organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

2-[Bis­(pyrazol-1-yl)meth­yl]-4-tert-but­yl-6-(phenyl­sulfan­yl)phenol

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, England
*Correspondence e-mail: m.a.halcrow@leeds.ac.uk

(Received 27 January 2005; accepted 9 March 2005; online 23 April 2005)

The title compound, C23H24N4OS, contains a highly asymmetric bifurcated intra­molecular hydrogen bond between the hydr­oxy group and two pyrazole N atoms. The compound associates into centrosymmetric dimers in the crystal through two unique C—H⋯π inter­actions, which are in turn linked into a (6,3)-network through an additional inter­molecular C—H⋯N hydrogen bond.

Comment

Heteroleptic tripodal di- and tripyrazol-1-yl derivatives (so-called `heteroscorpionates') are finding increasing use as ligands to transition metals (Trofimenko, 1999[Trofimenko, S. (1999). Scorpionates - The Coordination Chemistry of Polypyrazolylborate Ligands, pp. 155-182. London: Imperial College Press.]; Otero, Fernández-Baeza, Antiñolo, Tejeda & Lara-Sánchez, 2004[Otero, A., Fernández-Baeza, J., Antiñolo, A., Tejeda, J. & Lara-Sánchez, A. (2004). Dalton Trans, pp. 1499-1510.]). Bis(pyrazol­yl)methane ligands bearing alk­oxy, phen­oxy and carboxyl­ate functions have been of particular inter­est as models for mixed-donor metal biosites (see, for example, Beck et al., 2003[Beck, A., Barth, A., Hübner, E. & Burzlaff, N. (2003). Inorg. Chem. 42, 7182-7188.]; Hammes et al., 2003[Hammes, B. S., Kieber-Emmons, M. T., Letizia, J. A., Shirin, Z., Carrano, C. J., Zakharov, L. N. & Rheingold, A. L. (2003). Inorg. Chim. Acta, 346, 227-238.], 2004[Hammes, B. S., Chohan, B. S., Hoffman, J. T., Einwaechter, S. & Carrano, C. J. (2004). Inorg. Chem. 43, 7800-7806.]; Hoffman et al., 2004[Hoffman, J. T., Einwaechter, S., Chohan, B. S., Basu, P. & Carrano, C. J. (2004). Inorg. Chem. 43, 7573-7575.]) and as protecting groups in organometallic compounds (see, for example, Caballero et al., 2004[Caballero, A., Carrión, M. C., Espino, G., Jalón, F. A. & Manzano, B. R. (2004). Polyhedron, 23, 361-371.]; Otero et al., 2003[Otero, A., Fernández-Baeza, J., Antiñolo, A., Tejeda, J., Lara-Sánchez, A., Sánchez-Barba, L., Exposito, M. T. & Rodríguez, A. M. (2003). Dalton Trans. pp. 1614-1619.]; Otero, Fernández-Baeza, Antiñolo, Tejeda, Lara-Sánchez et al., 2004[Otero, A., Fernández-Baeza, J., Antiñolo, A., Tejeda, J., Lara-Sánchez, A., Sánchez-Barba, L. & Rodríguez, A. M. (2004). Dalton Trans. pp. 3963-3969.]). We have prepared the title compound, (I)[link], as part of our continuing investigation of chemistry related to the copper enzyme galactose oxidase (Halcrow et al., 1999[Halcrow, M. A., Chia, L. M. L., Liu, X., McInnes, E. J. L., Yellowlees, L. J., Mabbs, F. E., Scowen, I. J., McPartlin, M. & Davies, J. E. (1999). J. Chem. Soc. Dalton Trans. pp. 1753-1762.]; Liu et al., 2002[Liu, X., Barrett, S. A., Kilner, C. A., Thornton-Pett, M. & Halcrow, M. A. (2002). Tetrahedron, 58, 603-611.]; Sylvestre et al., 2005[Sylvestre, I., Wolowska, J., McInnes, E. J. L., Kilner, C. A. & Halcrow, M. A. (2005). Inorg. Chim. Acta, 358, 1337-1341.]), which contains a biologically unique

[Scheme 1]
ortho-(alkyl­sulfan­yl)tyros­yl free radical in its active site (Whittaker, 2003[Whittaker, J. W. (2003). Chem. Rev. 103, 2347-2364.]). Three other 2-[bis­(pyrazol-1-yl)meth­yl]­phenol derivatives have also been crystallographically characterized by Carrano's group (Higgs & Carrano, 1997[Higgs, T. C. & Carrano, C. J. (1997). Inorg. Chem. 36, 291-297.], 2002[Higgs, T. C. & Carrano, C. J. (2002). Eur. J. Org. Chem. pp. 3632-3645.]; Shirin & Carrano, 2004[Shirin, Z. & Carrano, C. J. (2004). Polyhedron, 23, 239-244.]).

Compound (I)[link] (Fig. 1[link]) was prepared from 5-tert-butyl-2-hydr­oxy-3-(phenylsulfanyl)benzaldehyde (Wang & Stack, 1996[Wang, Y. & Stack, T. D. P. (1996). J. Am. Chem. Soc. 118, 13097-13098.]) and di(pyrazol-1-yl) ketone (Byers et al., 1990[Byers, P. K., Canty, A. J. & Honeyman, R. T. (1990). J. Organomet. Chem. 385, 417-427.]) by Carrano's procedure (Higgs & Carrano, 1997[Higgs, T. C. & Carrano, C. J. (1997). Inorg. Chem. 36, 291-297.]), and crystallized from a 1:1 dieth­yl ether/pentane mixture. All bond lengths and angles within the mol­ecule lie within their usual ranges. There is a bifurcated intra­molecular hydrogen bond between hydr­oxy group O1 and pyrazole atoms N27 and N28, although the latter inter­action clearly dominates. Inter­estingly, this type of hydrogen bond is only observed in one of the other three known 2-[bis­(pyrazol-1-yl)meth­yl]phenol crystal structures (Higgs & Carrano, 2002[Higgs, T. C. & Carrano, C. J. (2002). Eur. J. Org. Chem. pp. 3632-3645.]), despite the apparent proximity of these groups in this class of mol­ecule. As is usual in diaryl sulfides, the two ar­yl groups C1–C6 and C1P–C6P are close to being perpendicular, the dihedral angle between their planes being 78.57 (6)°. This configuration does not give rise to a significant intra­molecular edge-to-face inter­action between these two rings, however, since atom H5 lies 3.00 Å from the centroid of the C1P–C6P ring. This is slightly longer than the sum of the van der Waals radii for a H atom (1.2 Å) and an aromatic ring (1.7 Å; Pauling, 1960[Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., pp. 257-264. Ithaca, NY, USA: Cornell University Press.]).

Neighbouring mol­ecules related by (−x, 1 − y, −z) associate into centrosymmetric dimers through two weak inter­molecular inter­actions involving phen­yl group C1P–C6P (Fig. 2[link]). The first is an inter­molecular hydrogen bond, viz. C5P—H5P⋯N27i [symmetry code: (i) −x, 1 − y, −z; Table 1[link]]. This contact is probably best considered as a C—H⋯π inter­action, since the donor phen­yl group C5P—H5P and acceptor pyrazole group N27i—C31i are nearly perpendicular, with a dihedral angle of 80.57 (7)°. The second is another C—H⋯π inter­action between atom H6P and the C1i–C6i ring, with a H6P⋯C4i distance of 2.87 Å and a C6P—H6P⋯C4i angle of 159° [as before, the dihedral angle between the planes of the ar­yl groups C1P–C6P and C1i–C6i is 78.57 (6)°]. The H5P⋯N27i and H6P⋯C4i distances are both 0.1–0.2 Å shorter than the sum of the van der Waals radii of a H atom (1.2 Å) and an aromatic ring (1.7 Å; Pauling, 1960[Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., pp. 257-264. Ithaca, NY, USA: Cornell University Press.]). Adjacent dimers in the crystal structure associate into sheets through a C—H⋯N hydrogen bond, viz. C3—H3⋯N23ii [symmetry code: (ii) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z]. In contrast to the C5P—H5P⋯N27i inter­action, atom H3 is clearly positioned to inter­act with the lone pair of the pyridine-type atom N23ii. The overall effect of these inter­actions is to link adjacent mol­ecules in the crystal structure into puckered (6,3) herring-bone sheets running parallel to the (102) crystal plane.

[Figure 1]
Figure 1
A view of the asymmetric unit in the crystal structure of (I)[link], showing 50% probability displacement ellipsoids and the atom-numbering scheme employed. H atoms have arbitrary radii and specific H atoms referred to in the Comment are labelled.
[Figure 2]
Figure 2
The weak association of mol­ecules of (I)[link] into centrosymmetric dimers through C—H⋯π inter­actions. One of the two mol­ecules has been de-emphasized for clarity. The view is approximately perpendicular to the (011) crystallographic plane, with the a axis horizontal. [Symmetry code: (i) −x, 1 − y, −z.]

Experimental

A mixture of 5-tert-butyl-2-hydr­oxy-3-(phenylsulfanyl)benzaldehyde (1.5 g, 5.2 mmol), di(pyrazol-1-yl) ketone (1.3 g, 5.2 mmol) and CoCl2·6H2O (12 mg, 0.05 mmol) was heated under N2 to 373 K until evolution of CO2 ceased. The resulting pink solid was cooled, dissolved in CH2Cl2, and washed with water and brine. The organic layers were dried over Na2SO4 and evaporated to dryness to leave a yellow oil. Crystallization of the crude product from a 1:1 dieth­yl ether/pentane solvent mixture afforded yellow crystals (yield 0.74 g, 35%). Analysis found: C 68.3, H 6.0, N 13.8%; calculated for C23H24N4OS: C 68.2, H 6.2, N 14.0%. 1H NMR (CDCl3, 298 K): δ 1.18 [s, 9H, C(CH3)3], 6.31 (pseudo-t, 2.4 Hz, 2H, Pz H4), 7.01 (d, 2.1 Hz, 1H, Ph H3), 7.14–7.27 (m, 5H, C6H5), 7.46 (d, 2.1 Hz, 1H, Ph H5), 7.58 and 7.61 (both d, 2.4 Hz, 2H, Pz H3 and Pz H5), 7.71 (s, 1H, CH).

Crystal data
  • C23H24N4OS

  • Mr = 404.52

  • Monoclinic, P 21 /c

  • a = 13.6486 (2) Å

  • b = 9.3529 (1) Å

  • c = 17.8913 (3) Å

  • β = 109.214 (1)°

  • V = 2156.67 (5) Å3

  • Z = 4

  • Dx = 1.246 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 43 089 reflections

  • θ = 2.4–27.5°

  • μ = 0.17 mm−1

  • T = 150 (2) K

  • Rectangular prism, yellow

  • 0.66 × 0.53 × 0.43 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan(SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])Tmin = 0.594, Tmax = 0.929

  • 43 089 measured reflections

  • 4921 independent reflections

  • 4101 reflections with I > 2σ(I)

  • Rint = 0.072

  • θmax = 27.5°

  • h = −17 → 17

  • k = −12 → 12

  • l = −23 → 23

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.129

  • S = 1.05

  • 4921 reflections

  • 263 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.063P)2 + 0.69P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N23ii 0.95 2.62 3.4682 (19) 149
O1—H1⋯N27 0.84 2.60 3.2292 (17) 133
O1—H1⋯N28 0.84 1.87 2.6846 (18) 162
C5P—H5P⋯N27i 0.95 2.81 3.750 (2) 169
Symmetry codes: (i) -x, 1-y, -z; (ii) [1-x, -{\script{1\over 2}}+y, {\script{1\over 2}}-z].

All H atoms were placed in calculated positions and refined using a riding model [C—H(aryl) = 0.95 Å and Uiso(H) = 1.2Ueq(C); C—H(tertiary alkyl) = 1.00 Å and Uiso(H) = 1.2Ueq(C); C—H(methyl) = 0.98 Å and Uiso(H) = 1.5Ueq(C); and O—H = 0.84 Å and Uiso(H) = 1.2Ueq(O)].

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO–SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEX (McArdle, 1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]); software used to prepare material for publication: local program.

Supporting information


Comment top

Heteroleptic tripodal di- and tripyrazol-1-yl derivatives (so-called `heteroscorpionates') are finding increasing use as ligands to transition metals (Trofimenko, 1999; Otero, Fernández-Baeza, Antiñolo, Tejeda & Lara-Sánchez, 2004). Bis(pyrazolyl)methane ligands bearing alkoxy, phenoxy and carboxylate functions have been of particular interest, as models for mixed-donor metal biosites (see e.g. Beck et al., 2003; Hammes et al., 2003, 2004; Hoffman et al., 2004) and as protecting groups in organometallic compounds (see e.g. Caballero et al., 2004; Otero et al., 2003; Otero, Fernández-Baeza, Antiñolo, Tejeda, Lara-Sánchez et al., 2004). We have prepared the title compound, (I), as part of our continuing investigation of chemistry related to the copper enzyme galactose oxidase (Halcrow et al., 1999; Liu et al., 2002; Sylvestre et al., 2005), which contains a biologically unique ortho(alkylsulfanyl)tyrosyl free radical in its active site (Whittaker, 2003). Three other 2-[bis(pyrazol-1-yl)methyl]phenol derivatives have also been crystallographically characterized by Carrano's group (Higgs & Carrano, 1997, 2002; Shirin & Carrano, 2004).

Compound (I) (Fig. 1) was prepared from 2-hydroxy-3-phenylthio-5-tertbutylbenzaldehyde (Wang & Stack, 1996) and di(pyrazol-1-yl)ketone (Byers et al., 1990) by Carrano's procedure (Higgs & Carrano, 1997), and crystallized from a 1:1 diethyl ether/pentane mixture. All bond lengths and angles within the molecule lie within their usual ranges. There is a bifurcated intramolecular hydrogen bond between hydroxy group O1 and pyrazole atoms N27 and N28, although the latter interaction clearly dominates. ##AUTHOR: Minor addition to previous sentence - please approve. Interestingly, this type of hydrogen bond is only observed in one of the other three known 2-[bis(pyrazol-1-yl)methyl]phenol crystal structures (Higgs & Carrano, 2002), despite the apparent proximity of these groups in this class of molecule. As is usual in diarylsulfides, the two aryl groups C1–C6 and C1P–C6P are close to perpendicular, the dihedral angle between their planes being 78.57 (6)°. This configuration does not give rise to a significant intramolecular edge-to-face interaction between these two rings, however, since atom H5 lies 3.00 Å from the centroid of the C1P–C6P ring, which places these two moieties in van der Waals contact (Pauling, 1960).

Neighbouring molecules related by (−x, 1 − y, −z) associate into centrosymmetric dimers through two weak intermolecular interactions involving phenyl group C1P–C6P (Fig. 2). The first is an intermolecular hydrogen bond, C5P—H5P···N27i [symmetry code: (i) −x, 1 − y, −z]. This contact is probably best considered as a C—H···π interaction, since the donor phenyl group C5P—H5P and acceptor pyrazole group N27i–C31i are nearly perpendicular, with a dihedral angle of 80.57 (7)°. The second is another C—H···π interaction between atom H6P and the C1i–C6i ring, with an H6P···C4i distance of 2.87 Å and an C6P—H6P···C4i angle of 159° [as before, the dihedral angle between the aryl groups C1P–C6P and C1i–C6i is 78.57 (6)°]. Both the H5P···N27i and the H6P···C4i distances are 0.1–0.2 Å shorter than the sum of van der Waals radii of a H atom (1.2 Å) and an aromatic ring (1.7 Å; Pauling, 1960). Adjacent dimers in the crystal structure associate into sheets through a C—H···N hydrogen bond C3—H3···N23ii [symmetry code: (ii) 1 − x, −1/2 + y, 1/2 − z]. In contrast to the C5P—H5P···N27i interaction, atom H3 is clearly positioned to interact with the lone pair of the pyridine-type atom N23ii. The overall effect of these interactions is to link adjacent molecules in the crystal structure into puckered (6,3) herringbone sheets running parallel to the (102) crystal plane. ##AUTHOR: Please check the plane is not (−102).

Experimental top

A mixture of 2-hydroxy-3-phenylthio-5-tertbutylbenzaldehyde (1.5 g, 5.2 mmol), di(pyrazol-1-yl)ketone (1.3 g, 5.2 mmol) and CoCl2·6H2O (12 mg, 0.05 mmol) was heated under N2 to 373 K until evolution of CO2 ceased. The resultant pink solid was cooled, dissolved in CH2Cl2, and washed with water and brine. The organic layers were dried over Na2SO4 and evaporated to dryness to leave a yellow oil. Crystallization of the crude product from a 1:1 diethyl ether:pentane solvent mixture afforded yellow crystals. Yield 0.74 g, 35%. Analysis found: C 68.3, H 6.0, N 13.8%; calculated for C23H24N4OS: C 68.2, H 6.2, N 14.0%. 1H NMR (CDCl3, 298 K): δ 1.18 [s, 9H, C(CH3)3], 6.31 (pseudo-t, 2.4 Hz, 2H, Pz H4), 7.01 (d, 2.1 Hz, 1H, Ph H3), 7.14–7.27 (m, 5H, C6H5), 7.46 (d, 2.1 Hz, 1H, Ph H5), 7.58 and 7.61 (both d, 2.4 Hz, 2H, Pz H3 and Pz H5), 7.71 (s, 1H, CH).

Refinement top

All H atoms were placed in calculated positions and refined using a riding model [CH(aryl) = 0.95 Å and Uiso(H) = 1.2Ueq(C); C—H(tertiary alkyl) = 1.00 Å and Uiso = 1.2Ueq(C); CH(methyl) = 0.98 Å and 1.5Ueq(C); and O—H = 0.84 Å and Uiso = 1.2Ueq(O).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: local program.

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit in the crystal structure of (I), with 50% probability displacement ellipsoids, showing the atom numbering scheme employed. H atoms have arbitrary radii, and specific H atoms referred to in the text are labelled.
[Figure 2] Fig. 2. The weak association of molecules of (I) into centrosymmetric dimers through C—H···π interactions. One of the two molecules has been de-emphasized for clarity. The view is approximately perpendicular to the (011) crystallographic plane, with the a axis horizontal. [Symmetry code: (i) −x, 1 − y, −z.] ##AUTHOR: Please check minor changes to wording below:
4-tert-Butyl-6-phenylsulfanyl-2-[bis(pyrazol-1-yl)methyl]phenol top
Crystal data top
C23H24N4OSF(000) = 856
Mr = 404.52Dx = 1.246 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.6486 (2) ÅCell parameters from 43089 reflections
b = 9.3529 (1) Åθ = 2.4–27.5°
c = 17.8913 (3) ŵ = 0.17 mm1
β = 109.214 (1)°T = 150 K
V = 2156.67 (5) Å3Rectangular prism, yellow
Z = 40.66 × 0.53 × 0.43 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
4921 independent reflections
Radiation source: fine-focus sealed tube4101 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω and ϕ scansh = 1717
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1212
Tmin = 0.594, Tmax = 0.929l = 2323
43089 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.063P)2 + 0.69P]
where P = (Fo2 + 2Fc2)/3
4921 reflections(Δ/σ)max = 0.001
263 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C23H24N4OSV = 2156.67 (5) Å3
Mr = 404.52Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.6486 (2) ŵ = 0.17 mm1
b = 9.3529 (1) ÅT = 150 K
c = 17.8913 (3) Å0.66 × 0.53 × 0.43 mm
β = 109.214 (1)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
4921 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
4101 reflections with I > 2σ(I)
Tmin = 0.594, Tmax = 0.929Rint = 0.072
43089 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
4921 reflectionsΔρmin = 0.41 e Å3
263 parameters
Special details top

Experimental. Detector set at 30 mm from sample with different 2theta offsets 1 degree phi exposures for chi=0 degree settings 1 degree omega exposures for chi=90 degree settings

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. No disorder was detected during refinement, and no restraints were applied. All non-H atoms were refined anisotropically and all H atoms were placed in calculated positions and refined using a riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29760 (10)0.71527 (11)0.07731 (7)0.0481 (3)
H10.31950.73530.12580.058*
C10.27812 (12)0.57211 (15)0.06800 (9)0.0364 (3)
C20.33648 (10)0.46714 (14)0.11924 (8)0.0318 (3)
C30.31037 (10)0.32325 (14)0.10380 (8)0.0309 (3)
H30.35030.25270.13890.037*
C40.22730 (10)0.28012 (14)0.03829 (8)0.0311 (3)
C50.17195 (11)0.38610 (15)0.01272 (8)0.0348 (3)
H50.11570.35940.05820.042*
C60.19666 (12)0.53015 (15)0.00110 (9)0.0376 (3)
C210.43129 (10)0.50157 (15)0.19005 (8)0.0323 (3)
H210.46190.40860.21430.039*
N220.51071 (9)0.57597 (13)0.16569 (7)0.0346 (3)
N230.59566 (10)0.62862 (15)0.22213 (8)0.0430 (3)
C240.65686 (13)0.67170 (18)0.18190 (11)0.0480 (4)
H240.72260.71560.20550.058*
C250.61334 (14)0.64484 (19)0.10141 (11)0.0506 (4)
H250.64240.66480.06110.061*
C260.51919 (13)0.58319 (18)0.09292 (10)0.0445 (4)
H260.46940.55160.04490.053*
N270.41023 (9)0.58546 (13)0.25183 (7)0.0358 (3)
N280.36886 (10)0.71827 (14)0.23618 (8)0.0425 (3)
C290.36040 (13)0.76244 (19)0.30466 (11)0.0502 (4)
H290.33310.85270.31220.060*
C300.39632 (16)0.6605 (2)0.36349 (11)0.0572 (5)
H300.39830.66690.41700.069*
C310.42842 (14)0.54808 (19)0.32789 (9)0.0475 (4)
H310.45780.46080.35220.057*
C410.20023 (11)0.12114 (14)0.02306 (9)0.0347 (3)
C420.19269 (15)0.05085 (17)0.09788 (10)0.0482 (4)
H42A0.17540.05050.08750.072*
H42B0.13850.09820.11360.072*
H42C0.25940.05970.14050.072*
C430.28469 (15)0.04803 (17)0.00164 (12)0.0536 (5)
H43A0.26790.05360.01150.080*
H43B0.35150.05790.04070.080*
H43C0.28890.09280.05000.080*
C440.09585 (15)0.10065 (18)0.04284 (12)0.0579 (5)
H44A0.08080.00170.05110.087*
H44B0.09910.14360.09190.087*
H44C0.04090.14700.02760.087*
S10.12913 (4)0.67084 (4)0.06146 (3)0.05624 (16)
C1P0.04316 (12)0.57428 (15)0.14178 (9)0.0384 (3)
C2P0.07755 (13)0.5144 (2)0.19945 (11)0.0489 (4)
H2P0.14790.52550.19650.059*
C3P0.00995 (15)0.4385 (2)0.26109 (11)0.0546 (4)
H3P0.03450.39510.29960.065*
C4P0.09248 (14)0.4252 (2)0.26721 (11)0.0547 (4)
H4P0.13900.37370.31010.066*
C5P0.12716 (14)0.4865 (2)0.21127 (13)0.0625 (5)
H5P0.19830.47830.21580.075*
C6P0.05982 (14)0.5605 (2)0.14793 (11)0.0518 (4)
H6P0.08450.60160.10890.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0589 (7)0.0243 (5)0.0469 (6)0.0022 (5)0.0015 (5)0.0010 (4)
C10.0409 (7)0.0254 (6)0.0390 (8)0.0011 (5)0.0077 (6)0.0012 (5)
C20.0331 (6)0.0287 (6)0.0321 (7)0.0012 (5)0.0087 (5)0.0013 (5)
C30.0322 (6)0.0264 (6)0.0344 (7)0.0012 (5)0.0113 (5)0.0015 (5)
C40.0338 (7)0.0268 (6)0.0340 (7)0.0009 (5)0.0128 (5)0.0005 (5)
C50.0370 (7)0.0296 (7)0.0343 (7)0.0012 (5)0.0071 (6)0.0005 (5)
C60.0411 (7)0.0281 (7)0.0374 (7)0.0020 (6)0.0044 (6)0.0018 (5)
C210.0324 (7)0.0308 (6)0.0328 (7)0.0013 (5)0.0095 (5)0.0013 (5)
N220.0344 (6)0.0335 (6)0.0355 (6)0.0029 (5)0.0109 (5)0.0037 (5)
N230.0347 (6)0.0477 (7)0.0444 (7)0.0084 (5)0.0098 (5)0.0079 (6)
C240.0415 (8)0.0442 (9)0.0613 (11)0.0097 (7)0.0209 (8)0.0083 (7)
C250.0570 (10)0.0479 (9)0.0572 (10)0.0097 (8)0.0326 (9)0.0040 (8)
C260.0515 (9)0.0472 (9)0.0377 (8)0.0075 (7)0.0185 (7)0.0055 (6)
N270.0346 (6)0.0364 (6)0.0365 (6)0.0042 (5)0.0119 (5)0.0049 (5)
N280.0402 (7)0.0365 (6)0.0505 (8)0.0010 (5)0.0145 (6)0.0093 (6)
C290.0446 (9)0.0497 (9)0.0629 (11)0.0129 (7)0.0269 (8)0.0231 (8)
C300.0687 (12)0.0631 (11)0.0495 (10)0.0225 (9)0.0325 (9)0.0184 (9)
C310.0572 (10)0.0499 (9)0.0375 (8)0.0143 (7)0.0183 (7)0.0041 (7)
C410.0394 (7)0.0261 (6)0.0386 (7)0.0028 (5)0.0127 (6)0.0008 (5)
C420.0638 (11)0.0346 (8)0.0499 (9)0.0109 (7)0.0238 (8)0.0006 (7)
C430.0661 (11)0.0294 (7)0.0786 (13)0.0015 (7)0.0419 (10)0.0055 (8)
C440.0610 (11)0.0332 (8)0.0616 (11)0.0110 (7)0.0040 (9)0.0020 (7)
S10.0669 (3)0.0278 (2)0.0505 (3)0.00103 (17)0.0124 (2)0.00303 (16)
C1P0.0413 (8)0.0310 (7)0.0366 (7)0.0024 (6)0.0041 (6)0.0039 (6)
C2P0.0372 (8)0.0564 (10)0.0536 (10)0.0002 (7)0.0154 (7)0.0002 (8)
C3P0.0563 (10)0.0667 (12)0.0449 (9)0.0014 (9)0.0223 (8)0.0087 (8)
C4P0.0493 (10)0.0617 (11)0.0478 (10)0.0080 (8)0.0086 (8)0.0127 (8)
C5P0.0389 (9)0.0770 (13)0.0737 (13)0.0112 (9)0.0214 (9)0.0186 (10)
C6P0.0516 (9)0.0568 (10)0.0529 (10)0.0017 (8)0.0253 (8)0.0103 (8)
Geometric parameters (Å, º) top
O1—C11.3646 (17)C29—H290.9500
O1—H10.84C30—C311.373 (3)
C1—C61.395 (2)C30—H300.9500
C1—C21.3994 (19)C31—H310.9500
C2—C31.3963 (18)C41—C421.525 (2)
C2—C211.5179 (18)C41—C431.525 (2)
C3—C41.3955 (19)C41—C441.533 (2)
C3—H30.9500C42—H42A0.9800
C4—C51.3901 (19)C42—H42B0.9800
C4—C411.5347 (18)C42—H42C0.9800
C5—C61.3911 (19)C43—H43A0.9800
C5—H50.9500C43—H43B0.9800
C6—S11.7762 (15)C43—H43C0.9800
C21—N271.4592 (18)C44—H44A0.9800
C21—N221.4698 (18)C44—H44B0.9800
C21—H211.0000C44—H44C0.9800
N22—C261.3460 (19)S1—C1P1.7741 (15)
N22—N231.3549 (17)C1P—C6P1.379 (2)
N23—C241.332 (2)C1P—C2P1.385 (2)
C24—C251.388 (3)C2P—C3P1.379 (3)
C24—H240.9500C2P—H2P0.9500
C25—C261.371 (2)C3P—C4P1.372 (3)
C25—H250.9500C3P—H3P0.9500
C26—H260.9500C4P—C5P1.366 (3)
N27—C311.347 (2)C4P—H4P0.9500
N27—N281.3550 (18)C5P—C6P1.387 (3)
N28—C291.333 (2)C5P—H5P0.9500
C29—C301.385 (3)C6P—H6P0.9500
C1—O1—H1109.5C29—C30—H30127.4
O1—C1—C6116.68 (13)N27—C31—C30106.80 (17)
O1—C1—C2124.22 (13)N27—C31—H31126.6
C6—C1—C2119.06 (12)C30—C31—H31126.6
C3—C2—C1119.56 (13)C42—C41—C43109.68 (13)
C3—C2—C21117.49 (12)C42—C41—C44107.88 (14)
C1—C2—C21122.89 (12)C43—C41—C44108.71 (15)
C4—C3—C2121.92 (12)C42—C41—C4110.10 (12)
C4—C3—H3119.0C43—C41—C4108.97 (12)
C2—C3—H3119.0C44—C41—C4111.47 (12)
C5—C4—C3117.46 (12)C41—C42—H42A109.5
C5—C4—C41121.82 (13)C41—C42—H42B109.5
C3—C4—C41120.72 (12)H42A—C42—H42B109.5
C4—C5—C6121.75 (13)C41—C42—H42C109.5
C4—C5—H5119.1H42A—C42—H42C109.5
C6—C5—H5119.1H42B—C42—H42C109.5
C5—C6—C1120.20 (13)C41—C43—H43A109.5
C5—C6—S1124.08 (11)C41—C43—H43B109.5
C1—C6—S1115.72 (10)H43A—C43—H43B109.5
N27—C21—N22108.57 (11)C41—C43—H43C109.5
N27—C21—C2114.83 (11)H43A—C43—H43C109.5
N22—C21—C2111.24 (11)H43B—C43—H43C109.5
N27—C21—H21107.3C41—C44—H44A109.5
N22—C21—H21107.3C41—C44—H44B109.5
C2—C21—H21107.3H44A—C44—H44B109.5
C26—N22—N23112.20 (12)C41—C44—H44C109.5
C26—N22—C21128.10 (12)H44A—C44—H44C109.5
N23—N22—C21118.99 (11)H44B—C44—H44C109.5
C24—N23—N22104.01 (13)C1P—S1—C6101.60 (7)
N23—C24—C25112.07 (15)C6P—C1P—C2P119.28 (15)
N23—C24—H24124.0C6P—C1P—S1119.80 (13)
C25—C24—H24124.0C2P—C1P—S1120.90 (12)
C26—C25—C24104.86 (15)C3P—C2P—C1P120.17 (15)
C26—C25—H25127.6C3P—C2P—H2P119.9
C24—C25—H25127.6C1P—C2P—H2P119.9
N22—C26—C25106.85 (15)C4P—C3P—C2P120.44 (16)
N22—C26—H26126.6C4P—C3P—H3P119.8
C25—C26—H26126.6C2P—C3P—H3P119.8
C31—N27—N28111.87 (13)C5P—C4P—C3P119.55 (16)
C31—N27—C21127.52 (14)C5P—C4P—H4P120.2
N28—N27—C21120.60 (12)C3P—C4P—H4P120.2
C29—N28—N27104.50 (14)C4P—C5P—C6P120.80 (16)
N28—C29—C30111.65 (16)C4P—C5P—H5P119.6
N28—C29—H29124.2C6P—C5P—H5P119.6
C30—C29—H29124.2C1P—C6P—C5P119.71 (16)
C31—C30—C29105.17 (16)C1P—C6P—H6P120.1
C31—C30—H30127.4C5P—C6P—H6P120.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N23i0.952.623.4682 (19)149
O1—H1···N270.842.603.2292 (17)133
O1—H1···N280.841.872.6846 (18)162
C5P—H5P···N27ii0.952.813.750 (2)169
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC23H24N4OS
Mr404.52
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)13.6486 (2), 9.3529 (1), 17.8913 (3)
β (°) 109.214 (1)
V3)2156.67 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.66 × 0.53 × 0.43
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.594, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
43089, 4921, 4101
Rint0.072
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.129, 1.05
No. of reflections4921
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.41

Computer programs: COLLECT (Nonius, 1999), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEX (McArdle, 1995), local program.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N23i0.952.623.4682 (19)149
O1—H1···N270.842.603.2292 (17)133
O1—H1···N280.841.872.6846 (18)162
C5P—H5P···N27ii0.952.813.750 (2)169
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1, z.
 

Acknowledgements

The authors acknowledge the EPSRC and the University of Leeds for funding.

References

First citationBeck, A., Barth, A., Hübner, E. & Burzlaff, N. (2003). Inorg. Chem. 42, 7182–7188.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationByers, P. K., Canty, A. J. & Honeyman, R. T. (1990). J. Organomet. Chem. 385, 417–427.  CrossRef CAS Web of Science Google Scholar
First citationCaballero, A., Carrión, M. C., Espino, G., Jalón, F. A. & Manzano, B. R. (2004). Polyhedron, 23, 361–371.  Web of Science CrossRef CAS Google Scholar
First citationHalcrow, M. A., Chia, L. M. L., Liu, X., McInnes, E. J. L., Yellowlees, L. J., Mabbs, F. E., Scowen, I. J., McPartlin, M. & Davies, J. E. (1999). J. Chem. Soc. Dalton Trans. pp. 1753–1762.  Web of Science CSD CrossRef Google Scholar
First citationHammes, B. S., Chohan, B. S., Hoffman, J. T., Einwaechter, S. & Carrano, C. J. (2004). Inorg. Chem. 43, 7800–7806.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHammes, B. S., Kieber-Emmons, M. T., Letizia, J. A., Shirin, Z., Carrano, C. J., Zakharov, L. N. & Rheingold, A. L. (2003). Inorg. Chim. Acta, 346, 227–238.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHiggs, T. C. & Carrano, C. J. (1997). Inorg. Chem. 36, 291–297.  CSD CrossRef CAS Web of Science Google Scholar
First citationHiggs, T. C. & Carrano, C. J. (2002). Eur. J. Org. Chem. pp. 3632–3645.  CrossRef Google Scholar
First citationHoffman, J. T., Einwaechter, S., Chohan, B. S., Basu, P. & Carrano, C. J. (2004). Inorg. Chem. 43, 7573–7575.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, X., Barrett, S. A., Kilner, C. A., Thornton-Pett, M. & Halcrow, M. A. (2002). Tetrahedron, 58, 603–611.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtero, A., Fernández-Baeza, J., Antiñolo, A., Tejeda, J. & Lara-Sánchez, A. (2004). Dalton Trans, pp. 1499–1510.  Google Scholar
First citationOtero, A., Fernández-Baeza, J., Antiñolo, A., Tejeda, J., Lara-Sánchez, A., Sánchez-Barba, L., Exposito, M. T. & Rodríguez, A. M. (2003). Dalton Trans. pp. 1614–1619.  Web of Science CSD CrossRef Google Scholar
First citationOtero, A., Fernández-Baeza, J., Antiñolo, A., Tejeda, J., Lara-Sánchez, A., Sánchez-Barba, L. & Rodríguez, A. M. (2004). Dalton Trans. pp. 3963–3969.  Web of Science CSD CrossRef Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., pp. 257–264. Ithaca, NY, USA: Cornell University Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationShirin, Z. & Carrano, C. J. (2004). Polyhedron, 23, 239–244.  Web of Science CSD CrossRef CAS Google Scholar
First citationSylvestre, I., Wolowska, J., McInnes, E. J. L., Kilner, C. A. & Halcrow, M. A. (2005). Inorg. Chim. Acta, 358, 1337–1341.  Web of Science CSD CrossRef CAS Google Scholar
First citationTrofimenko, S. (1999). Scorpionates – The Coordination Chemistry of Polypyrazolylborate Ligands, pp. 155–182. London: Imperial College Press.  Google Scholar
First citationWang, Y. & Stack, T. D. P. (1996). J. Am. Chem. Soc. 118, 13097–13098.  CSD CrossRef CAS Web of Science Google Scholar
First citationWhittaker, J. W. (2003). Chem. Rev. 103, 2347–2364.  Web of Science CrossRef PubMed CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds