Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Dichlorotetrakis[3-(4-pyridyl)-1*H*pyrazole]cobalt(II) acetonitrile tetrasolvate: an infinite hydrogen-bonded network, in an instant

Graham M. Davies, Harry Adams and Michael D. Ward*

Department of Chemistry, University of Sheffield, Sheffield S3 7HF, England Correspondence e-mail: m.d.ward@sheffield.ac.uk

Received 7 September 2005 Accepted 5 October 2005 Online 22 October 2005

Reaction of 3-(4-pyridyl)pyrazole (4pypz) with cobalt(II) chloride in acetonitrile affords the title complex, $[CoCl_2-(C_8H_7N_3)_4]$ ·4CH₃CN, within seconds of addition, as purple X-ray quality crystals. The molecule has C4 symmetry. The metal ion exhibits a *trans*-N₄Cl₂ octahedral geometry, with the four 3-(4-pyridyl)-1*H*-pyrazole ligands coordinating through their pyridyl N-atom donors; one coordinated chloride ion forms hydrogen bonds with the pyrazole rings from four separate units. This configuration creates an infinite three-dimensional coordination network containing channels that are filled with acetonitrile solvent molecules.

Comment

We have extensively studied the structural and photophysical properties of metal complexes with the scorpionate ligand hydrotris[3-(2-pyridyl)pyrazol-1-yl]borate (Tp^{2py}) (Davies, Adams, Pope et al., 2005; Davies, Adams & Ward, 2005; Davies et al., 2004; Beeby et al., 2002; Ward et al., 2001; Jones, Amoroso et al., 1997; Amoroso et al., 1994). The potentially tridentate ligand 3-(2-pyridyl)pyrazole (2pypz), a precursor to (Tp^{2py}) , has also proven to be of interest, with a range of coordination modes being displayed depending on whether the pyrazole unit is neutral or deprotonated (Ward, Fleming et al., 1998; Ward, Mann et al., 1998; Jones, Jeffery et al., 1997). Accordingly, we have prepared the isomeric ligand 3-(4pyridyl)pyrazole (4pypz) (Adams et al., 2005), which can no longer act as a chelate but in principle can act as a bridging ligand whose coordination mode will again depend on whether the pyrazole unit is deprotonated.

Linear bridging ligands commonly give rise to infinite coordination polymers (Fujita *et al.*, 1996; Choudhury *et al.*, 2002; Zheng *et al.*, 2005; Subramanian & Zaworotko, 1995); 'bent' bridging ligands, arising here from the combination of six- and five-membered rings, are less explored. As a result, we decided to explore the coordination chemistry of the 4pypz ligand. In this paper, we describe the synthesis and structure of the title complex, $[CoCl_2(4pypz)_4]$ -4MeCN, (I), a new hydrogen-bonded coordination network based on 4pypz, in which the 4pypz ligand combines a metal coordination site and a hydrogen-bond donor site. Mulyana *et al.* (2005) recently described complexes of the isomeric ligand 4-(4-pyridyl)pyrazole, in which the ligand could be either cationic (protonated) and monodentate or anionic (deprotonated) and tridentate; in the former case, the network structure is propagated by hydrogen bonding between mononuclear units, whereas in the latter case, the ligand coordinates to three metal ions, resulting in a genuine coordination network.

Reaction of 4pypz with anyhdrous cobalt(II) chloride in acetonitrile afforded a blue solution from which, a few seconds after addition, purple X-ray quality crystals of complex (I) began to appear. In contrast to the behaviour displayed by 4-(4-pyridyl)pyrazole (Mulyana *et al.*, 2005), 3-(4-pyridyl)pyrazole remains neutral upon coordination. The cobalt(II) centre retains both chloride ions in a *trans* arrangement and coordinates to the pyridyl termini of four separate 4pypz ligands around the equatorial plane (Fig. 1), giving a *trans*-

Figure 1

A view of $[CoCl_2(4pypz)_4]$ ·4MeCN; displacement ellipsoids are shown at the 40% probability level. [Symmetry codes: (A) 1 - x, 1 - y, -z; (B) 1 - y, x, z; (C) y, 1 - x, z.]

N₄Cl₂ pseudo-octahedral coordination geometry. Only one 4pypz arm is located in the asymmetric unit, the Cl-Co-Cl axis (parallel to the c axis) being a fourfold rotation axis such that the Co and Cl atoms have 25% occupancy in the asymmetric unit. The Co1-N1 bond length of 2.1648 (12) Å is typical of pyridyl-cobalt(II) coordination (Long & Clarke, 1978). One Co-Cl bond is significantly longer than the other, viz. Co1-Cl1 = 2.5775(11) Å and Co1-Cl2 =2.3962 (12) Å.

In relation to the mean plane of the four pyridyl N atoms (N_{py}) , the pyridyl and pyrazole rings are twisted by 46.3 and 26.6° , respectively, and by 20.0° with respect to each other. Pyrrolic N10 atoms form the vertices of a perfect square parallel to the ab plane, with a side length of 11.935 Å and rotated by 7° about the c axis with respect to the square face of the unit cell. The mean plane of the four N10 donors lies 0.27 Å below that of the four pyridyl donors because of the twist between the pyridyl and pyrazolyl rings.

Each pyrrolic H atom, H10, is hydrogen bonded to one of the chloride ions of a separate [CoCl₂(4pypz)] unit $[N10 \cdots Cl1 = 3.260 (2) \text{ Å}, H10 \cdots Cl1 = 2.41 \text{ Å} and N10 -$ $H10 \cdot \cdot \cdot Cl1 = 164^{\circ}$; there is a square array of four such hydrogen bonds to each Cl1 atom (Fig. 2), generating a hydrogen-bonded sheet of complex molecules in the *ab* plane. Each Cl1 atom is therefore in a 'square-pyramidal' coordination environment, with four equivalent N-H···Cl hydrogen bonds in the basal plane and an axial dative bond to atom Co1. Owing to the orientation of the pyrazole rings, the network of hydrogen bonds also extends down the c axis, giving an overall three-dimensional coordination network.

Figure 2

A view down the c axis, showing the arrangement of four $N-H\cdots Cl$ hydrogen bonds (dashed lines) to atom Cl1 at the centre of the figure. The four ligands coordinated to atom Co1 (obscured beneath Cl1) are shown with solid bonds; the four ligands with hollow bonds are coordinated via their pyridyl N-atom donors to separate metal atoms but act as hydrogenbond donors to the central complex molecule (see Comment).

Hydrogen-bonding interactions between NH donors and Cl acceptors have been studied extensively as a tool for crystal engineering (Brammer et al., 2002; Angeloni & Orpen, 2001; Angeloni et al., 2004).

In addition, the network contains square channels with a cross-section area of 71 $Å^2$, whose perimeters are defined by the ligands. These channels contain four columns of acetonitrile solvent molecules, each of which interacts weakly via a $C-H \cdots N$ hydrogen bond between atom H8 of a pyrazole ring and atom N22 of the acetonitrile molecule (H8···N22 = 2.61 Å). These solvent molecules are easily lost from the lattice on drying, as shown by loss of weight on drying and elemental analysis of the dried material.

Finally, we note that the Flack (1983) parameter for this chiral crystal is indicative of racemic twinning.

Experimental

3-(4-Pyridyl)-1H-pyrazole was prepared according to the published method of Davies et al. (2003) and a solution (100 mg, 0.69 mmol) in MeCN (10 ml) was added to a solution of anhydrous CoCl₂ (22.4 mg, 0.17 mmol) in MeCN (10 ml); the resulting solution was stirred once and filtered through celite. Upon being left to stand for a few moments, purple X-ray quality crystals began to precipitate out of the blue solution. After the mixture had been left to stand for a few hours, the purple crystals were filtered off and dried, giving opaque pink crystals of [CoCl₂(4pypz)₄]·4MeCN in 30% yield. Analysis found: C 53.4, H 4.2, N 23.4%; calculated for C32H28Cl2Co-N₁₂·4MeCN: C 53.4, H 4.1, N 23.4%. IR (cm⁻¹): 3287 (m), 1614 (s), 1556 (w), 1496 (w), 1456 (m), 1424 (m), 1356 (w), 1290 (w), 1216 (m), 1178 (*m*), 1122 (*w*), 1079 (*w*), 1039 (*m*), 1014 (*m*), 947 (*m*), 843 (*s*), 758 (s), 740 (s), 701 (s), 663 (w), 622 (m). A crystal for X-ray diffraction analysis was removed directly from the mother liquor, coated in engine oil to clean it of subsidiary grains, and quickly (to prevent loss of MeCN) mounted in a stream of cold N2 (150 K) on the diffractometer for subsequent analysis.

Crystal data

$[CoCl_2(C_8H_7N_3)_4] \cdot 4C_2H_3N$	Mo $K\alpha$ radiation
$M_r = 874.71$	Cell parameters from 1005
Tetragonal, 14	reflections
a = 15.649 (2) Å	$\theta = 5.4-53.8^{\circ}$
c = 8.653 (2) Å	$\mu = 0.58 \text{ mm}^{-1}$
V = 2119.0 (6) Å ³	T = 150 (2) K
Z = 2	Block, purple
$D_x = 1.371 \text{ Mg m}^{-3}$	$0.31 \times 0.31 \times 0.19 \text{ mm}$

Data collection

Bruker SMART 1000 2407 independent reflections diffractometer 2197 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.032$ ω scans Absorption correction: multi-scan $\theta_{\rm max}=27.5^\circ$ (SADABS; Sheldrick, 1996) $h = -20 \rightarrow 19$ $k = -20 \rightarrow 20$ $T_{\min} = 0.840, \ T_{\max} = 0.898$ $l=-11\rightarrow 11$ 11871 measured reflections

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_0^2) + (0.0477P)^2$ $R[F^2 > 2\sigma(F^2)] = 0.029$ + 0.1612P] $wR(F^2) = 0.069$ where $P = (F_0^2 + 2F_c^2)/3$ S = 0.97 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$ 2407 reflections $\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$ 138 parameters Absolute structure: Flack (1983), H-atom parameters constrained 1094 Friedel pairs

Flack parameter: 0.418 (14)

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the University of Sheffield for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SF1015). Services for accessing these data are described at the back of the journal.

References

- Adams, H., Batten, S. R., Davies, G. M., Duriska, M. B., Jeffery, J. C., Jensen, P., Lu, J., Motson, G. R., Coles, S. J., Hursthouse, M. B. & Ward, M. D. (2005). *Dalton Trans.* pp. 1910–1923.
- Amoroso, A. J., Cargill Thompson, A. M., Jeffery, J. C., Jones, P. L., McCleverty, J. A. & Ward, M. D. (1994). J. Chem. Soc. Chem. Commun. pp. 2751–2752.
- Angeloni, A., Crawford, P. C., Orpen, A. G., Podesta, T. J. & Shore, B. J. (2004). *Chem. Eur. J.* 10, 3783–3791.
- Angeloni, A. & Orpen, A. G. (2001). Chem. Commun. pp. 343-344.
- Beeby, A., Burton-Pye, B. P., Faulkner, S., Motson, G. R., Jeffery, J. C., McCleverty, J. A. & Ward, M. D. (2002). J. Chem. Soc. Dalton Trans. pp. 1923–1928.
- Brammer, L., Swearingen, J. K., Bruton, E. A. & Sherwood, P. (2002). Proc. Natl Acad. Sci. USA, 99, 4956–4961.
- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

- Choudhury, C. R., Dey, S. K., Sen, S., Bag, B., Mitra, S. & Gramlich, V. (2002). Z. Naturforsch. Teil B, **57**, 1191–1194.
- Davies, G. M., Aarons, R. J., Motson, G. R., Jeffery, J. C., Adams, H., Faulkner, S. & Ward, M. D. (2004). *Dalton Trans.* pp. 1136–1144.
- Davies, G. M., Adams, H., Pope, S. J. A., Faulkner, S. & Ward, M. D. (2005). *Photochem. Photobiol. Sci.* 4, 829–834.
- Davies, G. M., Adams, H. & Ward, M. D. (2005). Acta Cryst. C61, m221– m223.
- Davies, G. M., Jeffery, J. C. & Ward, M. D. (2003). New J. Chem. 27, 1550– 1553.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Fujita, M., Sasaki, O., Mitsuhoshi, T., Fujita, T., Yazahi, J., Yamaguchi, K. & Ogura, K. (1996). Chem. Commun. pp. 1535–1536.
- Jones, P. L., Amoroso, A. J., Jeffery, J. C., McCleverty, J. A., Psillakis, E., Rees, L. H. & Ward, M. D. (1997). *Inorg. Chem.* 36, 10–18.
- Jones, P. L., Jeffery, J. C., McCleverty, J. A. & Ward, M. D. (1997). Polyhedron, 16, 1567.
- Long, G. J. & Clarke, P. J. (1978). Inorg. Chem. 17, 1394-1401.
- Mulyana, Y., Kepert, C. J., Lindoy, L. F., Parkin, A. & Turner, P. (2005). Dalton Trans. pp. 1598–1601.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Subramanian, R. & Zaworotko, M. J. (1995). Angew. Chem. Int. Ed. 34, 2127– 2129.
- Ward, M. D., Fleming, J. S., Psillakis, E., Jeffery, J. C. & McCleverty, J. A. (1998). Acta Cryst. C54, 609–612.
- Ward, M. D., McCleverty, J. A. & Jeffery, J. C. (2001). Coord. Chem. Rev. 222, 251–272.
- Ward, M. D., Mann, K. L. V., Jeffery, J. C. & McCleverty, J. A. (1998). Acta Cryst. C54, 601–603.
- Zheng, B., Liu, G., Gou, L., Wang, D.-Y. & Hu, H.-M. (2005). Acta Cryst. E61, m499–m501.