021(2) C11 0.034(1) 0.049(2) 0.041(2) 0.008(1) 0.006(1) 0.009(1) C12 0.026(1) 0.031(1) 0.036(1) 0.0044(9) 0.0022(10) 0.0035(10) #------------------------------------------------------------------------------ _refine_special_details ; Refinement based on F against all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F, conventional R-factors (R) are calculated on F, with F set to zero for negative F. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. thus the refinement was done using all reflections. ; _refine_ls_structure_factor_coef F _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'w = 1/[\s^2^(Fo) + 0.00160|Fo|^2^]' _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details ? _refine_ls_abs_structure_Flack ? _refine_ls_number_reflns 2099 _refine_ls_number_parameters 188 _refine_ls_number_restraints 0 _refine_ls_number_constraints 0 _refine_ls_R_factor_all 0.0412 _refine_ls_R_factor_gt 0.0412 _refine_ls_wR_factor_all ? _refine_ls_wR_factor_ref 0.0609 _refine_ls_wR_factor_gt 0.0609 _refine_ls_goodness_of_fit_all ? _refine_ls_goodness_of_fit_ref 1.272 _refine_ls_shift/su_max 0.0150 _refine_ls_shift/su_mean 0.0010 _refine_diff_density_min -0.41 _refine_diff_density_max 0.37 #------------------------------------------------------------------------------ _geom_special_details ; ? ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_1 _geom_bond_site_symmetry_2 _geom_bond_publ_flag S1 C1 1.837(3) 1_555 1_555 yes S1 C2 1.758(3) 1_555 1_555 yes S2 C1 1.820(3) 1_555 1_555 yes S2 C3 1.755(3) 1_555 1_555 yes S3 C2 1.727(3) 1_555 1_555 yes S3 C4 1.740(3) 1_555 1_555 yes S4 C3 1.721(3) 1_555 1_555 yes S4 C4 1.726(3) 1_555 1_555 yes S5 C4 1.641(3) 1_555 1_555 yes O1 C5 1.206(3) 1_555 1_555 yes O2 C6 1.197(4) 1_555 1_555 yes C1 C5 1.548(4) 1_555 1_555 yes C1 C6 1.550(4) 1_555 1_555 yes C2 C3 1.340(4) 1_555 1_555 yes C5 C12 1.469(4) 1_555 1_555 yes C6 C7 1.470(4) 1_555 1_555 yes C7 C8 1.391(4) 1_555 1_555 yes C7 C12 1.385(4) 1_555 1_555 yes C8 C9 1.373(5) 1_555 1_555 yes C8 H8 1.04(3) 1_555 1_555 no C9 C10 1.394(5) 1_555 1_555 yes C9 H9 0.97(5) 1_555 1_555 no C10 C11 1.373(4) 1_555 1_555 yes C10 H10 0.95(4) 1_555 1_555 no C11 C12 1.396(4) 1_555 1_555 yes C11 H11 0.96(4) 1_555 1_555 no #------------------------------------------------------------------------------ loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_2 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C1 S1 C2 91.9(1) 1_555 1_555 1_555 yes C1 S2 C3 92.3(1) 1_555 1_555 1_555 yes C2 S3 C4 96.6(1) 1_555 1_555 1_555 yes C3 S4 C4 96.7(1) 1_555 1_555 1_555 yes S1 C1 S2 108.5(1) 1_555 1_555 1_555 yes S1 C1 C5 112.3(2) 1_555 1_555 1_555 yes S1 C1 C6 109.8(2) 1_555 1_555 1_555 yes S2 C1 C5 109.9(2) 1_555 1_555 1_555 yes S2 C1 C6 112.7(2) 1_555 1_555 1_555 yes C5 C1 C6 103.6(2) 1_555 1_555 1_555 yes S1 C2 S3 126.0(2) 1_555 1_555 1_555 yes S1 C2 C3 117.7(2) 1_555 1_555 1_555 yes S3 C2 C3 116.2(2) 1_555 1_555 1_555 yes S2 C3 S4 125.2(2) 1_555 1_555 1_555 yes S2 C3 C2 117.5(2) 1_555 1_555 1_555 yes S4 C3 C2 117.3(2) 1_555 1_555 1_555 yes S3 C4 S4 113.2(2) 1_555 1_555 1_555 yes S3 C4 S5 123.3(2) 1_555 1_555 1_555 yes S4 C4 S5 123.4(2) 1_555 1_555 1_555 yes O1 C5 C1 124.9(2) 1_555 1_555 1_555 yes O1 C5 C12 128.1(3) 1_555 1_555 1_555 yes C1 C5 C12 106.9(2) 1_555 1_555 1_555 yes O2 C6 C1 125.3(3) 1_555 1_555 1_555 yes O2 C6 C7 127.6(3) 1_555 1_555 1_555 yes C1 C6 C7 107.1(2) 1_555 1_555 1_555 yes C6 C7 C8 128.8(3) 1_555 1_555 1_555 yes C6 C7 C12 110.6(2) 1_555 1_555 1_555 yes C8 C7 C12 120.5(3) 1_555 1_555 1_555 yes C7 C8 C9 117.9(3) 1_555 1_555 1_555 yes C7 C8 H8 120(2) 1_555 1_555 1_555 no C9 C8 H8 121(2) 1_555 1_555 1_555 no C8 C9 C10 121.5(3) 1_555 1_555 1_555 yes C8 C9 H9 118(2) 1_555 1_555 1_555 no C10 C9 H9 119(2) 1_555 1_555 1_555 no C9 C10 C11 121.3(3) 1_555 1_555 1_555 yes C9 C10 H10 117(2) 1_555 1_555 1_555 no C11 C10 H10 121(2) 1_555 1_555 1_555 no C10 C11 C12 117.3(3) 1_555 1_555 1_555 yes C10 C11 H11 120(2) 1_555 1_555 1_555 no C12 C11 H11 121(2) 1_555 1_555 1_555 no C5 C12 C7 111.2(2) 1_555 1_555 1_555 yes C5 C12 C11 127.2(3) 1_555 1_555 1_555 yes C7 C12 C11 121.6(3) 1_555 1_555 1_555 yes #------------------------------------------------------------------------------ loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag S1 C1 S2 C3 -32.4(2) 1_555 1_555 1_555 1_555 yes S1 C1 C5 O1 -70.6(3) 1_555 1_555 1_555 1_555 yes S1 C1 C5 C12 111.7(2) 1_555 1_555 1_555 1_555 yes S1 C1 C6 O2 68.3(4) 1_555 1_555 1_555 1_555 yes S1 C1 C6 C7 -112.3(2) 1_555 1_555 1_555 1_555 yes S1 C2 S3 C4 -176.5(2) 1_555 1_555 1_555 1_555 yes S1 C2 C3 S2 -0.6(3) 1_555 1_555 1_555 1_555 yes S1 C2 C3 S4 177.1(1) 1_555 1_555 1_555 1_555 yes S2 C1 S1 C2 32.1(2) 1_555 1_555 1_555 1_555 yes S2 C1 C5 O1 50.4(3) 1_555 1_555 1_555 1_555 yes S2 C1 C5 C12 -127.4(2) 1_555 1_555 1_555 1_555 yes S2 C1 C6 O2 -52.8(4) 1_555 1_555 1_555 1_555 yes S2 C3 C6 C7 126.6(2) 1_555 1_555 1_555 1_555 yes S2 C3 S4 C4 177.3(2) 1_555 1_555 1_555 1_555 yes S2 C3 C2 S3 -178.0(1) 1_555 1_555 1_555 1_555 yes S3 C2 S1 C1 157.1(2) 1_555 1_555 1_555 1_555 yes S3 C2 C3 S4 -0.3(3) 1_555 1_555 1_555 1_555 yes S3 C4 S4 C3 0.7(2) 1_555 1_555 1_555 1_555 yes S4 C3 S2 C1 -156.4(2) 1_555 1_555 1_555 1_555 yes S4 C4 S3 C2 -0.8(2) 1_555 1_555 1_555 1_555 yes S5 C4 S3 C2 177.0(2) 1_555 1_555 1_555 1_555 yes S5 C4 S4 C3 -177.1(2) 1_555 1_555 1_555 1_555 yes O2 C6 C1 C5 -171.5(3) 1_555 1_555 1_555 1_555 yes O2 C6 C7 C8 -3.4(5) 1_555 1_555 1_555 1_555 yes O2 C6 C7 C12 173.1(3) 1_555 1_555 1_555 1_555 yes O1 C5 C1 C6 171.0(3) 1_555 1_555 1_555 1_555 yes O1 C5 C12 C7 -174.3(3) 1_555 1_555 1_555 1_555 yes O1 C5 C12 C11 3.5(5) 1_555 1_555 1_555 1_555 yes C1 S1 C2 C3 -20.0(3) 1_555 1_555 1_555 1_555 yes C1 S2 C3 C2 21.1(3) 1_555 1_555 1_555 1_555 yes C1 C5 C12 C7 3.4(3) 1_555 1_555 1_555 1_555 yes C1 C5 C12 C11 -178.8(3) 1_555 1_555 1_555 1_555 yes C1 C6 C7 C8 177.3(3) 1_555 1_555 1_555 1_555 yes C1 C6 C7 C12 -6.2(3) 1_555 1_555 1_555 1_555 yes C2 S1 C1 C5 153.8(2) 1_555 1_555 1_555 1_555 yes C2 S1 C1 C6 -91.5(2) 1_555 1_555 1_555 1_555 yes C2 C3 S4 C4 -0.3(3) 1_555 1_555 1_555 1_555 yes C3 S2 C1 C5 -155.6(2) 1_555 1_555 1_555 1_555 yes C3 S2 C1 C6 89.4(2) 1_555 1_555 1_555 1_555 yes C3 C2 S3 C4 0.6(2) 1_555 1_555 1_555 1_555 yes C5 C1 C6 C7 7.8(3) 1_555 1_555 1_555 1_555 yes C5 C12 C7 C6 1.8(3) 1_555 1_555 1_555 1_555 yes C5 C12 C7 C8 178.6(2) 1_555 1_555 1_555 1_555 yes C5 C12 C11 C10 -179.5(3) 1_555 1_555 1_555 1_555 yes C6 C1 C5 C12 -6.8(3) 1_555 1_555 1_555 1_555 yes C6 C7 C8 C9 177.6(3) 1_555 1_555 1_555 1_555 yes C6 C7 C12 C11 -176.1(2) 1_555 1_555 1_555 1_555 yes C7 C8 C9 C10 -2.4(5) 1_555 1_555 1_555 1_555 yes C7 C12 C11 C10 -1.9(4) 1_555 1_555 1_555 1_555 yes C8 C7 C12 C11 0.7(4) 1_555 1_555 1_555 1_555 yes C8 C9 C10 C11 1.1(5) 1_555 1_555 1_555 1_555 yes C9 C8 C7 C12 1.5(4) 1_555 1_555 1_555 1_555 yes C9 C10 C11 C12 1.0(5) 1_555 1_555 1_555 1_555 yes #------------------------------------------------------------------------------ loop_ _geom_contact_atom_site_label_1 _geom_contact_atom_site_label_2 _geom_contact_distance _geom_contact_site_symmetry_1 _geom_contact_site_symmetry_2 _geom_contact_publ_flag ? ? ? ? ? ? #------------------------------------------------------------------------------ _publ_contact_author_name 'Kazumasa Ueda' _publ_contact_author_address ; Research Institute for Advanced Science and Technology Osaka Prefecture University Sakai Osaka 599-8570 Japan ; _publ_contact_author_email 'kazueda@riast.osakafu-u.ac.jp' _publ_contact_author_fax '+81-722-54-9935' _publ_contact_author_phone '+81-722-54-9818' _publ_contact_letter ; Statement for the submission of our manuscript, entitled "1,3,4,6- Tetrathiapentalene-2-thione (or -one)-5-spiro-2'-indan-1',3'-dione" to Acta Crystallographica Section C : cif-submission for publication. There are so far known few donor/acceptor-type spiro compounds, in which the conformation around the spiro bond might exert an important influence on the degree of charge-transfer from the donor part to the acceptor part. The crystal structure is determined by the sulfur-sulfur, sulfur-oxygen, and sulfur-\p intermolecular short contacts. We now succeeded in the X- ray structure analysis of 1,3,4,6-tetrathiapentalene-2-thione- (I) and one-5'-spiro-2'-indan-1',3'-diones (II). For both (I) and (II) the geometry around spiro carbon atom is slightly distorted-tetrahedral. However, the packing structures are quite different between (I) and (II). For (I) two kinds of one-dimensional network are formed through the intermolecular short contacts between the sulfur atom of one thiocarbonyl group and the sulfur atom of dithiacyclopentene along a axis and also between the oxygen atom of one indandione group and the sulfur atom of dithiacyclopentenethione ring along a axis. On the other hand, (II) forms no network, although the contacts between the sulfur atoms of dithiacyclopentene and indandione rings are present at each of the neighboring molecules. ; _publ_requested_journal 'Acta Crystallographica Section C' _publ_requested_category 'CO' _publ_requested_coeditor_name ? _publ_section_title ; 1,3,4,6-Tetrathiapentalene-2-thione (or -one)-5-spiro-2'-indan-1',3'-dione ; _publ_section_title_footnote ; ? ; loop_ _publ_author_name _publ_author_footnote _publ_author_address 'Kazumasa Ueda' ; Research Institute for Advanced Science and Technology, Osaka Prefecture University, Sakai, Osaka 599-8570, Japan ; 'Masaki Iwamatsu' ; Research Institute for Advanced Science and Technology, Osaka Prefecture University, Sakai, Osaka 599-8570, Japan ; 'Toyonari Sugimoto' ; Research Institute for Advanced Science and Technology, Osaka Prefecture University, Sakai, Osaka 599-8570, Japan ; _publ_section_synopsis ; ? ; _publ_section_abstract ; Recrystallization of 1,3,4,6-tetrathiapentalene-2-thione-5-spiro-2'-indan- 1',3'-dione, C~12~H~4~O~2~S~5~ (I) from CH~2~Cl~2~ and of 1,3,4,6- tetrathiapentalene-2-one-5-spiro-2'-indan-1',3'-dione, C~12~H~4~O~3~S~4~ (II) from CHCl~3~ afforded their single crystals suitable for the X-ray structure analysis. The molecular structures of (I) and (II) are similar to each other and suggest almost no electron transfer from the dithiacyclopentene-thione or -one group to the indandione group. For (I) two kinds of one-dimensional network are formed through the S-S and S-O short contacts, while there is not such a network for (II). ; _publ_section_comment ;The molecular structures of (I) and (II) are as a whole similar to each other, but different in sevral points (see Fig. 1 and Fig. 2). The geometry around the spiro carbon atom is very slightly distorted-tetrahedral, as is obvious from the dihedral angles between two three-membered rings (S1-C1-S2 and C5-C1-C6), 89.3(3) and 91.4(3)\% for (I) and (II), respectively. Furthermore, the five-membered ring (C1-S1-C2-C3-S2) has an envelope-like geometry, and the dihedral angles between the three-membered ring (C1-S1-S2) and the four-membered ring (S1-C2-C3-S2) are 154.2(0) and 141.7(5)\% for (I) and (II), respectively, eventually resulting in the dihedral angles of 85.0(8) and 83.4(1)\% between the five-membered ring (C2-C3-S4-C4-S3) and the benzene ring (C7-C8-C9-C10-C11-C12). Maslak et al. have previously reported the molecular structures of several donor/acceptor-type of spiro compounds bearing an indandione group (Maslak, Chopra, Moylan, Wortmann, Lebus, Rheingold & Yap, 1996). For 1,3-dimethyl-2,3-dihydro-1H-perimidine-2-spiro-2'-indan-1',3'- dione (III) the bond distance (1.573 \%A) between one carbonyl carbon atom and the spiro carbon atom is longer than the other corresponding one (1.553 \%A), and one carbonyl group has a longer bond distance (1.221 \%A) than the other one (1.207 \%A). This difference is significant due to electron transfer from the electron-donating amine to the electron-accepting indandione group. On the other hand, for (I) and (II) two bond distances between the carbonyl and spiro carbon atoms are almost the same : 1.548(4) and 1.550(4) \%A for (I) and 1.558(8) and 1.550(6) \%A for (II). The bond distances of carbonyl groups are also almost the same (1.197(4) and 1.206(3) \%A for (I), and 1.190(5) and 1.195(5) \%A for (II)), and shorter than those of (III). These results suggest almost no electron transfer from the dithiacyclopentene-thione or -one group to the indandione group as a result of weak electron-donating ability of dithiacyclopentene-thione and -one groups. The space groups of (I) and (II) both belong to P21/c, but their crystal packings are quite different from each other. For (I) two kinds of one- dimensional network are formed through the intermolecular short contacts between the sulfur atoms along c axis and also between the oxygen and sulfur atoms along c axis (see Fig. 3 and Fig. 4). The distances of S1-S5~iv)~ and S3-O1~iv)~ contacts are 3.479(1) and 3.221(2) \%A respectively, which are shorter than the sum of van der Waals radii of two sulfur atoms (3.70 \%A) and of sulfur and oxygen atoms (3.25 \%A) (Pauling, 1960). On the other hand, (II) forms no network, although the contacts between the sulur atoms and also between the sulfur atom and the cyclopentene ring (C1-C5-C12-C7-C6) are present at each of the neighboring molecules (Fig. 5): S1-S1~iii)~, S1- C5~iii)~, S1-C6~iii)~, S1-C7~iii)~ and S1-C12~iii)~ contacts have the distances of 3.451(2), 3.428(3), 3.552(3), 3.456(3) and 3.359(3) \%A respectively. ; _publ_section_acknowledgements ; ? ; _publ_section_experimental ; ? ; _publ_section_references ; Molecular Structure Corporation. (1993). teXsan. Single Crystal Structure Analysis Software. Version 1.7. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA. North, A.C.T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359. Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. Maslak, P.; Chopra, A.; Moylan, C. R.; Wortmann, R; Lebus, S.; Rheingold, A. L.; Yap, G. P. A. (1996). J. Am. Chem. Soc. 118, 1471-1481. Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., Cornell University Press, Ithaca, New York. Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Gottingen, Germany. Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564. ; _publ_section_table_legends ; ? ; _publ_section_figure_captions ; Fig. 1. Molecular structure of (I) showing 50% probability displacement ellipsoids. Fig. 2. Molecular structure of (II) showing 50% probability displacement ellipsoids. Fig. 3. Packing arrangement projected down b axis for (I). Fig. 4. Packing arrangement projected down a axis for (I). Fig. 5. Molecular arrangement between the neighboring molecules for (II). ; _publ_section_exptl_prep ; Bis(tetra-n-butylammonium) bis(1,3-dithiole-2-thione-4,5-dithiolato) zinc complex was reacted with an equimolar amount of 2,2-dichloroindan-1,3-dione in CH~2~Cl~2~ at r.t. for 5 h, followed by recrystallization of the crude product from CH~2~Cl~2~ to afford dark red plates (mp 183.5 \%C) of (I) in 86% yield. After the reaction of (I) with 2 equiv. of mercury acetate was carried out in CH~3~Cl-AcOH at r.t. for 24 h, (II) was obtained as orange cubic crystals (mp 160 \%C (dec)) in 92% yield by recrystallization of the crude product from CHCl~3~. The satisfactory elemental analyses were obtained for (I) and (II). ; _publ_section_exptl_refinement ; ? ;