organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

3,3-Di­fluoro-5-nitro-1H-indol-2(3H)-one: sheets of R22(8) and R46(34) rings built from three-centre N—H⋯(O)2 hydrogen bonds

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 25 November 2004; accepted 26 November 2004; online 18 December 2004)

The title compound, C8H4F2N2O3, crystallizes with Z′ = 2 in the space group P21/c. The molecules are linked into sheets of [R_{2}^{2}](8) and [R_{4}^{6}](34) rings by two independent asymmetric three-centre N—H⋯(O)2 hydrogen bonds [H⋯O = 2.15/2.57 Å in one system and 2.23/2.46 Å in the other; N⋯O = 2.8959 (17)/3.2972 (16) and 2.9561 (16)/3.1774 (15) Å; N—H⋯O = 142/140 and 140/139°; O⋯H⋯O = 77 and 79°].

Comment

Indoline-2,3-diones (isatins) are very versatile synthetic substrates, useful both in the synthesis of heterocyclic compounds and as raw materials for drugs (da Silva et al., 2001[Silva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273-324.]). 3,3-Difluorooxindolones, prepared from indoline-2,3-diones by reaction with (diethyl­amino)sulfur trifluoride (Torres et al., 1999[Torres, J. C., Garden, S. J., Pinto, A. C., da Silva, F. S. Q. & Boechat, N. (1999). Tetrahedron, 55, 1881-1892.]), have been shown to be particularly valuable precursors of pharmaceutically active materials (Boechat & Pinto, 2000[Boechat, N. & Pinto, A. C. (2000). US Patent No. 6 034 266.]). We report here the molecular and supramolecular structure of the title compound, (I[link]), a typical simply substituted 3,3-difluorooxindolone.

[Scheme 1]

Compound (I[link]) (Fig. 1[link]) crystallizes in space group P21/c with Z′ = 2. The bond distances and angles within the two independent molecules are very similar (Table 1[link]), but there are a number of unusual values consistently observed for the two molecules. The distances Cn2—Cn3 (n = 1 or 2) are long for their type, where the mean value (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) is 1.511 Å and the upper-quartile value 1.521 Å. In addition, there are indications of weak bond fixation within the aryl rings. Likewise, the interbond angles at both Cn2 and Cn3 show some unexpected values. In particular, the opposed pair of angles Fn31—Cn3—Fn32 and Cn2—Cn3—Cn3A (n = 1 or 2) are all significantly less than the idealized tetrahedral values; normally, the distortions in opposed pairs of angles are such that one angle is significantly larger and one is significantly smaller than the idealized value. While the bicyclic skeletons are essentially planar, the nitro groups are both twisted away from these planes. The nitro groups containing atoms N15 and N25 make dihedral angles with the adjacent rings of 13.2 (2) and 15.6 (2)°, respectively. The sense of these rotations, as shown by the key torsion angles (Table 1[link]), indicates approximate twofold rotational symmetry for the selected asymmetric unit.

The two independent molecules of (I[link]) are linked by paired N—H⋯O hydrogen bonds with carbonyl acceptors (Table 2[link]), the dimensions of which differ sufficiently to preclude the possibility of any additional symmetry. These two interactions are each, in fact, one component of a planar but asymmetric three-centre N—H⋯(O)2 system, in each of which the second acceptor is a nitro O atom, and these longer, and weaker, components link the bimolecular aggregates (Fig. 1[link]) into continuous sheets.

Atom N11 in the type 1 molecule (n = 1) at (x, y, z) acts as hydrogen-bond donor to nitro atom O252 in the type 2 molecule (n = 2) at (1 − x, y − [{1\over 2}], [{1\over 2}] − z), so forming a C 12(9)[[R_{2}^{2}](8)] chain of rings (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) running parallel to the [010] direction and generated by the 21 screw axis along ([{1\over 2}], y, [{1\over 4}]) (Fig. 2[link]). Similarly, atom N21 at (x, y, z) acts as hydrogen-bond donor to O152 at (−x, [{1\over 2}] + y, [{3\over 2}] − z), so producing a second C 12(9)[[R_{2}^{2}](8)] chain of rings, this time along (0, y, [{3\over 4}]) (Fig. 3[link]). The combination of these two chain motifs generates a (101) sheet containing [R_{2}^{2}](8) and [R_{4}^{6}](34) rings (Fig. 4[link]), in which each bimolecular aggregate is linked to four others. Hence, if these aggregates are regarded as the nodes of the resulting net, this is of the (4,4)-type (Batten & Robson, 1998[Batten, S, R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]). Two (101) sheets, related to one another by inversion, pass through each unit cell.

There are neither C—H⋯π(arene) hydrogen bonds nor aromatic ππ stacking interactions between the components of adjacent sheets. The only significant C—H⋯O hydrogen bonds (Table 2[link]) all lie within a single (101) sheet. There are some short F⋯N contacts involving nitro N atoms between molecules in adjacent sheets, namely C15—N15⋯F232i, with N15⋯F232i = 2.915 (2) Å and C15—N15⋯F232i = 109.6 (2)° [symmetry code: (i) −x, 1 − y, 1 − z], and C25—H25⋯F232ii, with N25⋯F231ii = 2.947 (2) Å and C25—N25⋯F231ii = 91.2 (2)° [symmetry code: (ii) x, [{3\over 2}] − y, z − [{1\over 2}]], but the status of such dipolar contacts, in terms of their possible structural significance, has not yet been established.

[Figure 1]
Figure 1
The two independent molecules in compound (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
A stereoview of part of the crystal structure of (I[link]), showing the formation of a chain of rings along ([{1\over 2}], y, [{1\over 4}]). For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 3]
Figure 3
A stereoview of part of the crystal structure of (I[link]), showing the formation of a chain of rings along (0, y, [{3\over 4}]). For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 4]
Figure 4
A stereoview of part of the crystal structure of (I[link]), showing the formation of a (101) sheet of [R_{2}^{2}](8) and [R_{4}^{6}](34) rings. For the sake of clarity, H atoms bonded to C atoms have been omitted.

Experimental

The title compound was obtained according to the procedure published by Torres et al. (1999[Torres, J. C., Garden, S. J., Pinto, A. C., da Silva, F. S. Q. & Boechat, N. (1999). Tetrahedron, 55, 1881-1892.]) [m.p. 459–460 K; literature m.p. 461–462 K (Torres et al., 1999[Torres, J. C., Garden, S. J., Pinto, A. C., da Silva, F. S. Q. & Boechat, N. (1999). Tetrahedron, 55, 1881-1892.])]. Crystals of (I[link]) suitable for single-crystal X-ray diffraction were obtained by slow evaporation of a solution in acetonitrile.

Crystal data
  • C8H4F2N2O3

  • Mr = 214.13

  • Monoclinic, P21/c

  • a = 11.0529 (4) Å

  • b = 15.4381 (6) Å

  • c = 9.2768 (4) Å

  • β = 90.951 (2)°

  • V = 1582.74 (11) Å3

  • Z = 8

  • Dx = 1.797 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3611 reflections

  • θ = 3.1–27.5°

  • μ = 0.17 mm−1

  • T = 120 (2) K

  • Block, yellow

  • 0.04 × 0.04 × 0.03 mm

Data collection
  • Bruker-Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan, (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.995

  • 18 600 measured reflections

  • 3611 independent reflections

  • 2980 reflections with I > 2σ(I)

  • Rint = 0.033

  • θmax = 27.5°

  • h = −11 → 14

  • k = −19 → 20

  • l = −12 → 12

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.090

  • S = 1.04

  • 3611 reflections

  • 271 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0405P)2 + 0.7598P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Selected geometric parameters (Å, °)

N11—C12 1.3668 (19)
C12—C13 1.5576 (19)
C13—C13A 1.4886 (19)
C13A—C14 1.3744 (19)
C14—C15 1.3907 (19)
C15—C16 1.3868 (19)
C16—C17 1.3980 (19)
C17—C17A 1.387 (2)
C17A—N11 1.4064 (17)
C13A—C17A 1.4031 (19)
C12—O12 1.2070 (17)
C13—F131 1.3728 (16)
C13—F132 1.3534 (16)
C15—N15 1.4644 (17)
N15—O151 1.2294 (15)
N15—O152 1.2361 (15)
N21—C22 1.3602 (18)
C22—C23 1.5562 (19)
C23—C23A 1.4863 (19)
C23A—C24 1.3761 (19)
C24—C25 1.3925 (19)
C25—C26 1.3899 (19)
C26—C27 1.3963 (19)
C27—C27A 1.388 (2)
C27A—N21 1.4109 (17)
C23A—C27A 1.3999 (19)
C22—O22 1.2085 (18)
C23—F231 1.3641 (16)
C23—F232 1.3620 (16)
C25—N25 1.4662 (17)
N25—O251 1.2327 (15)
N25—O252 1.2301 (15)
N11—C12—C13 106.05 (11)
N11—C12—O12 129.45 (13)
O12—C12—C13 124.51 (13)
F131—C13—F132 105.94 (11)
C12—C13—C13A 103.80 (11)
N21—C22—C23 106.46 (11)
N21—C22—O22 129.78 (13)
O22—C22—C23 123.75 (13)
F231—C23—F232 106.00 (11)
C22—C23—C23A 103.84 (11)
C14—C15—N15—O151 13.26 (19)
C24—C25—N25—O251 15.37 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O22 0.88 2.15 2.8959 (17) 142
N11—H11⋯O252i 0.88 2.57 3.2972 (16) 140
N21—H21⋯O12 0.88 2.23 2.9561 (16) 140
N21—H21⋯O152ii 0.88 2.46 3.1774 (15) 139
C14—H14⋯O251iii 0.95 2.52 3.3102 (18) 140
C17—H17⋯O252i 0.95 2.59 3.3708 (18) 140
C24—H24⋯O151iv 0.95 2.46 3.2766 (18) 144
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x-1, y, z+1; (iv) x+1, y, z-1.

The space group P21/c was uniquely assigned from the systematic absences. All H atoms were located from difference maps and subsequently treated as riding atoms, with C—H distances of 0.95 Å and N—H distances of 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N).

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

2,3-Indolinediones (isatins) are very versatile synthetic substrates, useful both in the synthesis of heterocyclic compounds, and as raw materials for drugs (da Silva et al., 2001). 3,3-Difluoro-2-oxindoles, prepared from 2,3-indolinediones by reaction with (diethylamino)sulfur trifluoride (Torres et al., 1999) have been shown to be particularly valuable precursors of pharmaceutically active materials (Boechat & Pinto, 2000). Here we report the molecular and supramolecular structure of the title compound, (I), a typical simply substituted 3,3-difluoro-2-oxindole.

Compound (I) (Fig. 1) crystallizes in space group P21/c with Z' = 2. The bond distances and angles within the two independent molecules are very similar (Table 1), but there are a number of unusual values consistently observed for the two molecules. The distances Cn2—Cn3 (n = 1 or 2) are long for their type, where the mean value (Allen et al., 1987) is 1.511 Å and the upper-quartile value 1.521 Å. In addition, there are indications of weak bond fixation within the aryl rings. Likewise, the interbond angles at both Cn2 and Cn3 show some unexpected values. In particular, the opposed pair of angles Fn31—Cn3—Fn32 and Cn2—Cn3—Cn3A (n = 1 or 2) are all significantly less than the idealized tetrahedral values; normally, the distortions in opposed pairs of angles are such that one angle is significantly larger and one is significantly smaller than the idealized value. While the bicyclic skeletons are essentially planar, the nitro groups are both twisted away from these planes. The nitro groups containing atoms N15 and N25 make dihedral angles with the adjacent rings of 13.2 (2)° and 15.6 (2)°, respectively. The sense of these rotations, as shown by the key torsion angles (Table 1), indicates approximate twofold rotational symmetry for the selected asymmetric unit.

The two independent molecules of (I) are linked by paired N—H···O hydrogen bonds with carbonyl acceptors (Table 2), the dimensions of which differ sufficiently to preclude the possibility of any additional symmetry. These two interactions are each, in fact, one component of a planar but asymmetric three-centre N—H···(O)2 system, in each of which the second acceptor is a nitro O atom, and these longer, and weaker, components link the bimolecular aggregates (Fig. 1) into continuous sheets.

Atom N11 in the type 1 molecule (n = 1) at (x, y, z) acts as hydrogen-bond donor to nitro atom O252 in the type 2 molecule (n = 2) at (1 − x, y − 1/2, 1/2 − z), so forming a C12(9)[R22(8)] chain of rings (Bernstein et al., 1995) running parallel to the [010] direction, and generated by the 21 screw axis along (1/2, y, 1/4) (Fig. 2). Similarly, atom N21 at (x, y, z) acts as hydrogen-bond donor to O152 at (−x, 1/2 + y, 3/2 − z), so producing a second C12(9)[R22(8)] chain of rings, this time along (0, y, 3/4) (Fig. 3). The combination of these two chain motifs generates a (101) sheet containing R22(8) and R46(34) rings (Fig. 4), in which each bimolecular aggregate is linked to four others. Hence, if these aggregates are regarded as the nodes of the resulting net, this is of the (4,4) type (Batten & Robson, 1998). Two (101) sheets, related to one another by inversion, pass through each unit cell.

There are neither C—H···π(arene) hydrogen bonds nor aromatic ππ stacking interactions between the components of adjacent sheets. The only significant C—H···O hydrogen bonds (Table 2) all lie within a single (101) sheet. There are some short F···N contacts involving nitro N atoms between molecules in adjacent sheets, namely C15—N15···F232i, with N15···F232i 2.915 (2) Å and C15—N15···F232i 109.6 (2)° [symmetry code (i) −x, 1 − y, 1 − z], and C25—H25···F232ii, with N25···F231ii 2.947 (2) Å and C25—N25···F231ii 91.2 (2)° [symmetry code (ii) x, 3/2 − y, z − 1/2], but the status of such dipolar contacts, in terms of their possible structural significance, has not yet been established.

Experimental top

The title compound was obtained using the procedure published by Torres et al. (1999) [m.p. 459–460 K; literature m.p. 461–462 K (Torres et al., 1999)]. Crystals of (I) suitable for single-crystal X-ray diffraction were obtained by slow evaporation of a solution in acetonitrile.

Refinement top

The space group P21/c was uniquely assigned from the systematic absences. All H atoms were located from difference maps and subsequently treated as riding atoms, with C—H distances of 0.95 Å and N—H distances of 0.88 Å, and with Uiso(H) = 1.2 Ueq(C,N).

Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle , 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The two independent molecules in compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A stereoview of part of the crystal structure of (I), showing the formation of a chain of rings along (1/2, y, 1/4). For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of (I), showing the formation of a chain of rings along (0, y, 3/4). For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of (I), showing the formation of a (101) sheet of R22(8) and R46(34) rings. For the sake of clarity, H atoms bonded to C atoms have been omitted.
3,3-Difluoro-5-nitro-1H-indol-2(3H)-one top
Crystal data top
C8H4F2N2O3F(000) = 864
Mr = 214.13Dx = 1.797 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3611 reflections
a = 11.0529 (4) Åθ = 3.1–27.5°
b = 15.4381 (6) ŵ = 0.17 mm1
c = 9.2768 (4) ÅT = 120 K
β = 90.951 (2)°Block, yellow
V = 1582.74 (11) Å30.04 × 0.04 × 0.03 mm
Z = 8
Data collection top
Bruker-Nonius KappaCCD
diffractometer
3611 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2980 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 1114
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1920
Tmin = 0.980, Tmax = 0.995l = 1212
18600 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.7598P]
where P = (Fo2 + 2Fc2)/3
3611 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C8H4F2N2O3V = 1582.74 (11) Å3
Mr = 214.13Z = 8
Monoclinic, P21/cMo Kα radiation
a = 11.0529 (4) ŵ = 0.17 mm1
b = 15.4381 (6) ÅT = 120 K
c = 9.2768 (4) Å0.04 × 0.04 × 0.03 mm
β = 90.951 (2)°
Data collection top
Bruker-Nonius KappaCCD
diffractometer
3611 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2980 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.995Rint = 0.033
18600 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.04Δρmax = 0.31 e Å3
3611 reflectionsΔρmin = 0.24 e Å3
271 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F1310.04435 (7)0.75196 (5)0.68875 (9)0.0225 (2)
F1320.06701 (8)0.74983 (5)0.88442 (9)0.0231 (2)
O120.22009 (9)0.73174 (7)0.63905 (11)0.0235 (2)
O1510.29573 (10)0.53040 (7)1.05503 (12)0.0301 (3)
O1520.23822 (9)0.39721 (6)1.02704 (11)0.0239 (2)
N110.13652 (11)0.59334 (8)0.64370 (13)0.0212 (3)
N150.23069 (10)0.47540 (8)0.99992 (13)0.0194 (3)
C120.14473 (13)0.67972 (9)0.67466 (15)0.0191 (3)
C130.03345 (13)0.70129 (9)0.76904 (15)0.0180 (3)
C13A0.01902 (12)0.61490 (9)0.80219 (15)0.0172 (3)
C140.11111 (12)0.59184 (9)0.89226 (15)0.0175 (3)
C150.13848 (12)0.50402 (9)0.89886 (14)0.0175 (3)
C160.07966 (13)0.44197 (9)0.81771 (15)0.0209 (3)
C170.01354 (13)0.46609 (9)0.72587 (16)0.0217 (3)
C17A0.04350 (12)0.55325 (9)0.72094 (15)0.0185 (3)
F2310.57606 (8)0.56843 (5)0.34072 (9)0.0236 (2)
F2320.44907 (8)0.57528 (5)0.15914 (9)0.0239 (2)
O220.32454 (11)0.58867 (7)0.43013 (13)0.0324 (3)
O2510.78901 (9)0.79173 (7)0.05958 (11)0.0239 (2)
O2520.79517 (9)0.91845 (6)0.04203 (11)0.0236 (2)
N210.39276 (11)0.72992 (7)0.39912 (13)0.0194 (3)
N250.75454 (10)0.84455 (7)0.03053 (12)0.0175 (2)
C220.39055 (13)0.64264 (9)0.37930 (15)0.0210 (3)
C230.49404 (13)0.62130 (9)0.27326 (15)0.0185 (3)
C23A0.54302 (12)0.70766 (9)0.23409 (15)0.0170 (3)
C240.63337 (12)0.72974 (9)0.14063 (14)0.0167 (3)
C250.65924 (12)0.81772 (9)0.12913 (14)0.0165 (3)
C260.59836 (13)0.88096 (9)0.20610 (15)0.0198 (3)
C270.50592 (13)0.85779 (9)0.29936 (16)0.0216 (3)
C27A0.48003 (12)0.77018 (9)0.31233 (15)0.0174 (3)
H110.18360.56620.58290.025*
H140.15370.63360.94700.021*
H160.10280.38290.82450.025*
H170.05460.42450.66920.026*
H210.34550.75790.45880.023*
H240.67570.68740.08700.020*
H260.61970.94020.19520.024*
H270.46260.90020.35170.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1310.0225 (4)0.0205 (4)0.0244 (5)0.0020 (3)0.0020 (3)0.0053 (3)
F1320.0289 (5)0.0210 (4)0.0195 (4)0.0045 (4)0.0034 (3)0.0041 (3)
O120.0216 (5)0.0255 (5)0.0237 (6)0.0041 (4)0.0053 (4)0.0027 (4)
O1510.0303 (6)0.0212 (5)0.0395 (7)0.0025 (5)0.0195 (5)0.0032 (5)
O1520.0254 (5)0.0165 (5)0.0301 (6)0.0018 (4)0.0057 (4)0.0039 (4)
N110.0219 (6)0.0209 (6)0.0210 (6)0.0002 (5)0.0092 (5)0.0013 (5)
N150.0188 (6)0.0181 (6)0.0215 (6)0.0012 (5)0.0040 (5)0.0003 (5)
C120.0196 (7)0.0220 (7)0.0156 (6)0.0006 (6)0.0008 (5)0.0030 (5)
C130.0202 (7)0.0171 (7)0.0167 (7)0.0002 (5)0.0013 (5)0.0006 (5)
C13A0.0193 (7)0.0156 (6)0.0168 (7)0.0007 (5)0.0012 (5)0.0009 (5)
C140.0180 (7)0.0167 (6)0.0180 (6)0.0021 (5)0.0042 (5)0.0009 (5)
C150.0155 (6)0.0187 (7)0.0184 (7)0.0000 (5)0.0038 (5)0.0007 (5)
C160.0222 (7)0.0169 (7)0.0236 (7)0.0005 (6)0.0047 (6)0.0011 (5)
C170.0236 (7)0.0187 (7)0.0230 (7)0.0022 (6)0.0075 (6)0.0032 (6)
C17A0.0187 (7)0.0205 (7)0.0165 (7)0.0001 (6)0.0039 (5)0.0005 (5)
F2310.0249 (4)0.0188 (4)0.0271 (5)0.0032 (3)0.0030 (3)0.0041 (3)
F2320.0270 (5)0.0226 (4)0.0222 (4)0.0065 (4)0.0029 (3)0.0048 (3)
O220.0337 (6)0.0247 (6)0.0395 (7)0.0076 (5)0.0199 (5)0.0020 (5)
O2510.0259 (5)0.0242 (5)0.0219 (5)0.0021 (4)0.0100 (4)0.0019 (4)
O2520.0243 (5)0.0196 (5)0.0272 (6)0.0056 (4)0.0059 (4)0.0015 (4)
N210.0191 (6)0.0184 (6)0.0208 (6)0.0001 (5)0.0084 (5)0.0010 (5)
N250.0165 (6)0.0184 (6)0.0177 (6)0.0015 (5)0.0024 (4)0.0019 (4)
C220.0204 (7)0.0210 (7)0.0217 (7)0.0015 (6)0.0053 (5)0.0016 (6)
C230.0192 (7)0.0173 (7)0.0190 (7)0.0012 (5)0.0027 (5)0.0009 (5)
C23A0.0177 (6)0.0162 (7)0.0172 (6)0.0002 (5)0.0014 (5)0.0000 (5)
C240.0162 (6)0.0171 (7)0.0169 (7)0.0018 (5)0.0025 (5)0.0019 (5)
C250.0151 (6)0.0181 (7)0.0164 (6)0.0006 (5)0.0031 (5)0.0018 (5)
C260.0209 (7)0.0149 (7)0.0236 (7)0.0000 (5)0.0037 (5)0.0000 (5)
C270.0223 (7)0.0183 (7)0.0243 (7)0.0022 (6)0.0065 (6)0.0021 (6)
C27A0.0162 (6)0.0191 (7)0.0170 (7)0.0002 (5)0.0034 (5)0.0006 (5)
Geometric parameters (Å, º) top
N11—C121.3668 (19)N21—C221.3602 (18)
C12—C131.5576 (19)C22—C231.5562 (19)
C13—C13A1.4886 (19)C23—C23A1.4863 (19)
C13A—C141.3744 (19)C23A—C241.3761 (19)
C14—C151.3907 (19)C24—C251.3925 (19)
C15—C161.3868 (19)C25—C261.3899 (19)
C16—C171.3980 (19)C26—C271.3963 (19)
C17—C17A1.387 (2)C27—C27A1.388 (2)
C17A—N111.4064 (17)C27A—N211.4109 (17)
C13A—C17A1.4031 (19)C23A—C27A1.3999 (19)
C12—O121.2070 (17)C22—O221.2085 (18)
C13—F1311.3728 (16)C23—F2311.3641 (16)
C13—F1321.3534 (16)C23—F2321.3620 (16)
C15—N151.4644 (17)C25—N251.4662 (17)
N15—O1511.2294 (15)N25—O2511.2327 (15)
N15—O1521.2361 (15)N25—O2521.2301 (15)
N11—H110.88N21—H210.88
C14—H140.95C24—H240.95
C16—H160.95C26—H260.95
C17—H170.95C27—H270.95
C12—N11—C17A111.65 (12)C22—N21—C27A111.73 (11)
C12—N11—H11124.2C22—N21—H21124.1
C17A—N11—H11124.2C27A—N21—H21124.1
N11—C12—C13106.05 (11)N21—C22—C23106.46 (11)
N11—C12—O12129.45 (13)N21—C22—O22129.78 (13)
O12—C12—C13124.51 (13)O22—C22—C23123.75 (13)
F131—C13—F132105.94 (11)F231—C23—F232106.00 (11)
C12—C13—C13A103.80 (11)C22—C23—C23A103.84 (11)
F132—C13—C13A115.80 (11)F232—C23—C23A114.05 (11)
F131—C13—C13A112.33 (11)F231—C23—C23A114.01 (11)
F132—C13—C12110.75 (11)F232—C23—C22109.82 (11)
F131—C13—C12108.07 (11)F231—C23—C22109.06 (11)
C14—C13A—C17A121.81 (13)C24—C23A—C27A121.88 (13)
C14—C13A—C13130.75 (13)C24—C23A—C23130.34 (13)
C17A—C13A—C13107.44 (12)C27A—C23A—C23107.78 (12)
C13A—C14—C15116.30 (12)C23A—C24—C25116.23 (12)
C13A—C14—H14121.8C23A—C24—H24121.9
C15—C14—H14121.8C25—C24—H24121.9
C16—C15—C14123.03 (13)C26—C25—C24122.95 (12)
C16—C15—N15118.47 (12)C26—C25—N25118.75 (12)
C14—C15—N15118.46 (12)C24—C25—N25118.29 (12)
O151—N15—O152123.23 (12)O252—N25—O251123.77 (12)
O151—N15—C15118.41 (11)O252—N25—C25118.23 (11)
O152—N15—C15118.35 (11)O251—N25—C25118.00 (11)
C15—C16—C17120.25 (13)C25—C26—C27120.26 (13)
C15—C16—H16119.9C25—C26—H26119.9
C17—C16—H16119.9C27—C26—H26119.9
C17A—C17—C16117.21 (13)C27A—C27—C26117.21 (13)
C17A—C17—H17121.4C27A—C27—H27121.4
C16—C17—H17121.4C26—C27—H27121.4
C17—C17A—C13A121.36 (13)C27—C27A—C23A121.45 (12)
C17—C17A—N11128.38 (13)C27—C27A—N21128.50 (13)
C13A—C17A—N11110.24 (12)C23A—C27A—N21110.05 (12)
C17A—N11—C12—O12172.40 (14)C27A—N21—C22—O22176.36 (16)
C17A—N11—C12—C137.80 (15)C27A—N21—C22—C233.73 (16)
O12—C12—C13—F13246.13 (18)O22—C22—C23—F23254.01 (19)
N11—C12—C13—F132134.05 (12)N21—C22—C23—F232126.07 (12)
O12—C12—C13—F13169.50 (17)O22—C22—C23—F23161.74 (18)
N11—C12—C13—F131110.32 (12)N21—C22—C23—F231118.17 (12)
O12—C12—C13—C13A171.05 (13)O22—C22—C23—C23A176.35 (15)
N11—C12—C13—C13A9.13 (14)N21—C22—C23—C23A3.73 (15)
F132—C13—C13A—C1451.4 (2)F232—C23—C23A—C2458.4 (2)
F131—C13—C13A—C1470.49 (19)F231—C23—C23A—C2463.6 (2)
C12—C13—C13A—C14173.01 (14)C22—C23—C23A—C24177.87 (14)
F132—C13—C13A—C17A128.87 (13)F232—C23—C23A—C27A121.93 (13)
F131—C13—C13A—C17A109.24 (13)F231—C23—C23A—C27A116.12 (13)
C12—C13—C13A—C17A7.26 (14)C22—C23—C23A—C27A2.43 (15)
C17A—C13A—C14—C150.3 (2)C27A—C23A—C24—C250.5 (2)
C13—C13A—C14—C15179.97 (14)C23—C23A—C24—C25179.17 (14)
C13A—C14—C15—C161.5 (2)C23A—C24—C25—C260.2 (2)
C13A—C14—C15—N15176.25 (12)C23A—C24—C25—N25179.79 (12)
C16—C15—N15—O151168.87 (13)C26—C25—N25—O25215.50 (19)
C14—C15—N15—O15113.26 (19)C24—C25—N25—O252164.89 (12)
C16—C15—N15—O15212.06 (19)C26—C25—N25—O251164.24 (13)
C14—C15—N15—O152165.81 (13)C24—C25—N25—O25115.37 (18)
C14—C15—C16—C171.3 (2)C24—C25—C26—C270.5 (2)
N15—C15—C16—C17176.48 (13)N25—C25—C26—C27179.07 (13)
C15—C16—C17—C17A0.2 (2)C25—C26—C27—C27A0.9 (2)
C16—C17—C17A—C13A1.4 (2)C26—C27—C27A—C23A0.7 (2)
C16—C17—C17A—N11176.66 (14)C26—C27—C27A—N21179.38 (14)
C14—C13A—C17A—C171.2 (2)C24—C23A—C27A—C270.1 (2)
C13—C13A—C17A—C17178.54 (13)C23—C23A—C27A—C27179.67 (13)
C14—C13A—C17A—N11177.20 (13)C24—C23A—C27A—N21179.91 (13)
C13—C13A—C17A—N113.04 (16)C23—C23A—C27A—N210.36 (16)
C12—N11—C17A—C17174.99 (15)C22—N21—C27A—C27177.70 (14)
C12—N11—C17A—C13A3.29 (17)C22—N21—C27A—C23A2.27 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O220.882.152.8959 (17)142
N11—H11···O252i0.882.573.2972 (16)140
N21—H21···O120.882.232.9561 (16)140
N21—H21···O152ii0.882.463.1774 (15)139
C14—H14···O251iii0.952.523.3102 (18)140
C17—H17···O252i0.952.593.3708 (18)140
C24—H24···O151iv0.952.463.2766 (18)144
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+3/2; (iii) x1, y, z+1; (iv) x+1, y, z1.

Experimental details

Crystal data
Chemical formulaC8H4F2N2O3
Mr214.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)11.0529 (4), 15.4381 (6), 9.2768 (4)
β (°) 90.951 (2)
V3)1582.74 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.04 × 0.04 × 0.03
Data collection
DiffractometerBruker-Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.980, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
18600, 3611, 2980
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.090, 1.04
No. of reflections3611
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.24

Computer programs: COLLECT (Hooft, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle , 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
N11—C121.3668 (19)N21—C221.3602 (18)
C12—C131.5576 (19)C22—C231.5562 (19)
C13—C13A1.4886 (19)C23—C23A1.4863 (19)
C13A—C141.3744 (19)C23A—C241.3761 (19)
C14—C151.3907 (19)C24—C251.3925 (19)
C15—C161.3868 (19)C25—C261.3899 (19)
C16—C171.3980 (19)C26—C271.3963 (19)
C17—C17A1.387 (2)C27—C27A1.388 (2)
C17A—N111.4064 (17)C27A—N211.4109 (17)
C13A—C17A1.4031 (19)C23A—C27A1.3999 (19)
C12—O121.2070 (17)C22—O221.2085 (18)
C13—F1311.3728 (16)C23—F2311.3641 (16)
C13—F1321.3534 (16)C23—F2321.3620 (16)
C15—N151.4644 (17)C25—N251.4662 (17)
N15—O1511.2294 (15)N25—O2511.2327 (15)
N15—O1521.2361 (15)N25—O2521.2301 (15)
N11—C12—C13106.05 (11)N21—C22—C23106.46 (11)
N11—C12—O12129.45 (13)N21—C22—O22129.78 (13)
O12—C12—C13124.51 (13)O22—C22—C23123.75 (13)
F131—C13—F132105.94 (11)F231—C23—F232106.00 (11)
C12—C13—C13A103.80 (11)C22—C23—C23A103.84 (11)
C14—C15—N15—O15113.26 (19)C24—C25—N25—O25115.37 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O220.882.152.8959 (17)142
N11—H11···O252i0.882.573.2972 (16)140
N21—H21···O120.882.232.9561 (16)140
N21—H21···O152ii0.882.463.1774 (15)139
C14—H14···O251iii0.952.523.3102 (18)140
C17—H17···O252i0.952.593.3708 (18)140
C24—H24···O151iv0.952.463.2766 (18)144
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+3/2; (iii) x1, y, z+1; (iv) x+1, y, z1.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work. JLW thanks CNPq and FAPERJ for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBatten, S, R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoechat, N. & Pinto, A. C. (2000). US Patent No. 6 034 266.  Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSilva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273–324.  CrossRef Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTorres, J. C., Garden, S. J., Pinto, A. C., da Silva, F. S. Q. & Boechat, N. (1999). Tetrahedron, 55, 1881–1892.  Web of Science CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds