organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

5-(1-Hy­droxy­ethyl­­idene)-1,3-di­methyl­pyrimidine-2,4,6(1H,3H,5H)-trione and four amino derivatives

aInstituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil, bInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 5 November 2004; accepted 8 November 2004; online 11 December 2004)

In the structures of 5-(1-hydroxy­ethyl­idene)-1,3-di­methyl­pyrimidine-2,4,6(1H,3H,5H)-trione, C8H10N2O4, (I), 1,3-di­methyl-5-[1-(propyl­amino)­ethyl­idene]­pyrimidine-2,4,6(1H,3H,5H)-trione, C11H17N3O3, (II), and 5-[1-(2,2-di­methoxy­ethylamino)­ethyl­idene]-1,3-di­methyl­pyrimidine-2,4,6(1H,3H,5H)-trione, C12H19N3O5, (III), there are no direction-specific intermolecular interactions. The mol­ecules in 5-[1-(benzylamino)ethyl­idene]-1,3-di­methyl­pyrimidine-2,4,6(1H,3H,5H)-trione, C15H17N3O3, (IV), are linked into chains of edge-fused rings by a combination of one C—H⋯O hydrogen bond and one C—H⋯π(arene) hydrogen bond, while the mol­ecules in 5-(1-hydrazino­ethylidene)-1,3-di­methyl­pyrimidine-2,4,6(1H,3H,5H)-trione, C8H12N4O3, (V), are linked into a continuous framework structure by three distinct N—H⋯O hydrogen bonds, each involving a different O-atom acceptor. Each of compounds (I)–(V) contains an intramolecular hydrogen bond, of the O—H⋯O type in (I) and of the N—H⋯O type in (II)–(V).

Comment

It has recently been reported (da Silva & Lima, 2003[Silva, E. T. da & Lima, E. D. S. (2003). Tetrahedron Lett. 44, 3621-3624.]) that the title compound, (I[link]), which is the enol tautomer of 1,3-di­methyl-5-acetyl­barbituric acid, reacts readily with primary amines to form en­amines. We report here the structures of (I[link]), of three representative en­amine derivatives, (II[link])–(IV[link]), and of the hydrazine derivative (V[link]) (Figs. 1[link][link][link][link]–5[link]).

The bond distances in (I[link]) (Table 1[link]), in particular the C4—O4 and C51—O51 distances on the one hand and the C4—C5 and C5—C51 distances on the other, clearly demonstrate the enol constitution, consistent with the location of atom H51 as deduced from a difference map. In each of compounds (II[link])–(V[link]), atom N51 has a planar configuration, and the C51—N51 distances are all typical of their type (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). Atom N52 in (V[link]) has a distinctly pyramidal coordination environment, with a sum of bond angles, based on H-atom coordinates derived from difference maps, of 328.8°. The N51—N52 distance in (V[link]) corresponds closely to the mean value of 1.420 Å for >N—N< distances where the coordination of one N atom is planar and that of the other is pyramidal.

[Scheme 1]

There is an intramolecular hydrogen bond in each of (I[link])–(V[link]), of O—H⋯O type in (I[link]) and of N—H⋯O type in (II[link])–(V[link]) (Table 2[link]). There are no direction-specific intermolecular interactions in (I[link])–(III[link]), but the mol­ecules in (IV[link]) and (V[link]) are linked by intermolecular hydrogen bonds (Table 2[link]) into supramolecular structures that are one- and three-dimensional, respectively.

The one-dimensional supramolecular structure of (IV[link]) is generated by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds (Table 2[link]). Aryl atom C514 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to carbonyl atom O4 in the mol­ecule at (1 − x, 1 − y, 1 − z), so generating a centrosymmetric R22(22) ring (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) centred at ([1\over2], [1\over2], [1\over2]) (Fig. 6[link]). In addition, methyl­ene atom C53 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to the C511–C516 aryl ring in the mol­ecule at (1 − x, −y, 1 − z), so generating a second centrosymmetric ring, this time centred at ([1\over2], 0, [1\over2]). The combination of these two centrosymmetric motifs thus generates a chain of edge-fused rings running parallel to the [010] direction, with the larger rings centred at ([1\over2], [1\over2] + n, [1\over2]) (n = zero or integer) and the smaller rings centred at ([1\over2], n, [1\over2]) (n = zero or integer) (Fig. 6[link]).

The three-dimensional supramolecular structure of (V[link]) is of some complexity but can readily be analysed in terms of a series of one-dimensional substructures and their simple combinations. In the first substructure, atom N52 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor, via atom H52D, to atom O4 in the mol­ecule at (−[1\over2] + x, [1\over2] − y, −z), so producing a C(7) chain running parallel to the [100] direction and generated by the 21 screw axis along (x, [1\over4], 0) (Fig. 7[link]). In the second substructure, atom N52 at (x, y, z) acts as a donor, via atom H52E, to atom O2 in the mol­ecule at (2 − x, −[1\over2] + y, [1\over2] − z), so producing a C(9) chain running parallel to the [010] direction, now generated by the 21 screw axis along (1, y, [1\over4]) (Fig. 8[link]).

Each of these chains, along [100] and [010], respectively, utilizes just one N—H⋯O hydrogen bond, but the combination of these two interactions produces a third chain motif, running parallel to the [001] direction. Atom N52 in the mol­ecule at (−[1\over2] + x, [1\over2] − y, −z) acts as a hydrogen-bond donor, via atom H52E, to atom O2 in the mol­ecule at ([3\over2] − x, 1 − y, −[1\over2] + z), while atom N52 at ([3\over2] − x, 1 − y, −[1\over2] + z) acts as a donor, via atom H52D, to atom O4 at (2 − x, [1\over2] + y, −[1\over2] − z); finally, atom N52 at (2 − x, [1\over2] + y, −[1\over2] − z) acts as a donor, via atom H52E, to atom O2 in the mol­ecule at (x, y, −1 + z). In this manner a C22(16) chain is generated along [001] (Fig. 9[link]).

These three chain motifs (Figs. 7[link][link]–9[link]) together produce a three-dimensional framework structure, which is generated solely by the action of 21 screw axes and which utilizes only half of the mol­ecules within the unit cell. There is, accordingly, a second such framework present, which is interwoven with the first framework and related to it by inversion. These two three-dimensional substructures are, however, linked by the final N—H⋯O hydrogen bond; this is, in fact, one component of an effectively planar three-centre N—H⋯(O)2 system (Table 2[link]). Atom N51 in the mol­ecule at (x, y, z) acts as a donor, not only intramolecularly to atom O4 but also to atom O6 in the mol­ecule at (x, [1\over2] − y, −[1\over2] + z), so producing a C(6) chain running parallel to the [001] direction and generated by the c-glide plane at y = [1\over4] (Fig. 10[link]). This final motif suffices to link the two frameworks and hence to link all of the mol­ecules into a single three-dimensional structure.

[Figure 1]
Figure 1
The mol­ecule of (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecule of (II[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The mol­ecule of (III[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
The mol­ecule of (IV[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5]
Figure 5
The mol­ecule of (V[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 6]
Figure 6
A stereoview of part of the crystal structure of (IV[link]), showing the formation of a chain of edge-fused rings along [010]. For clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 7]
Figure 7
Part of the crystal structure of (V[link]), showing the formation of a C(7) chain along [100]. For clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (−[1\over2] + x, [1\over2] − y, −z) and (−1 + x, y, z), respectively.
[Figure 8]
Figure 8
Part of the crystal structure of (V[link]), showing the formation of a C(9) chain along [010]. For clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (2 − x, −[1\over2] + y, [1\over2] − z) and (2 − x, [1\over2] + y, [1\over2] − z), respectively.
[Figure 9]
Figure 9
A stereoview of part of the crystal structure of (V[link]), showing the formation of a C22(16) chain along [001]. For clarity, H atoms bonded to C atoms have been omitted.
[Figure 10]
Figure 10
Part of the crystal structure of (V[link]), showing the formation of a C(6) chain along [001]. For clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*), a hash (#) or an ampersand (&) are at the symmetry positions (x, [1\over2] − y, [1\over2] + z), (x, y, 1 + z) and (x, [1\over2] − y, −[1\over2] + z), respectively.

Experimental

Samples of compounds (I[link])–(V[link]) were prepared as described by da Silva & Lima (2003[Silva, E. T. da & Lima, E. D. S. (2003). Tetrahedron Lett. 44, 3621-3624.]). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in ethanol.

Compound (I)[link]

Crystal data
  • C8H10N2O4

  • Mr = 198.18

  • Monoclinic, P21/c

  • a = 8.6066 (5) Å

  • b = 9.1751 (5) Å

  • c = 11.9799 (7) Å

  • β = 109.321 (2)°

  • V = 892.73 (9) Å3

  • Z = 4

  • Dx = 1.475 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3198 reflections

  • θ = 2.9–32.5°

  • μ = 0.12 mm−1

  • T = 291 (2) K

  • Block, colourless

  • 0.52 × 0.33 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • φω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART (Version 5.624), SAINT-Plus (Version 6.02a) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.934, Tmax = 0.976

  • 7606 measured reflections

  • 3198 independent reflections

  • 1926 reflections with I > 2σ(I)

  • Rint = 0.022

  • θmax = 32.5°

  • h = −13 → 5

  • k = −13 → 9

  • l = −18 → 18

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.207

  • S = 1.03

  • 3198 reflections

  • 131 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.102P)2 + 0.1435P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.22 e Å−3

Compound (II)[link]

Crystal data
  • C11H17N3O3

  • Mr = 239.28

  • Monoclinic, Pn

  • a = 4.1085 (3) Å

  • b = 8.4497 (5) Å

  • c = 17.1272 (11) Å

  • β = 94.721 (2)°

  • V = 592.56 (7) Å3

  • Z = 2

  • Dx = 1.341 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2129 reflections

  • θ = 2.4–32.5°

  • μ = 0.10 mm−1

  • T = 291 (2) K

  • Lath, colourless

  • 0.49 × 0.40 × 0.12 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • φω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART (Version 5.624), SAINT-Plus (Version 6.02a) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.931, Tmax = 0.988

  • 5869 measured reflections

  • 2129 independent reflections

  • 1671 reflections with I > 2σ(I)

  • Rint = 0.022

  • θmax = 32.5°

  • h = −6 → 6

  • k = −12 → 12

  • l = −17 → 25

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.126

  • S = 1.01

  • 2129 reflections

  • 158 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0836P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.27 e Å−3

Compound (III)[link]

Crystal data
  • C12H19N3O5

  • Mr = 285.30

  • Trigonal, [R\overline 3]

  • a = 18.4577 (4) Å

  • c = 19.7736 (4) Å

  • V = 5834.1 (2) Å3

  • Z = 18

  • Dx = 1.462 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2965 reflections

  • θ = 3.1–27.5°

  • μ = 0.12 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART (Version 5.624), SAINT-Plus (Version 6.02a) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.950, Tmax = 0.966

  • 14 896 measured reflections

  • 2965 independent reflections

  • 2329 reflections with I > 2σ(I)

  • Rint = 0.033

  • θmax = 27.5°

  • h = −19 → 23

  • k = −23 → 19

  • l = −22 → 25

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.115

  • S = 1.11

  • 2965 reflections

  • 186 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0597P)2 + 2.9334P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.30 e Å−3

Compound (IV)[link]

Crystal data
  • C15H17N3O3

  • Mr = 287.32

  • Triclinic, [P\overline 1]

  • a = 7.0696 (5) Å

  • b = 9.0734 (7) Å

  • c = 11.9214 (8) Å

  • α = 70.995 (2)°

  • β = 82.084 (2)°

  • γ = 84.729 (2)°

  • V = 715.23 (9) Å3

  • Z = 2

  • Dx = 1.334 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3241 reflections

  • θ = 2.4–27.5°

  • μ = 0.10 mm−1

  • T = 291 (2) K

  • Plate, colourless

  • 0.40 × 0.34 × 0.06 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • φω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART (Version 5.624), SAINT-Plus (Version 6.02a) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.994

  • 6134 measured reflections

  • 3241 independent reflections

  • 1951 reflections with I > 2σ(I)

  • Rint = 0.022

  • θmax = 27.5°

  • h = −9 → 8

  • k = −11 → 11

  • l = −15 → 14

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.167

  • S = 1.02

  • 3241 reflections

  • 193 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.091P)2 + 0.0203P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Compound (V)[link]

Crystal data
  • C8H12N4O3

  • Mr = 212.22

  • Orthorhombic, Pbca

  • a = 7.9669 (5) Å

  • b = 17.2670 (11) Å

  • c = 13.6223 (9) Å

  • V = 1873.9 (2) Å3

  • Z = 8

  • Dx = 1.504 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2160 reflections

  • θ = 2.4–32.5°

  • μ = 0.12 mm−1

  • T = 291 (2) K

  • Needle, colourless

  • 0.60 × 0.07 × 0.06 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • φω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART (Version 5.624), SAINT-Plus (Version 6.02a) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.928, Tmax = 0.993

  • 13 048 measured reflections

  • 2160 independent reflections

  • 1284 reflections with I > 2σ(I)

  • Rint = 0.057

  • θmax = 27.5°

  • h = −10 → 9

  • k = −22 → 20

  • l = −17 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.129

  • S = 0.94

  • 2160 reflections

  • 139 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0725P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Selected bond distances (Å) for compounds (I)–(V)

  (I) (II) (III) (IV) (V)
C2—O2 1.208 (2) 1.219 (2) 1.2211 (18) 1.218 (2) 1.221 (2)
C4—O4 1.253 (2) 1.232 (2) 1.2442 (16) 1.239 (2) 1.239 (2)
C4—C5 1.437 (2) 1.440 (2) 1.4422 (18) 1.439 (2) 1.435 (2)
C5—C51 1.396 (2) 1.427 (2) 1.4308 (18) 1.422 (2) 1.429 (3)
C51—O51 1.311 (2)
C51—N51 1.313 (2) 1.3172 (17) 1.314 (2) 1.312 (2)
N51—N52 1.415 (2)
C6—O6 1.225 (2) 1.223 (2) 1.2278 (16) 1.222 (2) 1.224 (2)

Table 2
Hydrogen-bond parameters (Å, °) for compounds (I)–(V)

Compound D—H⋯A   D—H H⋯A D⋯A D—H⋯A
(I) O51—H51⋯O4   0.82 1.70 2.450 (2) 151
             
(II) N51—H51⋯O4   0.86 1.85 2.563 (2) 139
             
(III) N51—H51⋯O4   0.88 1.86 2.5829 (14) 139
             
(IV) N51—H51⋯O4   0.86 1.85 2.559 (2) 139
  C514—H514⋯O4i   0.93 2.48 3.392 (2) 168
  C53—H53BCgii   0.97 2.66 3.557 (2) 154
             
(V) N51—H51⋯O4   0.86 1.92 2.600 (2) 135
  N51—H51⋯O6iii   0.86 2.35 2.974 (2) 129
  N52—H52D⋯O4iv   0.86 2.45 3.230 (2) 152
  N52—H52E⋯O2v   0.86 2.32 3.144 (2) 159
Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, -y, 1 - z; (iii) [x, {{1}\over{2}} - y, -{{1}\over{2}} + z]; (iv) [-{{1}\over{2}} + x, {{1}\over{2}} - y, -z]; (v) [2 - x, -{{1}\over{2}} + y, {{1}\over{2}} - z].  Note: Cg is the centroid of the C511–C516 ring.

For (I[link]) and (V[link]), space groups P21/c and Pbca, respectively, were uniquely assigned from the systematic absences. For (II[link]), the systematic absences permitted Pn and P2/n as possible space groups; Pn was selected and confirmed by the structure analysis. For (III[link]), the systematic absences permitted R3 and [R\overline3] as possible space groups; [R\overline3] was selected and confirmed by the structure analysis. Crystals of (IV[link]) are triclinic; space group [P\overline1] was selected and confirmed by the structure analysis. All H atoms were located from difference maps and then treated as riding atoms, with C—H distances of 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic CH) and N—H distances of 0.88 Å (at 120 K), and with C—H distances of 0.93 (aromatic), 0.96 (CH3) or 0.97 Å (CH2), N—H distances of 0.86 Å and O—H distances of 0.82 Å (at 291 K) [Uiso(H) = 1.2Ueq(C,N,O) or 1.5Ueq(Cmethyl)]. In the absence of significant anomalous dispersion, the Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter for (II[link]) was inconclusive (Flack & Bernardinelli, 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]); it was therefore not possible to determine the correct orientation of the structure with respect to the polar axis directions (Jones, 1986[Jones, P. G. (1986). Acta Cryst. A42, 57.]) and, accordingly, Friedel pairs were merged prior to the final refinements.

For compounds (I), (II), (IV) and (V), data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.624), SAINT-Plus (Version 6.02a) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART (Version 5.624), SAINT-Plus (Version 6.02a) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

For compound (III), data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97; program(s) used to refine structure: OSCAIL and SHELXL97; molecular graphics: PLATON; software used to prepare material for publication: SHELXL97 and PRPKAPPA.

Supporting information


Comment top

It has recently been reported (da Silva & Lima, 2003) that the title compound, (I), which is the enol tautomer of 1,3-dimethyl-5-acetylbarbituric acid, reacts readily with primary amines to form enamines. We report here the structures of (I), of three representative enamine derivatives, (II)–(IV), and of the hydrazine derivative (V) (Figs. 1–5).

The bond distances in (I) (Table 1), in particular the C4—O4 and C51—O51 distances on the one hand and the C4—C5 and C5—C51 distances on the other, clearly demonstrate the enol constitution, consistent with the location of atom H51 as deduced from a difference map. In each of compounds (II)–(V), atom N51 has a planar configuration, and the C51—N51 distances are all typical of their type (Allen et al., 1987). Atom N52 in (V) has a distinctly pyramidal coordination environment, with a sum of bond angles, based on H-atom coordinates derived from difference maps, of 328.8°. The N51—N52 distance in (V) corresponds closely to the mean value of 1.420 Å for >N—N< distances where one N is planar and the other is pyramidal.

There is an intramolecular hydrogen bond in each of (I)–(V), of O—H···O type in (I) and of N—H···O type in (II)–(V) (Table 2). There are no direction-specific intermolecular interactions in (I)–(III), but the molecules in (IV) and (V) are linked by intermolecular hydrogen bonds (Table 2) into supramolecular structures that are one-dimensional and three-dimensional, respectively.

The one-dimensional supramolecular structure of (IV) is generated by a combination of C—H···O and C—H···π(arene) hydrogen bonds (Table 2). Aryl atom C514 in the molecule at (x, y, z) acts as a hydrogen-bond donor to carbonyl atom O4 in the molecule at (1 − x, 1 − y, 1 − z), so generating a centrosymmetric R22(22) ring (Bernstein et al., 1995) centred at (1/2, 1/2, 1/2) (Fig. 6). In addition, methylene atom C53 in the molecule at (x, y, z) acts as a hydrogen-bond donor to the C511–C516 aryl ring in the molecule at (1 − x, −y, 1 − z), so generating a second centrosymmetric ring, this time centred at (1/2, 0, 1/2). The combination of these two centrosymmetric motifs thus generates a chain of edge-fused rings running parallel to the [010] direction, with the larger rings centred at (1/2, 0.5 + n, 1/2) (n = zero or integer) and the smaller rings centred at (1/2, n, 1/2) (n = zero or integer) (Fig. 6).

The three-dimensional supramolecular structure of (V) is of some complexity but can readily be analysed in terms of a series of one-dimensional substructures and their simple combinations. In the first substructure, atom N52 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via atom H52D, to atom O4 in the molecule at (−0.5 + x, 0.5 − y, −z), so producing a C(7) chain running parallel to the [100] direction and generated by the 21 screw axis along (x, 1/4, 0) (Fig. 7). In the second substructure, atom N52 at (x, y, z) acts as a donor, via atom H52E, to atom O2 in the molecule at (2 − x, −0.5 + y, 0.5 − z), so producing a C(9) chain running parallel to the [010] direction, now generated by the 21 screw axis along (1, y, 1/4) (Fig. 8).

Each of these chains, along [100] and [010], respectively, utilizes just one N—H···O hydrogen bond, but the combination of these two interactions produces a third chain motif, running parallel to the [001] direction. Atom N52 in the molecule at (−0.5 + x, 0.5 − y, −z) acts as a hydrogen-bond donor, via atom H52E, to atom O2 in the molecule at (1.5 − x, 1 − y, −0.5 + z), while atom N52 at (1.5 − x, 1 − y, −0.5 + z) acts as a donor, via atom H52D, to atom O4 at (2 − x, 0.5 + y, −0.5 − z); finally, atom N52 at (2 − x, 0.5 + y, −0.5 − z) acts as a donor, via atom H52E, to atom O2 in the molecule at (x, y, −1 + z). In this manner a C22(16) chain is generated along [001] (Fig. 9).

These three chain motifs (Figs. 7–9) together produce a three-dimensional framework structure, which is generated solely by the action of 21 screw axes and which utilizes only half of the molecules within the unit cell. There is, accordingly, a second such framework present, which is interwoven with the first framework and related to it by inversion. These two three-dimensional substructures are, however, linked by the final N—H···O hydrogen bond; this is, in fact, one component of an effectively planar three-centre N—H···(O)2 system (Table 2). Atom N51 in the molecule at (x, y, z) acts as a donor, not only intramolecularly to atom O4 but also to atom O6 in the molecule at (x, 0.5 − y, −0.5 + z), so producing a C(6) chain running parallel to the [001] direction and generated by the c-glide plane at y = 0.25 (Fig. 10). This final motif suffices to link the two frameworks and hence to link all of the molecules into a single three-dimensional structure.

Experimental top

Samples of compounds (I)–(V) were prepared as described by da Silva & Lima (2003). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in ethanol.

Refinement top

For (I) and (V), space groups P21/c and Pbca, respectively, were uniquely assigned from the systematic absences. For (II), the systematic absences permitted Pn and P2/n as possible space groups; Pn was selected and confirmed by the structure analysis. For (III), the systematic absences permitted R3 and R-3 as possible space groups; R-3 was selected and confirmed by the structure analysis. Crystals of (IV) are triclinic; space group P-1 was selected and confirmed by the structure analysis. All H atoms were located from difference maps and then treated as riding atoms, with C—H distances of 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic CH) and N—H distances of 0.88 Å (at 120 K), and with C—H distances of 0.93 (aromatic), 0.96 (CH3) or 0.97 Å (CH2), N—H distances of 0.86 Å and O—H distances of 0.82 Å (at 291 K) [Uiso(H) = 1.2Ueq(C, N, O) or 1.5Ueq(C) for methyl groups]. In the absence of significant anomalous dispersion, the Flack (1983) parameter for (II) was inconclusive (Flack & Bernardinelli, 2000); it was therefore not possible to determine the correct orientation of the structure with respect to the polar axis directions (Jones, 1986) and, accordingly, the Friedel pairs were merged prior to the final refinements.

Computing details top

Data collection: SMART (Bruker, 2000) for (I), (II), (IV), (V); COLLECT (Hooft, 1999) for (III). Cell refinement: SAINT (Bruker, 2000) for (I), (II), (IV), (V); DENZO (Otwinowski & Minor, 1997) and COLLECT for (III). Data reduction: SAINT for (I), (II), (IV), (V); DENZO and COLLECT for (III). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) for (I), (II), (IV), (V); OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997) for (III). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) for (I), (II), (IV), (V); OSCAIL and SHELXL97 (Sheldrick, 1997) for (III). For all compounds, molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. The molecule of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. The molecule of (IV), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5] Fig. 5. The molecule of (V), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of (IV), showing the formation of a chain of edge-fused rings along [010]. For clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 7] Fig. 7. Part of the crystal structure of (V), showing the formation of a C(7) chain along [100]. For clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (−0.5 + x, 0.5 − y, −z) and (−1 + x, y, z), respectively.
[Figure 8] Fig. 8. Part of the crystal structure of (V), showing the formation of a C(9) chain along [010]. For clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (2 − x, −0.5 + y, 0.5 − z) and (2 − x, 0.5 + y, 0.5 − z), respectively.
[Figure 9] Fig. 9. A stereoview of part of the crystal structure of (V) showing the formation of a C22(16) chain along [001]. For clarity, H atoms bonded to C atoms have been omitted.
[Figure 10] Fig. 10. Part of the crystal structure of (V), showing the formation of a C(6) chain along [001]. For clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*), a hash (#) or an ampersand (&) are at the symmetry positions (x, 0.5 − y, 0.5 + z), (x, y, 1 + z) and (x, 0.5 − y, −0.5 + z), respectively.
(I) 5-(1-hydroxyethylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione top
Crystal data top
C8H10N2O4F(000) = 416
Mr = 198.18Dx = 1.475 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3198 reflections
a = 8.6066 (5) Åθ = 2.9–32.5°
b = 9.1751 (5) ŵ = 0.12 mm1
c = 11.9799 (7) ÅT = 291 K
β = 109.321 (2)°Block, colourless
V = 892.73 (9) Å30.52 × 0.33 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area detector
diffractometer
3198 independent reflections
Radiation source: fine-focus sealed X-ray tube1926 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕω scansθmax = 32.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 135
Tmin = 0.934, Tmax = 0.976k = 139
7606 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.207H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.102P)2 + 0.1435P]
where P = (Fo2 + 2Fc2)/3
3198 reflections(Δ/σ)max < 0.001
131 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C8H10N2O4V = 892.73 (9) Å3
Mr = 198.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6066 (5) ŵ = 0.12 mm1
b = 9.1751 (5) ÅT = 291 K
c = 11.9799 (7) Å0.52 × 0.33 × 0.20 mm
β = 109.321 (2)°
Data collection top
Bruker SMART 1000 CCD area detector
diffractometer
3198 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1926 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.976Rint = 0.022
7606 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.207H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
3198 reflectionsΔρmin = 0.22 e Å3
131 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.15848 (17)0.66714 (19)0.48681 (14)0.0761 (5)
O40.68888 (18)0.78399 (16)0.54571 (13)0.0641 (4)
O60.54580 (17)0.41371 (16)0.76817 (12)0.0621 (4)
O510.91332 (17)0.66835 (18)0.70291 (15)0.0707 (4)
N10.35333 (16)0.53851 (16)0.62581 (11)0.0446 (3)
N30.42439 (18)0.72019 (15)0.51240 (11)0.0458 (3)
C10.2236 (2)0.4511 (2)0.64934 (18)0.0617 (5)
C20.3024 (2)0.64364 (19)0.53906 (14)0.0471 (4)
C30.3700 (3)0.8321 (2)0.42007 (18)0.0667 (6)
C40.5885 (2)0.70517 (18)0.57344 (14)0.0444 (4)
C50.63903 (19)0.59883 (17)0.66653 (13)0.0411 (3)
C60.51627 (19)0.51007 (18)0.69328 (13)0.0425 (3)
C510.8064 (2)0.5875 (2)0.73124 (16)0.0519 (4)
C520.8796 (3)0.4923 (3)0.8341 (2)0.0829 (7)
H1A0.24260.44870.73290.092*
H1B0.22580.35360.62080.092*
H1C0.11810.49420.60960.092*
H3A0.35640.92320.45520.100*
H3B0.26700.80340.36300.100*
H3C0.45110.84300.38160.100*
H510.86490.71950.64590.085*
H52A0.99580.51040.86620.124*
H52B0.86100.39220.81000.124*
H52C0.82960.51220.89330.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0438 (7)0.0855 (11)0.0813 (10)0.0029 (7)0.0032 (7)0.0159 (8)
O40.0652 (8)0.0593 (9)0.0717 (8)0.0110 (6)0.0279 (7)0.0061 (7)
O60.0570 (8)0.0644 (9)0.0614 (8)0.0033 (6)0.0148 (6)0.0214 (6)
O510.0449 (7)0.0780 (11)0.0866 (11)0.0101 (7)0.0181 (7)0.0055 (8)
N10.0394 (6)0.0488 (8)0.0436 (6)0.0028 (5)0.0111 (5)0.0003 (6)
N30.0535 (8)0.0400 (7)0.0394 (6)0.0001 (6)0.0093 (5)0.0010 (5)
C10.0452 (9)0.0730 (13)0.0675 (11)0.0100 (8)0.0195 (8)0.0068 (10)
C20.0446 (8)0.0466 (9)0.0433 (7)0.0001 (7)0.0055 (6)0.0022 (6)
C30.0771 (13)0.0550 (12)0.0570 (10)0.0007 (10)0.0074 (9)0.0169 (8)
C40.0495 (8)0.0405 (8)0.0429 (7)0.0026 (6)0.0149 (6)0.0058 (6)
C50.0400 (7)0.0413 (8)0.0406 (7)0.0007 (6)0.0115 (6)0.0063 (6)
C60.0425 (7)0.0449 (9)0.0385 (7)0.0013 (6)0.0111 (6)0.0031 (6)
C510.0418 (8)0.0545 (10)0.0560 (9)0.0021 (7)0.0115 (7)0.0122 (7)
C520.0533 (11)0.0963 (19)0.0807 (14)0.0117 (12)0.0027 (10)0.0147 (13)
Geometric parameters (Å, º) top
C1—N11.475 (2)C3—H3C0.96
C1—H1A0.96C4—O41.253 (2)
C1—H1B0.96C4—C51.437 (2)
C1—H1C0.96C5—C511.396 (2)
C2—O21.208 (2)C5—C61.451 (2)
C2—N11.379 (2)C51—O511.311 (2)
C2—N31.386 (2)C51—C521.471 (3)
N1—C61.392 (2)C52—H52A0.96
N3—C41.365 (2)C52—H52B0.96
N3—C31.468 (2)C52—H52C0.96
C3—H3A0.96O51—H510.82
C3—H3B0.96C6—O61.225 (2)
N1—C1—H1A109.5H3B—C3—H3C109.5
N1—C1—H1B109.5O4—C4—N3118.79 (16)
H1A—C1—H1B109.5O4—C4—C5122.64 (16)
N1—C1—H1C109.5N3—C4—C5118.58 (14)
H1A—C1—H1C109.5C51—C5—C4118.29 (15)
H1B—C1—H1C109.5C51—C5—C6121.90 (15)
O2—C2—N1122.10 (17)C4—C5—C6119.79 (14)
O2—C2—N3121.02 (16)O51—C51—C5119.85 (17)
N1—C2—N3116.87 (14)O51—C51—C52114.22 (17)
C2—N1—C6125.24 (14)C5—C51—C52125.93 (19)
C2—N1—C1116.88 (14)C51—C52—H52A109.5
C6—N1—C1117.88 (14)C51—C52—H52B109.5
C4—N3—C2123.62 (14)H52A—C52—H52B109.5
C4—N3—C3119.31 (16)C51—C52—H52C109.5
C2—N3—C3116.83 (15)H52A—C52—H52C109.5
N3—C3—H3A109.5H52B—C52—H52C109.5
N3—C3—H3B109.5C51—O51—H51109.5
H3A—C3—H3B109.5O6—C6—N1119.06 (15)
N3—C3—H3C109.5O6—C6—C5125.24 (15)
H3A—C3—H3C109.5N1—C6—C5115.70 (14)
O2—C2—N1—C6176.89 (16)O4—C4—C5—C6179.38 (15)
N3—C2—N1—C64.3 (2)N3—C4—C5—C60.2 (2)
O2—C2—N1—C12.3 (3)C4—C5—C51—O512.9 (2)
N3—C2—N1—C1176.53 (15)C6—C5—C51—O51179.03 (15)
O2—C2—N3—C4175.60 (17)C4—C5—C51—C52175.76 (19)
N1—C2—N3—C45.6 (2)C6—C5—C51—C522.3 (3)
O2—C2—N3—C31.2 (3)C2—N1—C6—O6179.79 (15)
N1—C2—N3—C3179.98 (15)C1—N1—C6—O60.7 (2)
C2—N3—C4—O4176.93 (15)C2—N1—C6—C51.0 (2)
C3—N3—C4—O42.7 (2)C1—N1—C6—C5179.91 (15)
C2—N3—C4—C53.4 (2)C51—C5—C6—O64.2 (3)
C3—N3—C4—C5177.67 (15)C4—C5—C6—O6177.80 (15)
O4—C4—C5—C512.5 (2)C51—C5—C6—N1176.61 (14)
N3—C4—C5—C51177.85 (14)C4—C5—C6—N11.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O51—H51···O40.821.702.450 (2)151
(II) 1,3-dimethyl-5-(1-propylaminoethylidene)pyrimidine-2,4,6(1H,3H,5H)-trione top
Crystal data top
C11H17N3O3F(000) = 256
Mr = 239.28Dx = 1.341 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 2129 reflections
a = 4.1085 (3) Åθ = 2.4–32.5°
b = 8.4497 (5) ŵ = 0.10 mm1
c = 17.1272 (11) ÅT = 291 K
β = 94.721 (2)°Lath, colourless
V = 592.56 (7) Å30.49 × 0.40 × 0.12 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD area detector
diffractometer
2129 independent reflections
Radiation source: fine-focus sealed X-ray tube1671 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕω scansθmax = 32.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 66
Tmin = 0.931, Tmax = 0.988k = 1212
5869 measured reflectionsl = 1725
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0836P)2]
where P = (Fo2 + 2Fc2)/3
2129 reflections(Δ/σ)max < 0.001
158 parametersΔρmax = 0.19 e Å3
2 restraintsΔρmin = 0.27 e Å3
Crystal data top
C11H17N3O3V = 592.56 (7) Å3
Mr = 239.28Z = 2
Monoclinic, PnMo Kα radiation
a = 4.1085 (3) ŵ = 0.10 mm1
b = 8.4497 (5) ÅT = 291 K
c = 17.1272 (11) Å0.49 × 0.40 × 0.12 mm
β = 94.721 (2)°
Data collection top
Bruker SMART 1000 CCD area detector
diffractometer
2129 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1671 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.988Rint = 0.022
5869 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0462 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.01Δρmax = 0.19 e Å3
2129 reflectionsΔρmin = 0.27 e Å3
158 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.1487 (6)0.6297 (2)0.17114 (12)0.0757 (5)
O40.3625 (4)0.24030 (15)0.31415 (9)0.0539 (4)
O60.4409 (5)0.77604 (17)0.39406 (12)0.0691 (5)
N10.1514 (5)0.70039 (19)0.28271 (11)0.0493 (4)
N30.1034 (4)0.43561 (19)0.24510 (9)0.0442 (3)
N510.7094 (4)0.30194 (18)0.44180 (10)0.0442 (3)
C10.0685 (8)0.8679 (3)0.26797 (17)0.0705 (7)
C20.0236 (5)0.5912 (2)0.22940 (12)0.0497 (4)
C30.0342 (6)0.3140 (3)0.19047 (13)0.0560 (5)
C40.3062 (4)0.3832 (2)0.30920 (10)0.0404 (3)
C50.4315 (4)0.50075 (19)0.36465 (10)0.0381 (3)
C60.3515 (5)0.6659 (2)0.35116 (11)0.0447 (4)
C510.6311 (4)0.4518 (2)0.43250 (10)0.0395 (3)
C520.7544 (6)0.5641 (3)0.49526 (13)0.0553 (5)
C530.8946 (5)0.2300 (2)0.50958 (11)0.0467 (4)
C540.9653 (6)0.0585 (2)0.49084 (13)0.0519 (4)
C551.1227 (6)0.0276 (3)0.56190 (16)0.0629 (6)
H1A0.07330.89020.21310.106*
H1B0.22430.93390.29740.106*
H1C0.14620.88880.28380.106*
H310.20700.35940.15650.084*
H320.11920.22840.21950.084*
H330.13360.27490.15970.084*
H510.64520.23920.40410.053*
H52A0.83600.50560.54080.083*
H52B0.57970.63180.50850.083*
H52C0.92700.62710.47690.083*
H53A0.76920.23560.55510.056*
H53B1.09780.28680.52130.056*
H54A0.76300.00580.47290.062*
H54B1.10960.05430.44880.062*
H55A1.30380.03330.58460.094*
H55B1.19880.12930.54630.094*
H55C0.96530.04120.59980.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0973 (14)0.0687 (10)0.0557 (9)0.0106 (10)0.0264 (9)0.0048 (8)
O40.0752 (9)0.0374 (6)0.0465 (7)0.0018 (6)0.0104 (7)0.0063 (6)
O60.0995 (13)0.0378 (6)0.0661 (10)0.0002 (7)0.0177 (9)0.0089 (7)
N10.0659 (10)0.0376 (7)0.0436 (8)0.0027 (6)0.0003 (7)0.0023 (6)
N30.0546 (9)0.0446 (7)0.0324 (7)0.0011 (6)0.0037 (6)0.0037 (5)
N510.0538 (9)0.0413 (7)0.0359 (7)0.0004 (6)0.0056 (6)0.0009 (6)
C10.0965 (19)0.0411 (10)0.0715 (16)0.0122 (10)0.0069 (14)0.0109 (10)
C20.0570 (11)0.0520 (10)0.0394 (9)0.0032 (8)0.0010 (8)0.0014 (7)
C30.0695 (12)0.0555 (10)0.0407 (9)0.0065 (9)0.0091 (8)0.0098 (8)
C40.0489 (9)0.0404 (7)0.0313 (7)0.0024 (7)0.0005 (6)0.0037 (6)
C50.0471 (9)0.0339 (6)0.0329 (7)0.0024 (6)0.0017 (6)0.0019 (5)
C60.0550 (10)0.0381 (7)0.0410 (9)0.0009 (7)0.0031 (7)0.0012 (7)
C510.0431 (9)0.0419 (8)0.0333 (7)0.0034 (6)0.0028 (6)0.0030 (6)
C520.0680 (13)0.0511 (10)0.0443 (10)0.0017 (9)0.0098 (9)0.0139 (8)
C530.0512 (10)0.0492 (10)0.0381 (9)0.0006 (7)0.0065 (7)0.0022 (7)
C540.0567 (11)0.0488 (9)0.0486 (10)0.0036 (8)0.0054 (8)0.0004 (8)
C550.0680 (13)0.0561 (12)0.0616 (13)0.0076 (10)0.0127 (10)0.0096 (10)
Geometric parameters (Å, º) top
N1—C21.372 (3)C51—N511.313 (2)
N1—C61.406 (3)C51—C521.491 (2)
N1—C11.473 (2)N51—C531.467 (2)
C1—H1A0.96N51—H510.86
C1—H1B0.96C52—H52A0.96
C1—H1C0.96C52—H52B0.96
C2—O21.219 (3)C52—H52C0.96
C2—N31.376 (3)C53—C541.517 (3)
N3—C41.394 (2)C53—H53A0.97
N3—C31.471 (2)C53—H53B0.97
C3—H310.96C54—C551.516 (3)
C3—H320.96C54—H54A0.97
C3—H330.96C54—H54B0.97
C4—O41.232 (2)C55—H55A0.96
C4—C51.440 (2)C55—H55B0.96
C5—C511.427 (2)C55—H55C0.96
C5—C61.448 (2)C6—O61.223 (2)
C2—N1—C6125.53 (16)C51—N51—C53127.00 (16)
C2—N1—C1117.50 (19)C51—N51—H51116.5
C6—N1—C1116.96 (18)C53—N51—H51116.5
N1—C1—H1A109.5C51—C52—H52A109.5
N1—C1—H1B109.5C51—C52—H52B109.5
H1A—C1—H1B109.5H52A—C52—H52B109.5
N1—C1—H1C109.5C51—C52—H52C109.5
H1A—C1—H1C109.5H52A—C52—H52C109.5
H1B—C1—H1C109.5H52B—C52—H52C109.5
O2—C2—N1121.99 (19)N51—C53—C54108.92 (16)
O2—C2—N3121.9 (2)N51—C53—H53A109.9
N1—C2—N3116.13 (16)C54—C53—H53A109.9
C2—N3—C4125.05 (15)N51—C53—H53B109.9
C2—N3—C3118.03 (17)C54—C53—H53B109.9
C4—N3—C3116.91 (16)H53A—C53—H53B108.3
N3—C3—H31109.5C55—C54—C53111.39 (18)
N3—C3—H32109.5C55—C54—H54A109.3
H31—C3—H32109.5C53—C54—H54A109.3
N3—C3—H33109.5C55—C54—H54B109.3
H31—C3—H33109.5C53—C54—H54B109.3
H32—C3—H33109.5H54A—C54—H54B108.0
O4—C4—N3117.53 (14)C54—C55—H55A109.5
O4—C4—C5125.17 (15)C54—C55—H55B109.5
N3—C4—C5117.30 (15)H55A—C55—H55B109.5
C51—C5—C4119.18 (15)C54—C55—H55C109.5
C51—C5—C6121.14 (15)H55A—C55—H55C109.5
C4—C5—C6119.68 (15)H55B—C55—H55C109.5
N51—C51—C5119.80 (15)O6—C6—N1117.97 (16)
N51—C51—C52117.45 (17)O6—C6—C5125.76 (18)
C5—C51—C52122.74 (16)N1—C6—C5116.26 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N51—H51···O40.861.852.563 (2)139
(III) 5-[1-(2,2-dimethoxyethylamino)ethylidene]-1,3-dimethylpyrimidine- 2,4,6(1H,3H,5H)-trione top
Crystal data top
C12H19N3O5Dx = 1.462 Mg m3
Mr = 285.30Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 2965 reflections
Hall symbol: -R 3θ = 3.1–27.5°
a = 18.4577 (4) ŵ = 0.12 mm1
c = 19.7736 (4) ÅT = 120 K
V = 5834.1 (2) Å3Block, colourless
Z = 180.40 × 0.40 × 0.30 mm
F(000) = 2736
Data collection top
Nonius KappaCCD area detector
diffractometer
2965 independent reflections
Radiation source: fine-focus sealed X-ray tube2329 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1923
Tmin = 0.950, Tmax = 0.966k = 2319
14896 measured reflectionsl = 2225
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0597P)2 + 2.9334P]
where P = (Fo2 + 2Fc2)/3
2965 reflections(Δ/σ)max < 0.001
186 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C12H19N3O5Z = 18
Mr = 285.30Mo Kα radiation
Trigonal, R3µ = 0.12 mm1
a = 18.4577 (4) ÅT = 120 K
c = 19.7736 (4) Å0.40 × 0.40 × 0.30 mm
V = 5834.1 (2) Å3
Data collection top
Nonius KappaCCD area detector
diffractometer
2965 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2329 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.966Rint = 0.033
14896 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.11Δρmax = 0.35 e Å3
2965 reflectionsΔρmin = 0.30 e Å3
186 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.15632 (6)0.33916 (6)0.09144 (5)0.0206 (2)
O40.05233 (6)0.61636 (6)0.05752 (5)0.0193 (2)
O60.12518 (6)0.50353 (6)0.09788 (5)0.0216 (3)
O510.08471 (6)0.83411 (6)0.02294 (5)0.0182 (2)
O520.08356 (6)0.85482 (6)0.09012 (5)0.0205 (2)
N10.01542 (7)0.42417 (7)0.09841 (6)0.0149 (3)
N30.10321 (7)0.47955 (7)0.07858 (6)0.0152 (3)
N510.10694 (7)0.71932 (7)0.06069 (6)0.0159 (3)
C10.00815 (9)0.35043 (8)0.11368 (7)0.0187 (3)
C20.09556 (8)0.40959 (8)0.08972 (7)0.0154 (3)
C30.18752 (8)0.46736 (9)0.07052 (7)0.0203 (3)
C40.03586 (8)0.56031 (8)0.07096 (6)0.0143 (3)
C50.04738 (8)0.57301 (8)0.07892 (7)0.0142 (3)
C60.05812 (8)0.50185 (8)0.09210 (7)0.0147 (3)
C510.11810 (8)0.65554 (8)0.07353 (7)0.0145 (3)
C520.20607 (8)0.67348 (9)0.08217 (7)0.0181 (3)
C530.17286 (8)0.80644 (8)0.05238 (8)0.0185 (3)
C540.13520 (8)0.86096 (8)0.03604 (7)0.0173 (3)
C550.13239 (9)0.85833 (9)0.08419 (7)0.0225 (3)
C560.05569 (10)0.91427 (9)0.08661 (8)0.0245 (3)
H1A0.05140.31500.14640.028*
H1B0.04720.36820.13290.028*
H1C0.01540.31870.07200.028*
H3A0.22890.41040.08440.030*
H3B0.19670.47570.02300.030*
H3C0.19330.50780.09880.030*
H510.05500.70850.05670.019*
H52A0.22220.65230.04290.027*
H52B0.21000.64590.12320.027*
H52C0.24370.73400.08610.027*
H53A0.21090.81050.01540.022*
H53B0.20600.82640.09450.022*
H540.18080.92040.03050.021*
H55A0.17350.91820.08260.034*
H55B0.09490.84690.12280.034*
H55C0.16150.82640.08920.034*
H56A0.10420.97080.08320.037*
H56B0.02380.91010.12750.037*
H56C0.02000.90270.04680.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0158 (5)0.0150 (5)0.0263 (6)0.0041 (4)0.0012 (4)0.0007 (4)
O40.0167 (5)0.0171 (5)0.0272 (6)0.0108 (4)0.0021 (4)0.0001 (4)
O60.0149 (5)0.0202 (5)0.0323 (6)0.0108 (4)0.0009 (4)0.0014 (4)
O510.0147 (5)0.0192 (5)0.0190 (5)0.0071 (4)0.0007 (4)0.0000 (4)
O520.0247 (6)0.0197 (5)0.0199 (5)0.0131 (5)0.0030 (4)0.0026 (4)
N10.0144 (6)0.0131 (6)0.0180 (6)0.0075 (5)0.0006 (5)0.0004 (4)
N30.0104 (5)0.0154 (6)0.0200 (6)0.0066 (5)0.0006 (5)0.0001 (5)
N510.0119 (6)0.0137 (6)0.0209 (6)0.0056 (5)0.0001 (5)0.0004 (5)
C10.0201 (7)0.0145 (7)0.0229 (7)0.0096 (6)0.0010 (6)0.0003 (6)
C20.0152 (7)0.0167 (7)0.0135 (6)0.0075 (6)0.0002 (5)0.0010 (5)
C30.0130 (7)0.0207 (7)0.0273 (8)0.0085 (6)0.0013 (6)0.0012 (6)
C40.0144 (7)0.0145 (7)0.0130 (6)0.0064 (6)0.0003 (5)0.0011 (5)
C50.0129 (7)0.0145 (7)0.0146 (6)0.0064 (5)0.0006 (5)0.0007 (5)
C60.0146 (7)0.0157 (7)0.0132 (6)0.0073 (5)0.0003 (5)0.0017 (5)
C510.0154 (7)0.0160 (7)0.0118 (6)0.0076 (6)0.0005 (5)0.0008 (5)
C520.0141 (7)0.0175 (7)0.0214 (7)0.0071 (6)0.0004 (6)0.0009 (6)
C530.0133 (7)0.0143 (7)0.0243 (7)0.0041 (6)0.0008 (6)0.0031 (6)
C540.0149 (7)0.0150 (7)0.0188 (7)0.0052 (6)0.0011 (5)0.0008 (6)
C550.0221 (8)0.0239 (8)0.0203 (7)0.0106 (7)0.0014 (6)0.0012 (6)
C560.0294 (8)0.0233 (8)0.0263 (8)0.0171 (7)0.0005 (6)0.0005 (6)
Geometric parameters (Å, º) top
N1—C21.3756 (17)C52—H52B0.98
N1—C61.4027 (17)C52—H52C0.98
N1—C11.4644 (17)N51—C531.4617 (16)
C1—H1A0.98N51—H510.88
C1—H1B0.98C53—C541.5166 (19)
C1—H1C0.98C53—H53A0.99
C2—O21.2211 (16)C53—H53B0.99
C2—N31.3851 (17)C54—O521.3990 (17)
N3—C41.3918 (16)C54—O511.4185 (16)
N3—C31.4655 (17)C54—H541.00
C3—H3A0.98O51—C551.4312 (17)
C3—H3B0.98C55—H55A0.98
C3—H3C0.98C55—H55B0.98
C4—O41.2442 (16)C55—H55C0.98
C4—C51.4422 (18)O52—C561.4275 (17)
C5—C511.4308 (18)C56—H56A0.98
C5—C61.4467 (18)C56—H56B0.98
C51—N511.3172 (17)C56—H56C0.98
C51—C521.4959 (18)C6—O61.2278 (16)
C52—H52A0.98
C2—N1—C6125.82 (11)H52A—C52—H52C109.5
C2—N1—C1115.68 (11)H52B—C52—H52C109.5
C6—N1—C1118.48 (11)C51—N51—C53126.06 (11)
N1—C1—H1A109.5C51—N51—H51117.0
N1—C1—H1B109.5C53—N51—H51117.0
H1A—C1—H1B109.5N51—C53—C54110.38 (11)
N1—C1—H1C109.5N51—C53—H53A109.6
H1A—C1—H1C109.5C54—C53—H53A109.6
H1B—C1—H1C109.5N51—C53—H53B109.6
O2—C2—N1122.02 (12)C54—C53—H53B109.6
O2—C2—N3121.98 (12)H53A—C53—H53B108.1
N1—C2—N3116.01 (11)O52—C54—O51107.34 (10)
C2—N3—C4124.25 (11)O52—C54—C53107.64 (11)
C2—N3—C3118.01 (11)O51—C54—C53112.48 (11)
C4—N3—C3117.64 (11)O52—C54—H54109.8
N3—C3—H3A109.5O51—C54—H54109.8
N3—C3—H3B109.5C53—C54—H54109.8
H3A—C3—H3B109.5C54—O51—C55113.12 (10)
N3—C3—H3C109.5O51—C55—H55A109.5
H3A—C3—H3C109.5O51—C55—H55B109.5
H3B—C3—H3C109.5H55A—C55—H55B109.5
O4—C4—N3117.06 (11)O51—C55—H55C109.5
O4—C4—C5124.86 (12)H55A—C55—H55C109.5
N3—C4—C5118.08 (11)H55B—C55—H55C109.5
C51—C5—C4119.70 (12)C54—O52—C56113.15 (10)
C51—C5—C6120.92 (12)O52—C56—H56A109.5
C4—C5—C6119.37 (11)O52—C56—H56B109.5
N51—C51—C5119.92 (12)H56A—C56—H56B109.5
N51—C51—C52117.49 (12)O52—C56—H56C109.5
C5—C51—C52122.59 (12)H56A—C56—H56C109.5
C51—C52—H52A109.5H56B—C56—H56C109.5
C51—C52—H52B109.5O6—C6—N1117.75 (12)
H52A—C52—H52B109.5O6—C6—C5126.00 (12)
C51—C52—H52C109.5N1—C6—C5116.25 (11)
C6—N1—C2—O2174.79 (12)C6—C5—C51—C521.1 (2)
C1—N1—C2—O23.37 (19)C5—C51—N51—C53178.62 (12)
C6—N1—C2—N34.91 (19)C52—C51—N51—C531.6 (2)
C1—N1—C2—N3176.92 (11)C51—N51—C53—C54178.30 (12)
O2—C2—N3—C4174.82 (12)N51—C53—C54—O5260.54 (14)
N1—C2—N3—C44.88 (19)N51—C53—C54—O5157.51 (15)
O2—C2—N3—C31.62 (19)O52—C54—O51—C55163.79 (10)
N1—C2—N3—C3178.68 (11)C53—C54—O51—C5577.99 (14)
C2—N3—C4—O4176.16 (12)O51—C54—O52—C5668.98 (13)
C3—N3—C4—O40.29 (18)C53—C54—O52—C56169.72 (11)
C2—N3—C4—C53.67 (19)C2—N1—C6—O6176.12 (12)
C3—N3—C4—C5179.88 (12)C1—N1—C6—O62.00 (18)
O4—C4—C5—C512.1 (2)C2—N1—C6—C53.60 (19)
N3—C4—C5—C51178.08 (11)C1—N1—C6—C5178.28 (11)
O4—C4—C5—C6177.72 (12)C51—C5—C6—O62.1 (2)
N3—C4—C5—C62.09 (19)C4—C5—C6—O6177.69 (13)
C4—C5—C51—N510.65 (19)C51—C5—C6—N1178.17 (11)
C6—C5—C51—N51179.17 (12)C4—C5—C6—N12.00 (18)
C4—C5—C51—C52179.12 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N51—H51···O40.881.862.5829 (14)139
(IV) 5-[1-(benzylamino)ethylidene]-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione top
Crystal data top
C15H17N3O3Z = 2
Mr = 287.32F(000) = 304
Triclinic, P1Dx = 1.334 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0696 (5) ÅCell parameters from 3241 reflections
b = 9.0734 (7) Åθ = 2.4–27.5°
c = 11.9214 (8) ŵ = 0.10 mm1
α = 70.995 (2)°T = 291 K
β = 82.084 (2)°Plate, colourless
γ = 84.729 (2)°0.40 × 0.34 × 0.06 mm
V = 715.23 (9) Å3
Data collection top
Bruker SMART 1000 CCD area detector
diffractometer
3241 independent reflections
Radiation source: fine-focus sealed X-ray tube1951 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 98
Tmin = 0.959, Tmax = 0.994k = 1111
6134 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.091P)2 + 0.0203P]
where P = (Fo2 + 2Fc2)/3
3241 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C15H17N3O3γ = 84.729 (2)°
Mr = 287.32V = 715.23 (9) Å3
Triclinic, P1Z = 2
a = 7.0696 (5) ÅMo Kα radiation
b = 9.0734 (7) ŵ = 0.10 mm1
c = 11.9214 (8) ÅT = 291 K
α = 70.995 (2)°0.40 × 0.34 × 0.06 mm
β = 82.084 (2)°
Data collection top
Bruker SMART 1000 CCD area detector
diffractometer
3241 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1951 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.994Rint = 0.022
6134 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.02Δρmax = 0.17 e Å3
3241 reflectionsΔρmin = 0.19 e Å3
193 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.8283 (2)0.77351 (17)0.24671 (13)0.0730 (4)
O40.63770 (18)0.53917 (14)0.14349 (11)0.0585 (4)
O60.8917 (2)0.24754 (18)0.11249 (13)0.0806 (5)
N10.86528 (19)0.50943 (18)0.17581 (13)0.0518 (4)
N30.72782 (19)0.65292 (16)0.05138 (13)0.0476 (4)
N510.6979 (2)0.24520 (17)0.24030 (13)0.0521 (4)
C10.9526 (3)0.5053 (3)0.29394 (17)0.0709 (6)
C20.8089 (2)0.6526 (2)0.16369 (16)0.0511 (4)
C30.6678 (3)0.8033 (2)0.03372 (19)0.0619 (5)
C40.7087 (2)0.5200 (2)0.04795 (15)0.0439 (4)
C50.7713 (2)0.37156 (19)0.03285 (15)0.0434 (4)
C60.8448 (2)0.3650 (2)0.08449 (16)0.0519 (5)
C510.7615 (2)0.2346 (2)0.13415 (16)0.0461 (4)
C520.8242 (3)0.0738 (2)0.12950 (19)0.0637 (5)
C530.6938 (3)0.1173 (2)0.35324 (18)0.0682 (6)
C5110.6304 (3)0.1765 (2)0.45713 (16)0.0556 (5)
C5120.4584 (3)0.2565 (3)0.4644 (2)0.0773 (7)
C5130.3990 (5)0.3072 (3)0.5603 (2)0.1066 (10)
C5140.5105 (6)0.2763 (3)0.6516 (2)0.1050 (11)
C5150.6786 (5)0.1941 (3)0.6460 (2)0.1036 (9)
C5160.7404 (4)0.1456 (3)0.5486 (2)0.0815 (7)
H1A0.86020.47490.33310.106*
H1B1.06010.43130.28490.106*
H1C0.99460.60690.34110.106*
H3A0.75710.82940.00980.093*
H3B0.54300.79660.01060.093*
H3C0.66380.88260.10990.093*
H510.65470.33560.24360.063*
H52A0.94000.04010.16630.096*
H52B0.84650.07570.04780.096*
H52C0.72620.00290.17150.096*
H53A0.82040.06650.36140.082*
H53B0.60680.04060.35320.082*
H5120.38090.27690.40350.093*
H5130.28230.36290.56370.128*
H5140.47070.31140.71660.126*
H5150.75340.17010.70860.124*
H5160.85800.09130.54490.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0895 (10)0.0666 (9)0.0558 (9)0.0082 (7)0.0048 (7)0.0099 (8)
O40.0739 (9)0.0535 (7)0.0511 (8)0.0048 (6)0.0021 (6)0.0266 (6)
O60.1209 (12)0.0690 (9)0.0574 (9)0.0218 (9)0.0046 (8)0.0370 (8)
N10.0508 (8)0.0632 (9)0.0445 (8)0.0015 (7)0.0022 (6)0.0232 (7)
N30.0460 (8)0.0468 (8)0.0523 (9)0.0013 (6)0.0044 (6)0.0195 (7)
N510.0638 (9)0.0452 (8)0.0472 (9)0.0005 (6)0.0014 (7)0.0186 (7)
C10.0775 (13)0.0909 (15)0.0446 (11)0.0001 (11)0.0026 (9)0.0269 (11)
C20.0468 (10)0.0603 (11)0.0488 (11)0.0064 (8)0.0071 (8)0.0190 (9)
C30.0681 (12)0.0488 (10)0.0708 (13)0.0008 (9)0.0053 (10)0.0237 (10)
C40.0385 (8)0.0502 (10)0.0473 (10)0.0018 (7)0.0048 (7)0.0214 (8)
C50.0389 (8)0.0491 (9)0.0476 (10)0.0002 (7)0.0045 (7)0.0236 (8)
C60.0505 (10)0.0621 (11)0.0492 (10)0.0055 (8)0.0071 (8)0.0276 (9)
C510.0422 (9)0.0508 (9)0.0513 (10)0.0026 (7)0.0029 (7)0.0253 (8)
C520.0780 (13)0.0493 (11)0.0647 (13)0.0002 (9)0.0046 (10)0.0253 (10)
C530.0942 (15)0.0506 (11)0.0534 (12)0.0007 (10)0.0070 (10)0.0148 (9)
C5110.0737 (12)0.0431 (9)0.0454 (10)0.0057 (8)0.0010 (9)0.0101 (8)
C5120.0902 (16)0.0839 (16)0.0578 (13)0.0197 (12)0.0098 (11)0.0285 (12)
C5130.156 (3)0.0869 (18)0.0659 (16)0.0353 (17)0.0115 (17)0.0301 (14)
C5140.208 (3)0.0581 (14)0.0511 (14)0.0167 (18)0.0160 (18)0.0295 (12)
C5150.171 (3)0.0832 (19)0.0654 (17)0.0254 (19)0.0359 (18)0.0219 (15)
C5160.0927 (16)0.0799 (16)0.0713 (15)0.0004 (12)0.0211 (13)0.0194 (13)
Geometric parameters (Å, º) top
N1—C21.371 (2)C52—H52B0.96
N1—C61.409 (2)C52—H52C0.96
N1—C11.469 (2)N51—C531.462 (2)
C1—H1A0.96N51—H510.86
C1—H1B0.96C53—C5111.503 (3)
C1—H1C0.96C53—H53A0.97
C2—O21.218 (2)C53—H53B0.97
C2—N31.383 (2)C511—C5121.365 (3)
N3—C41.389 (2)C511—C5161.366 (3)
N3—C31.464 (2)C512—C5131.367 (3)
C3—H3A0.96C512—H5120.93
C3—H3B0.96C513—C5141.372 (4)
C3—H3C0.96C513—H5130.93
C4—O41.239 (2)C514—C5151.349 (4)
C4—C51.439 (2)C514—H5140.93
C5—C511.422 (2)C515—C5161.375 (4)
C5—C61.442 (2)C515—H5150.93
C51—N511.314 (2)C516—H5160.93
C51—C521.501 (2)C6—O61.222 (2)
C52—H52A0.96
C2—N1—C6125.47 (15)C51—C52—H52C109.5
C2—N1—C1117.56 (17)H52A—C52—H52C109.5
C6—N1—C1116.97 (16)H52B—C52—H52C109.5
N1—C1—H1A109.5C51—N51—C53125.94 (15)
N1—C1—H1B109.5C51—N51—H51117.0
H1A—C1—H1B109.5C53—N51—H51117.0
N1—C1—H1C109.5N51—C53—C511110.86 (15)
H1A—C1—H1C109.5N51—C53—H53A109.5
H1B—C1—H1C109.5C511—C53—H53A109.5
O2—C2—N1122.34 (17)N51—C53—H53B109.5
O2—C2—N3121.41 (18)C511—C53—H53B109.5
N1—C2—N3116.25 (16)H53A—C53—H53B108.1
C2—N3—C4124.21 (15)C512—C511—C516118.6 (2)
C2—N3—C3118.22 (15)C512—C511—C53120.74 (19)
C4—N3—C3117.47 (14)C516—C511—C53120.6 (2)
N3—C3—H3A109.5C511—C512—C513120.7 (2)
N3—C3—H3B109.5C511—C512—H512119.7
H3A—C3—H3B109.5C513—C512—H512119.7
N3—C3—H3C109.5C512—C513—C514120.4 (3)
H3A—C3—H3C109.5C512—C513—H513119.8
H3B—C3—H3C109.5C514—C513—H513119.8
O4—C4—N3116.84 (15)C515—C514—C513119.1 (2)
O4—C4—C5124.92 (16)C515—C514—H514120.4
N3—C4—C5118.24 (14)C513—C514—H514120.4
C51—C5—C4119.34 (15)C514—C515—C516120.6 (3)
C51—C5—C6121.38 (15)C514—C515—H515119.7
C4—C5—C6119.28 (16)C516—C515—H515119.7
N51—C51—C5119.82 (16)C511—C516—C515120.6 (2)
N51—C51—C52116.09 (17)C511—C516—H516119.7
C5—C51—C52124.08 (16)C515—C516—H516119.7
C51—C52—H52A109.5O6—C6—N1116.95 (16)
C51—C52—H52B109.5O6—C6—C5126.76 (18)
H52A—C52—H52B109.5N1—C6—C5116.29 (15)
C6—N1—C2—O2178.99 (16)C52—C51—N51—C533.9 (3)
C1—N1—C2—O20.3 (3)C51—N51—C53—C511174.11 (16)
C6—N1—C2—N30.9 (2)N51—C53—C511—C51257.3 (3)
C1—N1—C2—N3179.77 (14)N51—C53—C511—C516125.4 (2)
O2—C2—N3—C4177.32 (16)C516—C511—C512—C5131.1 (4)
N1—C2—N3—C42.8 (2)C53—C511—C512—C513178.5 (2)
O2—C2—N3—C30.9 (2)C511—C512—C513—C5140.9 (4)
N1—C2—N3—C3179.20 (15)C512—C513—C514—C5150.6 (4)
C2—N3—C4—O4178.08 (14)C513—C514—C515—C5161.8 (4)
C3—N3—C4—O41.7 (2)C512—C511—C516—C5150.1 (4)
C2—N3—C4—C52.1 (2)C53—C511—C516—C515177.3 (2)
C3—N3—C4—C5178.50 (14)C514—C515—C516—C5111.6 (4)
O4—C4—C5—C513.1 (3)C2—N1—C6—O6175.44 (17)
N3—C4—C5—C51177.09 (14)C1—N1—C6—O63.9 (3)
O4—C4—C5—C6177.62 (16)C2—N1—C6—C54.9 (3)
N3—C4—C5—C62.2 (2)C1—N1—C6—C5175.78 (15)
C4—C5—C51—N510.9 (2)C51—C5—C6—O65.7 (3)
C6—C5—C51—N51178.43 (15)C4—C5—C6—O6175.00 (18)
C4—C5—C51—C52179.47 (16)C51—C5—C6—N1173.94 (14)
C6—C5—C51—C520.2 (3)C4—C5—C6—N15.4 (2)
C5—C51—N51—C53174.85 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N51—H51···O40.861.852.559 (2)139
C514—H514···O4i0.932.483.392 (3)168
C53—H53B···Cgii0.972.663.557 (2)154
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
(V) 5-(1-hydrazinoethylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione top
Crystal data top
C8H12N4O3F(000) = 896
Mr = 212.22Dx = 1.504 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2160 reflections
a = 7.9669 (5) Åθ = 2.4–32.5°
b = 17.2670 (11) ŵ = 0.12 mm1
c = 13.6223 (9) ÅT = 291 K
V = 1873.9 (2) Å3Needle, colourless
Z = 80.60 × 0.07 × 0.06 mm
Data collection top
Bruker SMART 1000 CCD area detector
diffractometer
2160 independent reflections
Radiation source: fine-focus sealed X-ray tube1284 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ϕω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 109
Tmin = 0.928, Tmax = 0.993k = 2220
13048 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0725P)2]
where P = (Fo2 + 2Fc2)/3
2160 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C8H12N4O3V = 1873.9 (2) Å3
Mr = 212.22Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.9669 (5) ŵ = 0.12 mm1
b = 17.2670 (11) ÅT = 291 K
c = 13.6223 (9) Å0.60 × 0.07 × 0.06 mm
Data collection top
Bruker SMART 1000 CCD area detector
diffractometer
2160 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1284 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.993Rint = 0.057
13048 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 0.94Δρmax = 0.19 e Å3
2160 reflectionsΔρmin = 0.17 e Å3
139 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O21.1589 (2)0.49967 (9)0.32501 (11)0.0694 (5)
O40.95239 (17)0.34103 (8)0.08980 (9)0.0480 (4)
O60.8848 (2)0.28577 (8)0.42741 (9)0.0595 (5)
N11.0322 (2)0.38828 (9)0.37377 (11)0.0435 (4)
N31.0478 (2)0.42123 (8)0.20775 (11)0.0407 (4)
N510.7788 (2)0.21905 (8)0.13666 (11)0.0410 (4)
N520.6755 (2)0.15632 (9)0.10817 (12)0.0500 (5)
C11.0836 (3)0.40278 (13)0.47556 (14)0.0610 (6)
C21.0841 (3)0.44030 (11)0.30366 (14)0.0458 (5)
C31.1006 (3)0.47600 (12)0.13169 (16)0.0584 (6)
C40.9650 (2)0.35372 (10)0.17898 (13)0.0366 (4)
C50.8996 (2)0.30411 (10)0.25437 (13)0.0358 (4)
C60.9330 (2)0.32237 (10)0.35578 (13)0.0405 (5)
C510.8036 (2)0.23712 (10)0.22909 (12)0.0358 (4)
C520.7317 (3)0.18395 (11)0.30431 (14)0.0500 (5)
H1A1.17800.43740.47620.091*
H1B1.11450.35470.50610.091*
H1C0.99210.42570.51100.091*
H3A1.03090.52130.13440.088*
H3B1.09010.45210.06840.088*
H3C1.21550.49050.14250.088*
H510.82690.24620.09190.049*
H52A0.65970.14690.27290.075*
H52B0.66810.21340.35110.075*
H52C0.82110.15730.33740.075*
H52D0.64360.16920.05010.060*
H52E0.72780.11280.11020.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0871 (13)0.0579 (9)0.0630 (10)0.0173 (9)0.0086 (9)0.0125 (8)
O40.0618 (9)0.0551 (8)0.0271 (7)0.0058 (7)0.0024 (6)0.0026 (6)
O60.0877 (12)0.0613 (9)0.0295 (7)0.0035 (8)0.0081 (7)0.0049 (6)
N10.0502 (10)0.0498 (10)0.0304 (8)0.0079 (8)0.0039 (7)0.0051 (7)
N30.0477 (10)0.0375 (8)0.0370 (9)0.0012 (7)0.0012 (7)0.0026 (6)
N510.0412 (10)0.0450 (9)0.0370 (9)0.0030 (7)0.0043 (7)0.0009 (7)
N520.0514 (11)0.0471 (9)0.0516 (10)0.0036 (8)0.0036 (8)0.0054 (8)
C10.0727 (16)0.0764 (14)0.0338 (12)0.0033 (13)0.0074 (10)0.0113 (10)
C20.0487 (13)0.0446 (11)0.0442 (12)0.0074 (10)0.0027 (9)0.0053 (9)
C30.0752 (16)0.0477 (12)0.0524 (13)0.0108 (11)0.0024 (12)0.0103 (9)
C40.0369 (11)0.0402 (10)0.0328 (10)0.0079 (8)0.0021 (8)0.0015 (8)
C50.0388 (10)0.0399 (9)0.0287 (9)0.0076 (9)0.0020 (8)0.0022 (7)
C60.0469 (12)0.0438 (11)0.0308 (10)0.0138 (9)0.0029 (8)0.0004 (8)
C510.0334 (10)0.0411 (10)0.0330 (10)0.0114 (8)0.0042 (7)0.0026 (7)
C520.0539 (13)0.0508 (12)0.0453 (11)0.0009 (10)0.0019 (10)0.0126 (9)
Geometric parameters (Å, º) top
N1—C21.375 (3)C4—C51.435 (2)
N1—C61.407 (2)C5—C511.429 (2)
N1—C11.467 (2)C5—C61.442 (2)
C1—H1A0.96C51—N511.312 (2)
C1—H1B0.96C51—C521.490 (2)
C1—H1C0.96N51—N521.415 (2)
C2—O21.221 (2)N51—H510.86
C2—N31.378 (2)C52—H52A0.96
N3—C41.396 (2)C52—H52B0.96
N3—C31.465 (2)C52—H52C0.96
C3—H3A0.96N52—H52D0.86
C3—H3B0.96N52—H52E0.86
C3—H3C0.96C6—O61.224 (2)
C4—O41.239 (2)
C2—N1—C6125.19 (16)N3—C4—C5117.98 (15)
C2—N1—C1117.47 (17)C51—C5—C4120.34 (16)
C6—N1—C1117.34 (16)C51—C5—C6120.46 (16)
N1—C1—H1A109.5C4—C5—C6119.20 (17)
N1—C1—H1B109.5N51—C51—C5120.30 (15)
H1A—C1—H1B109.5N51—C51—C52117.09 (16)
N1—C1—H1C109.5C5—C51—C52122.59 (16)
H1A—C1—H1C109.5C51—N51—N52122.21 (15)
H1B—C1—H1C109.5C51—N51—H51118.9
O2—C2—N1121.99 (19)N52—N51—H51118.9
O2—C2—N3121.92 (18)C51—C52—H52A109.5
N1—C2—N3116.09 (18)C51—C52—H52B109.5
C2—N3—C4124.40 (15)H52A—C52—H52B109.5
C2—N3—C3117.15 (17)C51—C52—H52C109.5
C4—N3—C3118.45 (15)H52A—C52—H52C109.5
N3—C3—H3A109.5H52B—C52—H52C109.5
N3—C3—H3B109.5N51—N52—H52D103.1
H3A—C3—H3B109.5N51—N52—H52E112.2
N3—C3—H3C109.5H52D—N52—H52E113.5
H3A—C3—H3C109.5O6—C6—N1117.07 (17)
H3B—C3—H3C109.5O6—C6—C5126.34 (19)
O4—C4—N3117.49 (15)N1—C6—C5116.59 (16)
O4—C4—C5124.53 (17)
C6—N1—C2—O2174.12 (18)N3—C4—C5—C64.9 (2)
C1—N1—C2—O25.6 (3)C4—C5—C51—N512.1 (3)
C6—N1—C2—N36.4 (3)C6—C5—C51—N51177.40 (16)
C1—N1—C2—N3173.91 (17)C4—C5—C51—C52179.57 (17)
O2—C2—N3—C4179.01 (18)C6—C5—C51—C520.9 (3)
N1—C2—N3—C40.5 (3)C5—C51—N51—N52175.71 (15)
O2—C2—N3—C31.0 (3)C52—C51—N51—N525.9 (3)
N1—C2—N3—C3179.53 (17)C2—N1—C6—O6173.49 (18)
C2—N3—C4—O4174.45 (17)C1—N1—C6—O66.2 (3)
C3—N3—C4—O45.5 (3)C2—N1—C6—C57.1 (3)
C2—N3—C4—C55.9 (3)C1—N1—C6—C5173.19 (17)
C3—N3—C4—C5174.11 (17)C51—C5—C6—O60.9 (3)
O4—C4—C5—C514.0 (3)C4—C5—C6—O6179.56 (18)
N3—C4—C5—C51175.62 (15)C51—C5—C6—N1178.40 (15)
O4—C4—C5—C6175.52 (17)C4—C5—C6—N11.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N51—H51···O40.861.922.600 (2)135
N51—H51···O6i0.862.352.974 (2)129
N52—H52D···O4ii0.862.453.230 (2)152
N52—H52E···O2iii0.862.333.144 (2)159
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1/2, y+1/2, z; (iii) x+2, y1/2, z+1/2.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC8H10N2O4C11H17N3O3C12H19N3O5C15H17N3O3
Mr198.18239.28285.30287.32
Crystal system, space groupMonoclinic, P21/cMonoclinic, PnTrigonal, R3Triclinic, P1
Temperature (K)291291120291
a, b, c (Å)8.6066 (5), 9.1751 (5), 11.9799 (7)4.1085 (3), 8.4497 (5), 17.1272 (11)18.4577 (4), 18.4577 (4), 19.7736 (4)7.0696 (5), 9.0734 (7), 11.9214 (8)
α, β, γ (°)90, 109.321 (2), 9090, 94.721 (2), 9090, 90, 12070.995 (2), 82.084 (2), 84.729 (2)
V3)892.73 (9)592.56 (7)5834.1 (2)715.23 (9)
Z42182
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.120.100.120.10
Crystal size (mm)0.52 × 0.33 × 0.200.49 × 0.40 × 0.120.40 × 0.40 × 0.300.40 × 0.34 × 0.06
Data collection
DiffractometerBruker SMART 1000 CCD area detector
diffractometer
Bruker SMART 1000 CCD area detector
diffractometer
Nonius KappaCCD area detector
diffractometer
Bruker SMART 1000 CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Multi-scan
(SADABS; Bruker, 2000)
Multi-scan
(SADABS; Bruker, 2000)
Multi-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.934, 0.9760.931, 0.9880.950, 0.9660.959, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
7606, 3198, 1926 5869, 2129, 1671 14896, 2965, 2329 6134, 3241, 1951
Rint0.0220.0220.0330.022
(sin θ/λ)max1)0.7570.7560.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.207, 1.03 0.046, 0.126, 1.01 0.042, 0.115, 1.11 0.054, 0.167, 1.02
No. of reflections3198212929653241
No. of parameters131158186193
No. of restraints0200
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.220.19, 0.270.35, 0.300.17, 0.19


(V)
Crystal data
Chemical formulaC8H12N4O3
Mr212.22
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)291
a, b, c (Å)7.9669 (5), 17.2670 (11), 13.6223 (9)
α, β, γ (°)90, 90, 90
V3)1873.9 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.60 × 0.07 × 0.06
Data collection
DiffractometerBruker SMART 1000 CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.928, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
13048, 2160, 1284
Rint0.057
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.129, 0.94
No. of reflections2160
No. of parameters139
No. of restraints0
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: SMART (Bruker, 2000), COLLECT (Hooft, 1999), SAINT (Bruker, 2000), DENZO (Otwinowski & Minor, 1997) and COLLECT, SAINT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected bond distances (Å) for compounds (I)–(V) top
Parameter(I)(II)(III)(IV)(V)
C2-O21.208 (2)1.219 (2)1.2211 (18)1.218 (2)1.221 (2)
C4-O41.253 (2)1.232 (2)1.2442 (16)1.239 (2)1.239 (2)
C4-C51.437 (2)1.440 (2)1.4422 (18)1.439 (2)1.435 (2)
C5-C511.396 (2)1.427 (2)1.4308 (18)1.422 (2)1.429 (3)
C51-O511.311 (2)
C51-N511.313 (2)1.3172 (17)1.314 (2)1.312 (2)
N51-N521.415 (2)
C6-O61.225 (2)1.223 (2)1.2278 (16)1.222 (2)1.224 (2)
Hydrogen bond parameters (Å, °) for compounds (I)–(V) top
CompoundD-H···AD-HH···AD···AD-H···A
(I)O51-H51···O40.821.702.450 (2)151
(II)N51-H51···O40.861.852.563 (2)139
(III)N51-H51···O40.881.862.5829 (14)139
(IV)N51-H51···O40.861.852.559 (2)139
C514-H514···O4i0.932.483.392 (2)168
C53-H53B···Cgii0.972.663.557 (2)154
(V)N51-H51···O40.861.922.600 (2)135
N51-H51 O6iii0.862.352.974 (2)129
N52-H52D···O4iv0.862.453.230 (2)152
N52-H52E···O2v0.862.323.144 (2)159
Symmetry codes: i (1 − x, 1 − y, 1 − z); ii (1 − x, −y, 1 − z); iii (x, 0.5 − y, −0.5 + z); iv (−0.5 + x, 0.5 − y, −z); v (2 − x, −0.5 + y, 0.5 − z)

Cg is centroid of ring C511-C516
 

Acknowledgements

X-ray data for (I), (II), (IV) and (V) were collected at the University of Aberdeen and the authors thank the university for funding the purchase of the diffractometer. X-ray data for (III) were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff of the service for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work. ELSL thanks the International Foundation for Science and JLW thanks CNPq and FAPERJ for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science
First citationBruker (2000). SMART (Version 5.624), SAINT-Plus (Version 6.02a) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148. Web of Science CrossRef CAS IUCr Journals
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.
First citationJones, P. G. (1986). Acta Cryst. A42, 57. CrossRef Web of Science IUCr Journals
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
First citationSilva, E. T. da & Lima, E. D. S. (2003). Tetrahedron Lett. 44, 3621–3624. Web of Science CrossRef
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds