organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Four nitro­benzaldehyde isonicotinoylhydrazones at 120 K: four different supra­mol­ecular structures in two and three dimensions

CROSSMARK_Color_square_no_text.svg

aFundação Oswaldo Cruz, Far Manguinhos, Rua Sizenando Nabuco, 100 Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 21 September 2005; accepted 11 October 2005; online 11 November 2005)

The mol­ecules of 2-nitro­benzaldehyde iso­nicotinoyl­hydra­zone, C13H10N4O3, (I)[link], are linked into a three-dimensional framework by a combination of one N—H⋯N and three C—H⋯O hydrogen bonds. In the isomeric compound 3-nitro­benzaldehyde iso­nicotinoyl­hydrazone, (II)[link], the mol­ecules are linked into complex sheets by a combination of three hydrogen bonds, one each of the N—H⋯N, C—H⋯N and C—H⋯O types. The mol­ecules of the third isomer, namely 4-nitro­benzaldehyde iso­nicotinoyl­hydrazone, (III)[link], are linked into bilayers by a combination of one N—H⋯N, one C—H⋯N and two C—H⋯O hydrogen bonds. 2,4-Dinitro­benzaldehyde iso­nicotinoyl­hydrazone, (IV)[link], crystallizes as a stoichiometric monohydrate, C13H9N5O5·H2O, and the mol­ecular components are linked into a three-dimensional framework by a combination of O—H⋯O, O—H⋯N, N—H⋯O and three independent C—H⋯O hydrogen bonds.

Comment

As part of our structural studies of imines and hydrazones, we report here the mol­ecular and supramolecular structures of four N-(isonicotinoyl)-nitro­benzaldehyde hydrazones, viz. 2-nitrobenzaldehyde isonicotinoylhydrazone, (I)[link], 3-nitrobenzaldehyde isonicotinoylhydrazone, (II)[link], 4-nitrobenzaldehyde isonicotinoylhydrazone, (III)[link], and 2,4-dinitrobenzaldehyde isonicotinoylhydrazone, (IV)[link], all at 120 K. The structures of compounds (I)[link]–(III)[link] have been reported previously at ambient temperature (Chuev et al., 1996[Chuev, I. I., Aldoshin, S. M., Atovmyan, E. G., Frolov, D. B. & Utenyshev, A. N. (1996). Russ. Chem. Bull. 45, 851-855.]; Fun et al., 1997[Fun, H.-K., Lu, Z.-L., Duan, C.-Y., Tian, Y.-P., You, X.-Z., Guo, Y.-M. & Gong, X.-Y. (1997). Acta Cryst. C53, 1452-1454.]; Liu et al., 1998[Liu, S.-H., Chen, X.-F., Xu, Y.-H., You, X.-Z., Chen, W. & Arifin, Z. (1998). Acta Cryst. C54, 1919-1921.]; Atovmyan et al., 2002[Atovmyan, E. G., Nikonova, L. A., Filipenko, O. S., Fedotova, T. N. & Aldoshin, S. M. (2002). Russ. Chem. Bull. 51, 99-104.]). For each compound it is clear from the cell dimensions that no phase changes have occurred between ambient temperature and 120 K, but also that the low-temperature determinations are of significantly higher precision. In their discussion of the supramolecular structures of compounds (I)[link]–(III)[link], Atovmyan et al. (2002[Atovmyan, E. G., Nikonova, L. A., Filipenko, O. S., Fedotova, T. N. & Aldoshin, S. M. (2002). Russ. Chem. Bull. 51, 99-104.]) considered only N—H⋯N hydrogen bonds and stated that `the position of the nitro group has no effect on the type of the crystal structure'.

[Scheme 1]
By contrast, we have found that when the C—H⋯O and C—H⋯N hydrogen bonds are properly taken into consideration, the supramolecular structures of compounds (I)[link]–(III)[link] are all entirely different: viz. a three-dimensional framework structure in (I)[link], single sheets in (II)[link] and bilayers in (III)[link]. In an earlier report restricted to compound (III)[link] only (Fun et al., 1997[Fun, H.-K., Lu, Z.-L., Duan, C.-Y., Tian, Y.-P., You, X.-Z., Guo, Y.-M. & Gong, X.-Y. (1997). Acta Cryst. C53, 1452-1454.]), the DA and D—H⋯A parameters were listed for a number of inter­molecular C—H⋯O and C—H⋯N contacts, including some not identified as hydrogen bonds by PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]), but no descriptive analysis of the structural consequences of these inter­actions was provided beyond the statement that `the mol­ecules pack as a network structure through hydrogen bonds', and no packing diagrams were provided. Similarly, in a report on compound (I)[link] only (Liu et al., 1998[Liu, S.-H., Chen, X.-F., Xu, Y.-H., You, X.-Z., Chen, W. & Arifin, Z. (1998). Acta Cryst. C54, 1919-1921.]), the presence of just two inter­molecular hydrogen bonds was mentioned, one each of the N—H⋯N and C—H⋯O types, as opposed to the four such bonds found here, but again without any indication of their structural consequences and again without any packing diagrams. Accordingly, we thought it important to repeat these determinations using low-temperature diffraction data and to report a thorough analysis of the supramolecular structures of compounds (I)[link]–(III)[link], as well as that of compound (IV)[link].

In each of compounds (I)[link]–(IV)[link], the central spacer unit between atoms C14 and C21 (Figs. 1[link]–4[link][link][link]) adopts a nearly planar all-trans conformation, as shown by the key torsion angles (Table 1[link]). The pyridyl ring is effectively coplanar with the spacer unit in compounds (II)[link] and (III)[link], although not in (I)[link] and (IV)[link]. The aryl ring is effectively coplanar with this spacer unit in all compounds except (IV)[link], while there is no clear pattern of behaviour for the nitro-group conformations. The bond lengths and angles show no unexpected features.

The supramolecular structures of compounds (I)[link]–(IV)[link] all differ, and all depend on different combinations of hydrogen bonds (Tables 2[link]–5[link][link][link]).

The mol­ecules of compound (I)[link] (Fig. 1[link]) are linked into chains by a rather short and nearly linear N—H⋯N hydrogen bond, and these chains are linked into a three-dimensional framework structure by C—H⋯O hydrogen bonds (Table 2[link]). Amide atom N17 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to pyridyl atom N11 in the mol­ecule at (−x, [{1\over 2}] + y, [{3\over 2}] − z), so forming a C(7) chain running parallel to the [010] direction and generated by the 21 screw axis along (0, y, [{3\over 4}]) (Fig. 5[link]).

Of the three C—H⋯O hydrogen bonds, the shortest links the mol­ecules into centrosymmetric pairs. Aryl atom C23 in the mol­ecule at (x, y, z) acts as donor to nitro atom O22 in the mol­ecule at (1 − x, 2 − y, 1 − z), so generating a centrosymmetric R22(10) dimer (Fig. 6[link]). For the hydrogen-bond motif descriptor, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). The mol­ecule at (1 − x, 2 − y, 1 − z) forms part of the C(7) chain generated by the 21 screw axis along (1, −y, [{1\over 4}]), and hence the effect of the R22(10) dimer motif is to link the [010] chains into (102) sheets built from alternating R22(10) and R66(54) rings (Fig. 7[link]). The other two C—H⋯O hydrogen bonds in the structure of (I)[link] are both fairly weak, but they act in concert to generate a chain of rings parallel to the [001] direction, the effect of which is to link the (102) sheets. The adjacent aryl atoms C24 and C25 in the mol­ecule at (x, y, z) act as donors to, respectively, nitro atoms O21 and O22, both in the mol­ecule at (x, [{3\over 2}] − y, −[{1\over 2}] + z), so forming a C(6)C(7)[R22(6)] chain of rings along [001] generated by the c-glide plane at y = [{3\over 4}] (Fig. 8[link])

As in compound (I)[link], the mol­ecules of compound (II)[link] (Fig. 2[link]) are linked into chains by an N—H⋯N hydrogen bond (Table 3[link]), but this is now augmented, albeit rather weakly, by a C—H⋯N inter­action. Both amide atom N17 and nearby methine atom C27 in the mol­ecule at (x, y, z) act as donors to pyridyl atom N11 in the mol­ecule at (−x, [{1\over 2}] + y, [{1\over 2}] − z), so generating a C(7)C(9)[R21(6)] chain of rings running parallel to the [010] direction and generated by the 21 screw axis along (0, y, [{1\over 4}]) (Fig. 9[link]). The N—H⋯N component thus mimics precisely the action of the corresponding bond in compound (I)[link], where the C27—H27 bond is effectively shielded from inter­molecular inter­actions by the presence of the 2-nitro group, forming a short intra­molecular C—H⋯O contact.

The structure of compound (II)[link] also contains a single C—H⋯O hydrogen bond, but unlike the C—H⋯O bonds in (I)[link], that in (II)[link] involves amide atom O1 as the acceptor. Pyridyl atom C12 in the mol­ecule at (x, y, z) acts as donor to atom O1 in the mol­ecule at (x, [{1\over 2}] − y, −[{1\over 2}] + z), so forming a C(6) chain running parallel to the [001] direction and generated by the c-glide plane at y = [{1\over 4}] (Fig. 10[link]). The combination of the [010] and [001] motifs then generates a (100) sheet containing R21(6), R44(14) and R44(26) rings (Fig. 11[link]).

In compound (III)[link] (Fig. 3[link]), the mol­ecules are linked into complex sheets by a combination of one N—H⋯N, one C—H⋯N and two C—H⋯O hydrogen bonds (Table 3[link]), and the structure is most readily analysed in terms of two rather simple substructures. In the first of these substructures, which is one-dimensional, the mol­ecules are linked into a C(4)C(7)[R21(6)] chain of rings utilizing a combination of N—H⋯N and C—H⋯N hydrogen bonds, much as in compound (II)[link], but in (III)[link] the C—H⋯N hydrogen bond has as donor pyridyl atom C13 rather than methine atom C27. This chain runs parallel to the [010] direction and is generated by the 21 screw axis along ([{1\over 2}], y, [{3\over 4}]) (Fig. 12[link]).

The second substructure in compound (III)[link] is two-dimensional and is built using two independent C—H⋯O hydrogen bonds, one of which utilizes the amide O atom as acceptor, while the other utilizes a nitro O atom as acceptor. Pyridyl atom C12 in the mol­ecule at (x, y, z) acts as donor to amide atom O1 in the mol­ecule at (x, [{1\over 2}] − y, [{1\over 2}] + z), so forming a C(6) chain running parallel to the [001] direction and generated by the c-glide plane at y = [{1\over 4}] (Fig. 13[link]). In a similar manner, aryl atom C22 in the mol­ecule at (x, y, z) acts as donor to nitro atom O42 in the mol­ecule at (x, [{3\over 2}] − y, [{1\over 2}] + z), so forming a second C(6) chain parallel to [001], but this time generated by the c-glide plane at y = [{3\over 4}]. The combination of these two C(6) chains then generates a (100) sheet in the form of a (4,4)-net (Batten & Robson, 1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]) built from a single type of R44(34) ring (Fig. 13[link]). Two sheets of this type, related to one another by inversion, pass through each unit cell in the domains 0.35 < x < 1.11 and −0.11 < x < 0.65, and this pair of sheets is linked into a bilayer by the [010] chain of rings. There are no direction-specific inter­actions between adjacent bilayers.

The 2,4-dinitro­phenyl­hydrazone derivative crystallizes as a stoichiometric monohydrate, (IV)[link], and the two mol­ecular components are linked within the selected asymmetric unit by a nearly linear N—H⋯O hydrogen bond (Fig. 4[link] and Table 5[link]). The bimolecular aggregates are linked into sheets by a combination of O—H⋯O and O—H⋯N hydrogen bonds, and these sheets are further linked into a continuous three-dimensional framework by the concerted action of two C—H⋯O hydrogen bonds (Table 5[link]).

Water atom O2 at (x, y, z) acts as hydrogen-bond donor, via atoms H2A and H2B, respectively, to amide atom O1 at (1 + x, y, z) and pyridyl atom N11 at (2 − x, −[{1\over 2}] + y, [{3\over 2}] − z). These two hydrogen bonds thus produce a C22(6) chain running parallel to the [100] direction and generated by translation, and a C22(9) chain parallel to [010] and generated by the 21 screw axis along (1, y, [{3\over 4}]). The combination of these two chains then generates an (001) sheet built from a single type of R66(24) ring (Fig. 14[link]). Two sheets of this type pass through each unit cell, generated by, respectively, the 21 screw axes at z = [{1\over 4}] and z = [{3\over 4}]. Adjacent sheets are linked by a centrosymmetric motif involving two independent C—H⋯O hydrogen bonds. Atoms C15 and C25 at (x, y, z) act as hydrogen-bond donors to, respectively, nitro atom O42 and amide atom O1, both at (−x, 1 − y, 1 − z). The first of these hydrogen bonds generates an R22(26) ring, while the second generates an R22(18) ring (Fig. 15[link]).

[Figure 1]
Figure 1
The mol­ecule of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
The mol­ecule of (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3]
Figure 3
The mol­ecule of (III)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4]
Figure 4
The independent components in (IV)[link], showing the atom-labelling scheme and the hydrogen bond within the asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 5]
Figure 5
Part of the crystal structure of (I)[link], showing the formation of a C(7) chain along [010]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (−x, [{1\over 2}] + y, [{3\over 2}] − z) and (−x, −[{1\over 2}] + y, [{3\over 2}] − z), respectively.
[Figure 6]
Figure 6
Part of the crystal structure of (I)[link], showing the formation of a centrosymmetric R22(10) dimer. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 2 − y, 1 − z).
[Figure 7]
Figure 7
Stereoview of part of the crystal structure of (I)[link], showing the formation of a (102) sheet built from alternating R22(10) and R66(54) rings. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 8]
Figure 8
Part of the crystal structure of (I)[link], showing the formation of a C(6)C(7)[R22(6)] chain of rings along [001]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, [{3\over 2}] − y, −[{1\over 2}] + z) and (x, [{3\over 2}] − y, [{1\over 2}] + z), respectively.
[Figure 9]
Figure 9
Part of the crystal structure of (II)[link], showing the formation of a C(7)C(9)[R21(6)] chain of rings along [010]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (−x, [{1\over 2}] + y, [{1\over 2}] − z) and (−x, −[{1\over 2}] + y, [{1\over 2}] − z), respectively.
[Figure 10]
Figure 10
Part of the crystal structure of (II)[link], showing the formation of a C(6) chain along [001]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, [{1\over 2}] − y, −[{1\over 2}] + z) and (x, [{1\over 2}] − y, [{1\over 2}] + z), respectively.
[Figure 11]
Figure 11
Stereoview of part of the crystal structure of (II)[link], showing the formation of a (100) sheet built from R21(6), R44(14) and R44(26) rings. For the sake of clarity, the weak C—H⋯N hydrogen bond and all H atoms not involved in the motifs shown have been omitted.
[Figure 12]
Figure 12
Part of the crystal structure of (III)[link], showing the formation of a C(4)C(9)[R21(6)] chain of rings along [010]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1 − x, [{1\over 2}] + y, [{3\over 2}] − z) and (1 − x, −[{1\over 2}] + y, [{3\over 2}] − z), respectively.
[Figure 13]
Figure 13
Stereoview of part of the crystal structure of (III)[link], showing the combination of two independent C(6) chains along [001] to form a (100) sheet built from R44(34) rings. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 14]
Figure 14
Stereoview of part of the crystal structure of (IV)[link], showing the formation of an (001) sheet built from R66(24) rings. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 15]
Figure 15
Part of the crystal structure of (IV)[link], showing the formation of the cyclic centrosymmetric motif which links adjacent (001) sheets. For the sake of clarity, H atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (−x, 1 − y, 1 − z).

Experimental

For the preparation of compounds (I)[link]–(IV)[link], equimolar mixtures (2 mmol of each component) of isoniazid and the appropriate nitro­benzaldehyde in tetra­hydro­furan (20 ml) containing a catalytic quantity of triethyl­amine were heated under reflux for 6 h. After cooling, the solvent was removed under reduced pressure and the solid residues were chromatographed on silica gel, eluting with a hexane–ethyl acetate gradient, to provide the pure products. Crystals suitable for single-crystal X-ray diffraction were obtained upon recrystallization from methanol. Melting points: for (I)[link], 506–508 K; for (II)[link], 571–573 K; for (III)[link], 553–555 K; for (IV)[link], 504–506 K. ­Spectroscopic analyses: 1H NMR (DMSO-d6, δ, p.p.m.): (I)[link] (major conformer) 12.44 (1H, s, NH), 8.89 (1H, s), 8.81 (2H, d, J = 5.5 Hz), 8.13 (2H, t, J = 8 Hz), 7.85 (3H, m), 7.73 (1H, m); (I)[link] (minor conformer) 12.33 (1H, s, NH), 8.73 (2H, d, J = 5.0 Hz), 8.50 (1H, s), 8.04 (1H, m), 7.72 (2H, m), 7.65 (3H, m); ratio of major to minor conformers = 6:1; for (II)[link] (major conformer) 12.38 (1H, s, NH), 8.81 (2H, d, J = 6 Hz), 8.57 (2H, s), 8.31 (1H, d, J = 7.5 Hz), 8.20 (1H, d, J = 7.5 Hz), 7.85 (2H, d, J = 6 Hz), 7.78 (1H, t, J = 7.5 Hz); (II)[link] (minor conformer) 12.32 (1H, s, NH), 8.75 (2H, d, J = 6 Hz), 8.32 (1H, m), 8.22 (1H, m), 7.96 (1H, d, J = 7 Hz), 7.67 (1H, m), 7.67 (3H, m); ratio of major to minor conformers = 6:1; (III)[link] (major conformer) 12.40 (1H, s, NH), 8.82 (2H, d, J = 6 Hz), 8.57 (1H, s), 8.33 (2H, d, J = 8.5 Hz), 8.03 (2H, d, J = 8.5 Hz), 7.85 (2H, d, J = 6 Hz); (III)[link] (minor conformer) 12.36 (1H, s, NH), 8.76 (2H, d, J = 5 Hz), 8.25 (2H, d, J = 8 Hz), 8.22 (1H, s), 7.77 (2H, d, J = 8 Hz), 7.67 (2H, d, J = 5 Hz); ratio of major to minor conformers = 6:1; (IV)[link] (major conformer) 12.65 (1H, s, NH), 8.92–8.76 (4H, m), 8.61–8.38 (2H, m), 7.84 (2H, s); 13C NMR (DMSO-d6, δ, p.p.m.): (II)[link] 121.1, 121.5, 124.4, 130.4, 133.4, 135.8, 140.1, 146.5, 148.2, 150.3, 161.4; (III)[link] 121.5, 124.0, 128.1, 130.4, 140.1, 140.2, 146.5, 148.0, 150.3, 161.9; (IV)[link] 120.3, 121.5, 127.7, 129.4, 134.0, 139.6, 142.6, 147.4, 147.8, 150.4, 162.0; IR (KBr, ν, cm−1): (I)[link] 3337, 3100–2800, 1681, 1603; (II)[link] 3360, 3200–2800, 1693, 1619, 1610, 1601; (III)[link] 3349, 3100–2800, 1685; (IV)[link] 3161, 1664.

Compound (I)[link]

Crystal data
  • C13H10N4O3

  • Mr = 270.25

  • Monoclinic, P 21 /c

  • a = 7.3096 (2) Å

  • b = 10.9305 (4) Å

  • c = 15.3801 (5) Å

  • β = 94.569 (2)°

  • V = 1224.93 (7) Å3

  • Z = 4

  • Dx = 1.465 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2802 reflections

  • θ = 3.3–27.5°

  • μ = 0.11 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.38 × 0.14 × 0.12 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.967, Tmax = 0.987

  • 14989 measured reflections

  • 2802 independent reflections

  • 2401 reflections with I > 2σ(I)

  • Rint = 0.038

  • θmax = 27.5°

  • h = −9 → 9

  • k = −14 → 14

  • l = −19 → 19

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.112

  • S = 1.06

  • 2802 reflections

  • 181 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0492P)2 + 0.6309P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected torsion angles (°) for compounds (I)[link]–(IV)[link]

  (I)[link] (II)[link] (III)[link] (IV)[link]
C13—C14—C17—N17 −16.33 (19) −0.6 (2) −9.2 (2) −29.69 (18)
C14—C17—N17—N27 173.53 (1) −177.29 (11) 176.77 (12) −179.13 (10)
C17—N17—N27—C27 −175.01 (12) 173.52 (12) −175.78 (14) −179.53 (11)
N17—N27—C27—C21 179.85 (11) 179.15 (11) 179.69 (13) 177.97 (10)
N27—C27—C21—C22 −174.50 (12) −174.50 (13) 178.61 (15) 150.33 (13)
C21—C22—N2—O21 38.40 (18)     −24.41 (18)
C22—C23—N3—O31   −12.01 (19)    
C23—C24—N4—O41     −4.8 (2) −18.96 (18)

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N17—H17⋯N11i 0.86 2.23 3.0776 (16) 169
C23—H23⋯O22ii 0.95 2.45 3.2294 (18) 139
C24—H24⋯O21iii 0.95 2.55 3.2147 (18) 127
C25—H25⋯O22iii 0.95 2.59 3.5052 (18) 163
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+2, -z+1; (iii) x, [-y+{\script{3\over 2}}], [z-{\script{1\over 2}}].

Compound (II)[link]

Crystal data
  • C13H10N4O3

  • Mr = 270.25

  • Monoclinic, P 21 /c

  • a = 8.2161 (3) Å

  • b = 10.8475 (3) Å

  • c = 14.1397 (4) Å

  • β = 106.2920 (18)°

  • V = 1209.58 (7) Å3

  • Z = 4

  • Dx = 1.484 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2767 reflections

  • θ = 3.2–27.5°

  • μ = 0.11 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.28 × 0.26 × 0.22 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.954, Tmax = 0.976

  • 16374 measured reflections

  • 2767 independent reflections

  • 2118 reflections with I > 2σ(I)

  • Rint = 0.049

  • θmax = 27.5°

  • h = −10 → 10

  • k = −14 → 14

  • l = −18 → 18

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.132

  • S = 1.07

  • 2767 reflections

  • 181 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0784P)2 + 0.12P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.36 e Å−3

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N17—H17⋯N11i 0.86 2.41 3.2382 (16) 162
C12—H12⋯O1ii 0.95 2.36 3.0735 (18) 132
C27—H27⋯N11i 0.97 2.58 3.4154 (17) 145
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Compound (III)[link]

Crystal data
  • C13H10N4O3

  • Mr = 270.25

  • Monoclinic, P 21 /c

  • a = 7.7821 (3) Å

  • b = 10.6633 (4) Å

  • c = 14.8417 (6) Å

  • β = 100.799 (2)°

  • V = 1209.80 (8) Å3

  • Z = 4

  • Dx = 1.484 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2777 reflections

  • θ = 3.3–27.6°

  • μ = 0.11 mm−1

  • T = 120 (2) K

  • Block, yellow

  • 0.26 × 0.18 × 0.12 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.966, Tmax = 0.987

  • 14033 measured reflections

  • 2777 independent reflections

  • 1863 reflections with I > 2σ(I)

  • Rint = 0.074

  • θmax = 27.6°

  • h = −10 → 10

  • k = −13 → 12

  • l = −19 → 19

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.139

  • S = 1.02

  • 2777 reflections

  • 181 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0763P)2 + 0.0753P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.39 e Å−3

Table 4
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N17—H17⋯N11i 0.88 2.15 3.005 (2) 162
C12—H12⋯O1ii 0.95 2.47 3.340 (2) 151
C13—H13⋯N11i 0.95 2.58 3.409 (2) 146
C22—H22⋯O42iii 0.95 2.52 3.294 (2) 138
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Compound (IV)[link]

Crystal data
  • C13H9N5O5·H2O

  • Mr = 333.27

  • Monoclinic, P 21 /c

  • a = 6.7545 (2) Å

  • b = 13.8578 (5) Å

  • c = 15.2311 (5) Å

  • β = 91.098 (2)°

  • V = 1425.41 (8) Å3

  • Z = 4

  • Dx = 1.553 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3252 reflections

  • θ = 3.1–27.5°

  • μ = 0.13 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.50 × 0.40 × 0.35 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.946, Tmax = 0.957

  • 15552 measured reflections

  • 3252 independent reflections

  • 2621 reflections with I > 2σ(I)

  • Rint = 0.029

  • θmax = 27.5°

  • h = −8 → 8

  • k = −17 → 17

  • l = −18 → 19

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.116

  • S = 1.07

  • 3252 reflections

  • 217 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0652P)2 + 0.3739P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.29 e Å−3

Table 5
Hydrogen-bond geometry (Å, °) for (IV)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N17—H17⋯O2 0.87 1.98 2.8521 (14) 174
O2—H2A⋯O1i 0.85 2.24 3.0648 (13) 165
O2—H2B⋯N11ii 0.86 2.02 2.8716 (15) 169
C12—H12⋯O21iii 0.95 2.34 3.2326 (18) 157
C15—H15⋯O42iv 0.95 2.31 3.2113 (17) 158
C25—H25⋯O1iv 0.95 2.39 3.2742 (16) 155
Symmetry codes: (i) x+1, y, z; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x, -y+1, -z+1.

For each of (I)[link]–(IV)[link], the space group P21/c was uniquely assigned from the systematic absences. All H atoms were located in difference maps. H atoms in aryl or pyridyl rings were then treated as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The remaining H atoms were all allowed to ride at the locations deduced from difference maps, with distances C—H = 0.94–0.97 Å, N—H = 0.86–0.87 Å and O—H = 0.85–0.86 Å, and with Uiso(H) = 1.2Ueq(C,N,O).

For all compounds, data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

As part of our structural studies of imines and hydrazones, we report here the molecular and supramolecular structures of four N-(isonicotinoyl)-nitrobenzaldehyde hydrazones: N-(isonicotinoyl)-2-nitrobenzaldehyde hydrazone, (I), N-(isonicotinoyl)-3-nitrobenzaldehyde hydrazone, (II), N-(isonicotinoyl)-4-nitrobenzaldehyde hydrazone, (III), and N-(isonicotinoyl)-2,4-dinitrobenzaldehyde hydrazone monohydrate, (IV), all at 120 K. The structures of compounds (I)–(III) have previously been reported at ambient temperature (Chuev et al., 1996; Fun et al., 1997; Liu et al., 1998; Atovmyan et al., 2002). For each compound, it is clear from the cell dimensions that no phase changes have occurred between ambient temperature and 120 K, but also that the low-temperature determinations are of significantly higher precision. In their discussion of the supramolecular structures of compounds (I)–(III), Atovmyan et al. (2002) considered only N—H···N hydrogen bonds and stated that `the position of the nitro group has no effect on the type of the crystal structure'. By contrast, we have found that when the C—H···O and C—H···N hydrogen bonds are properly taken into consideration, the supramolecular structures of compounds (I)–(III) are all entirely different: a three-dimensional framework structure in (I), single sheets in (II) and bilayers in (III). In an earlier report restricted to compound (III) only (Fun et al., 1997), the parameters D···A and D—H···A were listed for a number of intermolecular C—H···O and C—H···N contacts, including some not identified as hydrogen bonds by PLATON (Spek, 2003), but no descriptive analysis of the structural consequences of these interactions was provided beyond the statement that `the molecules pack as a network structure through hydrogen bonds', and no packing diagrams were provided. Similarly, in a report on compound (I) only (Liu et al., 1998), the presence of just two intermolecular hydrogen bonds was mentioned, one each of N—H···N and C—H···O types, as opposed to the four such bonds found here, but again without any indication of their structural consequences and again without any packing diagrams. Accordingly, we have thought it important to repeat these determinations using low-temperature diffraction data and to report a thorough analysis of the supramolecular structures of compounds (I)–(III), as well as that of compound (IV).

In each of compounds (I)–(IV), the central spacer unit between atoms C14 and C21 (Figs. 1–4) adopts a nearly planar all-trans conformation, as shown by the key torsion angles (Table 1). The pyridyl ring is effectively coplanar with the spacer unit in compounds (II) and (III), although not in (I) and (IV). The aryl ring is effectively coplanar with this spacer unit in all compounds except (IV), while there is no clear pattern of behaviour for the nitro group conformations. The bond lengths and angles show no unexpected features.

The supramolecular structures of compounds (I)–(IV) all differ, and all depend on different combinations of hydrogen bonds (Tables 2–5).

The molecules of compound (I) (Fig. 1) are linked into chains by a rather short and nearly linear N—H···N hydrogen bond, and these chains are linked into a three-dimensional framework structure by C—H···O hydrogen bonds (Table 2). The amido atom N17 in the molecule at (x, y, z) acts as hydrogen-bond donor to pyridyl atom N11 in the molecule at (−x, 1/2 + y, 3/2 − z), so forming a C(7) chain running parallel to the [010] direction and generated by the 21 screw axis along (0, y, 3/4) (Fig. 5).

Of the three C—H···O hydrogen bonds, the shortest links the molecules into centrosymmetric pairs. Aryl atom C23 in the molecule at (x, y, z) acts as donor to nitro atom O22 in the molecule at (1 − x, 2 − y, 1 − z), so generating a centrosymmetric R22(10) dimer (Fig. 6). For the hydrogen-bond motif descriptor, see Bernstein et al. (1995). The molecule at (1 − x, 2 − y, 1 − z) forms part of the C(7) chain generated by the 21 screw axis along (1, −y, 1/4), and hence the effect of the R22(10) dimer motif is to link the [010] chains into (102) sheets built from alternating R22(10) and R66(54) rings (Fig. 7). The other two C—H···O hydrogen bonds in the structure of (I) are both fairly weak, but they act in concert to generate a chain of rings parallel to the [001] direction, the effect of which is to link the (102) sheets. The adjacent aryl atoms C24 and C25 in the molecule at (x, y, z) acts as donors to, respectively, nitro atoms O21 and O22, both in the molecule at (x, 3/2 − y, −1/2 + z), so forming a C(6)C(7)[R22(6)] chain of rings along [001] generated by the c-glide plane at y = 3/4 (Fig. 8)

As in compound (I), the molecules of compound (II) (Fig. 2) are linked into chains by an N—H···N hydrogen bond (Table 3), but this is now augmented, albeit rather weakly, by a C—H···N interaction. Both the amido atom N17 and the nearby methine atom C27 in the molecule at (x, y, z) act as donors to the pyridyl atom N11 in the molecule at (−x, 1/2 + y, 1/2 − z), so generating a C(7)C(9)[R21(6)] chain of rings running parallel to the [010] direction and generated by the 21 screw axis along (0, y, 1/4) (Fig. 9). The N—H···N component thus mimics precisely the action of the corresponding bond in compound (I), where the C27—H27 bond is effectively shielded from intermolecular interactions by the presence of the 2-nitro group, forming a short intramolecular C—H···O contact.

The structure of compound (II) also contains a single C—H···O hydrogen bond, but unlike the C—H···O bonds in (I), that in (II) involves the amidic atom O1 as the acceptor. The pyridyl atom C12 in the molecule at (x, y, z) acts as donor to atom O1 in the molecule at (x, 1/2 − y, −1/2 + z), so forming a C(6) chain running parallel to the [001] direction and generated by the c-glide plane at y = 1/4 (Fig. 10). The combination of the [010] and [001] motifs then generates a (100) sheet containing R21(6), R44(14) and R44(26) rings (Fig. 11).

In compound (III) (Fig. 3), the molecules are linked into complex sheets by a combination of one N—H···N, one C—H···N and two C—H···O hydrogen bonds (Table 3), and the structure is most readily analysed in terms of two rather simple sub-structures. In the first of these sub-structures, which is one-dimensional, the molecules are linked into a C(4)C(7)[R21(6)] chain of rings utilizing a combination of N—H···N and C—H···N hydrogen bonds, much as in compound (II), but in (III) the C—H···N hydrogen bond has as donor the pyridyl atom C13 rather than the methine atom C27. This chain runs parallel to the [010] direction and is generated by the 21 screw axis along (1/2, y, 3/4) (Fig. 12).

The second sub-structure in compound (III) is two-dimensional and is built using two independent C—H···O hydrogen bonds, one of which utilizes the amidic O atom as acceptor, while the other utilizes a nitro O atom as acceptor. Pyridyl atom C12 in the molecule at (x, y, z) acts as donor to amido atom O1 in the molecule at (x, 1/2 − y, 1/2 + z), so forming a C(6) chain running parallel to the [001] direction and generated by the c-glide plane at y = 1/4 (Fig. 13). In a similar manner, aryl atom C22 in the molecule at (x, y, z) acts as donor to nitro atom O42 in the molecule at (x, 3/2 − y, 1/2 + z), so forming a second C(6) chain parallel to [001], but this time generated by the c-glide plane at y = 3/4. The combination of these two C(6) chains then generates a (100) sheet in the form of a (4,4) net (Batten & Robson, 1998) built from a single type of R44(34) ring (Fig. 13). Two sheets of this type, related to one another by inversion, pass through each unit cell in the domains 0.35 < x < 1.11 and −0.11 < x < 0.65, and this pair of sheets is linked into a bilayer by the [010] chain of rings. There are no direction-specific interactions between adjacent bilayers.

The 2,4-dinitrophenylhydrazone derivative crystallizes as a stoichiometric monohydrate, (IV), and the two molecular components are linked within the selected asymmetric unit by a nearly linear N—H···O hydrogen bond (Fig. 4, Table 5). The bimolecular aggregates are linked into sheets by a combination of O—H···O and O—H···N hydrogen bonds, and these sheets are further linked into a continuous three-dimensional framework by the concerted action of two C—H···O hydrogen bonds (Table 5).

Water atom O2 at (x, y, z) acts as hydrogen-bond donor, via atoms H2A and H2B, respectively, to amidic atom O1 at (1 + x, y, z) and to pyridyl atom N11 at (2 − x, −1/2 + y, 3/2 − z). These two hydrogen bonds thus produce a C22(6) chain running parallel to the [100] direction and generated by translation, and a C22(9) chain parallel to [010] and generated by the 21 screw axis along (1, y, 3/4). The combination of these two chains then generates an (001) sheet built from a single type of R66(24) ring (Fig. 14). Two sheets of this type pass through each unit cell, generated by, respectively, the 21 screw axes at z = 1/4 and z = 3/4. Adjacent sheets are linked by a centrosymmetric motif involving two independent C—H···O hydrogen bonds. Atoms C15 and C25 at (x, y, z) act as hydrogen-bond donors to, respectively, nitro atom O42 and amidic atom O1, both at (−x, 1 − y, 1 − z). The first of these hydrogen bonds generates an R22(26) ring, while the second generates an R22(18) ring (Fig. 15).

Experimental top

For the preparation of compounds (I)–(IV), equimolar mixtures (2 mmol of each component) of isoniazid and the appropriate nitrobenzaldehyde in tetrahydrofuran (20 ml) containing a catalytic quantity of triethylamine were heated under reflux for 6 h. After cooling, the solvent was removed under reduced pressure and the solid residues were chromatographed on silica gel, eluting with hexane–ethyl acetate gradient, to provide the pure products. Crystals suitable for single-crystal X-ray diffraction were obtained upon recrystallization from methanol. For (I), m.p. 506–508 K; for (II), m.p. 571–573 K; for (III), m.p. 553–555 K; for (IV), m.p. 504–506 K. Spectroscopic analyses: 1H NMR (DMSO-d6, δ, p.p.m.): (I) (major conformer) 12.44 (1H, s, NH), 8.89 (1H, s), 8.81 (2H, d, J = 5.5 Hz), 8.13 (2H, t, J = 8 Hz), 7.85 (3H, m), 7.73 (1H, m); (I) (minor conformer) 12.33 (1H, s, NH), 8.73 (2H, d, J = 5.0 Hz), 8.50 (1H, s), 8.04 (1H, m), 7.72 (2H, m), 7.65 (3H, m); ratio of major to minor conformers = 6:1; for (II) (major conformer) 12.38 (1H, s, NH), 8.81 (2H, d, J = 6 Hz), 8.57 (2H, s), 8.31 (1H, d, J = 7.5 Hz), 8.20 (1H, d, J = 7.5 Hz), 7.85 (2H, d, J = 6 Hz), 7.78 (1H, t, J = 7.5 Hz); (II) (minor conformer) 12.32 (1H, s, NH), 8.75 (2H, d, J = 6 Hz), 8.32 (1H, m), 8.22 (1H, m), 7.96 (1H, d, J = 7 Hz), 7.67 (1H, m), 7.67 (3H, m); ratio of major to minor conformers = 6:1; (III) (major conformer) 12.40 (1H, s, NH), 8.82 (2H, d, J = 6 Hz), 8.57 (1H, s), 8.33 (2H, d, J = 8.5 Hz), 8.03 (2H, d, J = 8.5 Hz), 7.85 (2H, d, J = 6 Hz); (III) (minor conformer) 12.36 (1H, s, NH), 8.76 (2H, d, J = 5 Hz), 8.25 (2H, d, J = 8 Hz), 8.22 (1H, s), 7.77 (2H, d, J = 8 Hz), 7.67 (2H, d, J = 5 Hz); ratio of major to minor conformers = 6:1; (IV) (major conformer) 12.65 (1H, s, NH), 8.92–8.76 (4H, m), 8.61–8.38 (2H, m), 7.84 (2H, s); 13C NMR (DMSO-d6, δ, p.p.m.): (II) 121.1, 121.5, 124.4, 130.4, 133.4, 135.8, 140.1, 146.5, 148.2, 150.3, 161.4; (III) 121.5, 124.0, 128.1, 130.4, 140.1, 140.2, 146.5, 148.0, 150.3, 161.9; (IV) 120.3, 121.5, 127.7, 129.4, 134.0, 139.6, 142.6, 147.4, 147.8, 150.4, 162.0; IR (KBr, ν, cm−1): (I) 3337, 3100–2800, 1681, 1603; (II) 3360, 3200–2800, 1693, 1619, 1610, 1601; (III) 3349, 3100–2800, 1685; (IV) 3161, 1664.

Refinement top

For each of (I)–(IV), the space group P21/c was uniquely assigned from the systematic absences. All H atoms were located in difference maps. H atoms in aryl or pyridyl rings were then treated as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The remaining H atoms were all allowed to ride at the locations deduced from difference maps, with distances C—H 0.94–0.97, N—H 0.86–0.87 and O—H 0.85–0.86 Å, and with Uiso(H) = 1.2Ueq(C,N,O).

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecule of compound (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The molecule of compound (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. The independent components in compound (IV), showing the atom-labelling scheme and the hydrogen bond within the asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 5] Fig. 5. Part of the crystal structure of compound (I), showing the formation of a C(7) chain along [010]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (−x, 1/2 + y, 3/2 − z) and (−x, −1/2 + y, 3/2 − z), respectively.
[Figure 6] Fig. 6. Part of the crystal structure of compound (I), showing the formation of a centrosymmetric R22(10) dimer. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 2 − y, 1 − z).
[Figure 7] Fig. 7. Stereoview of part of the crystal structure of compound (I), showing the formation of a (102) sheet built from alternating R22(10) and R66(54) rings. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 8] Fig. 8. Part of the crystal structure of compound (I), showing the formation of a C(6)C(7)[R22(6)] chain of rings along [001]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, 3/2 − y, −1/2 + z) and (x, 3/2 − y, 1/2 + z), respectively.
[Figure 9] Fig. 9. Part of the crystal structure of compound (II), showing the formation of a C(7)C(9)[R21(6)] chain of rings along [010]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (−x, 1/2 + y, 1/2 − z) and (−x, −1/2 + y, 1/2 − z), respectively.
[Figure 10] Fig. 10. Part of the crystal structure of compound (II), showing the formation of a C(6) chain along [001]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, 1/2 − y, −1/2 + z) and (x, 1/2 − y, 1/2 + z), respectively.
[Figure 11] Fig. 11. Stereoview of part of the crystal structure of compound (II), showing the formation of a (100) sheet built from R21(6), R44(14) and R44(26) rings. For the sake of clarity, the weak C—H···N hydrogen bond and all H atoms not involved in the motifs shown have been omitted.
[Figure 12] Fig. 12. Part of the crystal structure of compound (III), showing the formation of a C(4)C(9)[R21(6)] chain of rings along [010]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1 − x, 1/2 + y, 3/2 − z) and (1 − x, −1/2 + y, 3/2 − z), respectively.
[Figure 13] Fig. 13. Stereoview of part of the crystal structure of compound (III), showing the combination of two independent C(6) chains along [001] to form a (100) sheet built from R44(34) rings. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 14] Fig. 14. Stereoview of part of the crystal structure of compound (IV), showing the formation of an (001) sheet built from R66(24) rings. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 15] Fig. 15. Part of the crystal structure of compound (IV), showing the formation of the cyclic centrosymmetric motif which links adjacent (001) sheets. For the sake of clarity, H atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (−x, 1 − y, 1 − z).
(I) 2-nitrobenzaldehyde isonicotinoylhydrazone top
Crystal data top
C13H10N4O3F(000) = 560
Mr = 270.25Dx = 1.465 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2802 reflections
a = 7.3096 (2) Åθ = 3.3–27.5°
b = 10.9305 (4) ŵ = 0.11 mm1
c = 15.3801 (5) ÅT = 120 K
β = 94.569 (2)°Block, colourless
V = 1224.93 (7) Å30.38 × 0.14 × 0.12 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2802 independent reflections
Radiation source: Bruker Nonius FR91 rotating anode2401 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.3°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1414
Tmin = 0.967, Tmax = 0.987l = 1919
14989 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.6309P]
where P = (Fo2 + 2Fc2)/3
2802 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C13H10N4O3V = 1224.93 (7) Å3
Mr = 270.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3096 (2) ŵ = 0.11 mm1
b = 10.9305 (4) ÅT = 120 K
c = 15.3801 (5) Å0.38 × 0.14 × 0.12 mm
β = 94.569 (2)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2802 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2401 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.987Rint = 0.038
14989 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.06Δρmax = 0.34 e Å3
2802 reflectionsΔρmin = 0.26 e Å3
181 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08020 (15)0.21824 (9)0.47946 (6)0.0256 (3)
O210.51842 (15)0.70240 (10)0.63973 (7)0.0290 (3)
O220.4526 (2)0.88911 (10)0.60316 (7)0.0401 (3)
N20.46870 (17)0.78017 (11)0.58549 (8)0.0228 (3)
N110.07663 (16)0.02299 (11)0.75912 (7)0.0206 (3)
N170.13790 (15)0.37441 (10)0.57572 (7)0.0168 (2)
N270.20703 (15)0.44586 (10)0.51250 (7)0.0174 (2)
C120.01571 (19)0.12684 (12)0.77836 (9)0.0201 (3)
C130.07177 (19)0.20654 (12)0.71560 (9)0.0194 (3)
C140.02828 (17)0.18024 (12)0.62778 (8)0.0163 (3)
C150.06644 (19)0.07294 (12)0.60728 (9)0.0195 (3)
C160.1153 (2)0.00222 (13)0.67429 (9)0.0218 (3)
C170.08315 (18)0.25879 (12)0.55360 (8)0.0173 (3)
C210.34572 (17)0.63120 (12)0.47328 (8)0.0159 (3)
C220.43125 (18)0.74275 (12)0.49441 (8)0.0173 (3)
C230.49071 (18)0.82272 (13)0.43242 (9)0.0198 (3)
C240.47090 (19)0.78891 (13)0.34564 (9)0.0219 (3)
C250.39182 (19)0.67686 (14)0.32202 (9)0.0227 (3)
C260.32823 (18)0.60028 (13)0.38482 (9)0.0199 (3)
C270.26921 (18)0.55024 (12)0.53778 (8)0.0172 (3)
H120.04410.14680.83800.026*
H130.13910.27830.73230.025*
H150.09750.05120.54810.025*
H160.17980.07570.65930.028*
H170.12700.40680.62580.022*
H230.54400.89920.44940.024*
H240.51120.84210.30220.028*
H250.38130.65260.26250.030*
H260.27150.52510.36730.026*
H270.26620.57510.59680.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C120.0276 (7)0.0175 (6)0.0152 (6)0.0020 (5)0.0011 (5)0.0004 (5)
C130.0254 (7)0.0140 (6)0.0186 (7)0.0005 (5)0.0012 (5)0.0006 (5)
C140.0185 (6)0.0143 (6)0.0163 (6)0.0023 (5)0.0021 (5)0.0013 (5)
C150.0241 (7)0.0181 (6)0.0162 (6)0.0002 (5)0.0001 (5)0.0006 (5)
C160.0275 (7)0.0173 (6)0.0204 (7)0.0042 (5)0.0006 (5)0.0010 (5)
C170.0193 (6)0.0163 (6)0.0162 (6)0.0007 (5)0.0010 (5)0.0013 (5)
O10.0400 (6)0.0216 (5)0.0156 (5)0.0068 (4)0.0051 (4)0.0021 (4)
N110.0257 (6)0.0175 (6)0.0187 (6)0.0001 (4)0.0025 (4)0.0025 (4)
N170.0221 (6)0.0149 (5)0.0137 (5)0.0010 (4)0.0037 (4)0.0013 (4)
N270.0192 (6)0.0167 (5)0.0166 (5)0.0001 (4)0.0031 (4)0.0035 (4)
C270.0197 (6)0.0173 (6)0.0148 (6)0.0016 (5)0.0026 (5)0.0003 (5)
C210.0155 (6)0.0161 (6)0.0161 (6)0.0021 (5)0.0018 (5)0.0019 (5)
C220.0193 (6)0.0173 (6)0.0156 (6)0.0021 (5)0.0022 (5)0.0009 (5)
N20.0309 (7)0.0186 (6)0.0193 (6)0.0062 (5)0.0047 (5)0.0007 (5)
O210.0398 (6)0.0295 (6)0.0172 (5)0.0018 (5)0.0009 (4)0.0028 (4)
O220.0768 (9)0.0171 (5)0.0278 (6)0.0099 (5)0.0126 (6)0.0057 (4)
C230.0205 (7)0.0174 (6)0.0218 (7)0.0008 (5)0.0036 (5)0.0033 (5)
C240.0219 (7)0.0237 (7)0.0205 (7)0.0002 (5)0.0050 (5)0.0066 (5)
C250.0245 (7)0.0288 (7)0.0150 (6)0.0005 (6)0.0025 (5)0.0013 (5)
C260.0210 (7)0.0199 (7)0.0189 (7)0.0018 (5)0.0007 (5)0.0001 (5)
Geometric parameters (Å, º) top
C12—N111.3416 (18)C27—C211.4726 (18)
C12—C131.3862 (19)C27—H270.95
C12—H120.95C21—C221.3967 (18)
C13—C141.3928 (18)C21—C261.3978 (18)
C13—H130.95C22—C231.3885 (18)
C14—C151.3854 (18)C22—N21.4640 (17)
C14—C171.5074 (18)N2—O211.2256 (16)
C15—C161.3870 (19)N2—O221.2292 (16)
C15—H150.95C23—C241.381 (2)
C16—N111.3414 (18)C23—H230.95
C16—H160.95C24—C251.390 (2)
C17—O11.2220 (16)C24—H240.95
C17—N171.3606 (17)C25—C261.3860 (19)
N17—N271.3743 (15)C25—H250.95
N17—H170.8574C26—H260.95
N27—C271.2772 (18)
N11—C12—C13123.34 (12)N27—C27—H27120.8
N11—C12—H12118.3C21—C27—H27120.8
C13—C12—H12118.3C22—C21—C26116.24 (12)
C12—C13—C14119.22 (12)C22—C21—C27123.70 (12)
C12—C13—H13120.4C26—C21—C27120.02 (12)
C14—C13—H13120.4C23—C22—C21123.27 (12)
C15—C14—C13117.83 (12)C23—C22—N2115.86 (12)
C15—C14—C17117.92 (12)C21—C22—N2120.84 (11)
C13—C14—C17124.22 (12)O21—N2—O22123.36 (12)
C14—C15—C16119.08 (12)O21—N2—C22118.70 (11)
C14—C15—H15120.5O22—N2—C22117.92 (12)
C16—C15—H15120.5C24—C23—C22118.73 (13)
N11—C16—C15123.66 (13)C24—C23—H23120.6
N11—C16—H16118.2C22—C23—H23120.6
C15—C16—H16118.2C23—C24—C25119.84 (13)
O1—C17—N17123.59 (12)C23—C24—H24120.1
O1—C17—C14120.90 (12)C25—C24—H24120.1
N17—C17—C14115.50 (11)C26—C25—C24120.36 (13)
C16—N11—C12116.85 (12)C26—C25—H25119.8
C17—N17—N27117.93 (11)C24—C25—H25119.8
C17—N17—H17124.2C25—C26—C21121.50 (13)
N27—N17—H17117.8C25—C26—H26119.2
C27—N27—N17115.74 (11)C21—C26—H26119.2
N27—C27—C21118.48 (12)
N11—C12—C13—C141.3 (2)N27—C27—C21—C268.13 (19)
C12—C13—C14—C151.45 (19)C26—C21—C22—C232.44 (19)
C12—C13—C14—C17179.29 (12)C27—C21—C22—C23175.02 (12)
C13—C14—C15—C160.7 (2)C26—C21—C22—N2175.56 (12)
C17—C14—C15—C16178.72 (12)C27—C21—C22—N27.0 (2)
C14—C15—C16—N110.2 (2)C23—C22—N2—O21139.75 (13)
C15—C14—C17—O115.32 (19)C21—C22—N2—O2138.40 (18)
C13—C14—C17—O1162.52 (13)C23—C22—N2—O2238.58 (18)
C15—C14—C17—N17165.83 (12)C21—C22—N2—O22143.27 (14)
C13—C14—C17—N1716.33 (19)C21—C22—C23—C242.5 (2)
C15—C16—N11—C120.5 (2)N2—C22—C23—C24175.62 (12)
C13—C12—N11—C160.3 (2)C22—C23—C24—C250.3 (2)
O1—C17—N17—N275.29 (19)C23—C24—C25—C261.7 (2)
C14—C17—N17—N27173.53 (11)C24—C25—C26—C211.7 (2)
C17—N17—N27—C27175.01 (12)C22—C21—C26—C250.3 (2)
N17—N27—C27—C21179.85 (11)C27—C21—C26—C25177.26 (12)
N27—C27—C21—C22174.50 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17···N11i0.862.233.0776 (16)169
C23—H23···O22ii0.952.453.2294 (18)139
C24—H24···O21iii0.952.553.2147 (18)127
C25—H25···O22iii0.952.593.5052 (18)163
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y+2, z+1; (iii) x, y+3/2, z1/2.
(II) 3-nitrobenzaldehyde isonicotinoylhydrazone top
Crystal data top
C13H10N4O3F(000) = 560
Mr = 270.25Dx = 1.484 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2767 reflections
a = 8.2161 (3) Åθ = 3.2–27.5°
b = 10.8475 (3) ŵ = 0.11 mm1
c = 14.1397 (4) ÅT = 120 K
β = 106.2920 (18)°Block, colourless
V = 1209.58 (7) Å30.28 × 0.26 × 0.22 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2767 independent reflections
Radiation source: Bruker Nonius FR91 rotating anode2118 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1414
Tmin = 0.954, Tmax = 0.976l = 1818
16374 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0784P)2 + 0.12P]
where P = (Fo2 + 2Fc2)/3
2767 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C13H10N4O3V = 1209.58 (7) Å3
Mr = 270.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2161 (3) ŵ = 0.11 mm1
b = 10.8475 (3) ÅT = 120 K
c = 14.1397 (4) Å0.28 × 0.26 × 0.22 mm
β = 106.2920 (18)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2767 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2118 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.976Rint = 0.049
16374 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.07Δρmax = 0.21 e Å3
2767 reflectionsΔρmin = 0.36 e Å3
181 parameters
Special details top

Experimental. ?.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.09395 (14)0.28731 (10)0.56184 (7)0.0300 (3)
O310.67838 (14)0.95893 (10)0.50038 (8)0.0292 (3)
O320.74372 (15)1.03967 (10)0.64609 (9)0.0373 (3)
N30.68184 (15)0.95703 (11)0.58779 (9)0.0241 (3)
N110.15848 (16)0.08286 (11)0.23625 (8)0.0254 (3)
N170.16149 (15)0.42539 (10)0.45879 (8)0.0205 (3)
N270.25418 (14)0.49520 (11)0.53682 (8)0.0215 (3)
C120.09666 (19)0.19262 (14)0.21974 (10)0.0263 (4)
C130.02074 (18)0.27564 (13)0.29335 (10)0.0227 (3)
C140.00776 (17)0.24560 (12)0.39025 (10)0.0182 (3)
C150.07779 (18)0.13459 (13)0.40823 (10)0.0229 (3)
C160.1505 (2)0.05701 (14)0.33031 (10)0.0262 (4)
C170.08477 (17)0.32088 (13)0.47815 (10)0.0199 (3)
C210.43769 (17)0.66826 (13)0.58756 (10)0.0200 (3)
C220.51036 (17)0.76976 (12)0.55534 (10)0.0199 (3)
C230.60775 (17)0.85027 (13)0.62433 (10)0.0200 (3)
C240.63879 (18)0.83350 (13)0.72449 (10)0.0225 (3)
C250.56629 (19)0.73110 (13)0.75604 (10)0.0260 (4)
C260.46610 (19)0.65009 (13)0.68873 (10)0.0242 (3)
C270.33544 (18)0.58481 (13)0.51305 (10)0.0208 (3)
H120.10540.21480.15350.034*
H130.02170.35200.27750.029*
H150.07570.11220.47350.030*
H160.19740.01870.34400.034*
H170.15680.45060.40070.027*
H220.49350.78370.48690.026*
H240.70710.88980.77030.029*
H250.58580.71660.82460.034*
H260.41610.58140.71160.032*
H270.33420.59980.44540.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0399 (7)0.0315 (6)0.0178 (5)0.0100 (5)0.0068 (5)0.0008 (4)
O310.0322 (6)0.0297 (6)0.0278 (6)0.0037 (5)0.0119 (5)0.0038 (5)
O320.0461 (7)0.0245 (6)0.0398 (7)0.0154 (5)0.0097 (5)0.0080 (5)
N30.0224 (6)0.0211 (6)0.0280 (7)0.0018 (5)0.0058 (5)0.0007 (5)
N110.0306 (7)0.0250 (7)0.0207 (6)0.0048 (5)0.0071 (5)0.0040 (5)
N170.0236 (6)0.0196 (6)0.0163 (6)0.0025 (5)0.0021 (5)0.0009 (5)
N270.0223 (6)0.0197 (6)0.0206 (6)0.0008 (5)0.0027 (5)0.0030 (5)
C120.0318 (8)0.0284 (8)0.0179 (7)0.0051 (6)0.0056 (6)0.0005 (6)
C130.0260 (8)0.0207 (7)0.0201 (7)0.0039 (6)0.0044 (6)0.0023 (6)
C140.0177 (7)0.0178 (7)0.0187 (7)0.0031 (5)0.0046 (5)0.0000 (6)
C150.0283 (8)0.0217 (8)0.0191 (7)0.0029 (6)0.0075 (6)0.0013 (6)
C160.0349 (9)0.0221 (8)0.0213 (7)0.0070 (6)0.0074 (6)0.0010 (6)
C170.0203 (7)0.0199 (7)0.0194 (7)0.0004 (5)0.0053 (6)0.0002 (6)
C210.0203 (7)0.0177 (7)0.0205 (7)0.0021 (5)0.0033 (6)0.0003 (5)
C220.0206 (7)0.0196 (7)0.0189 (7)0.0012 (5)0.0046 (6)0.0001 (6)
C230.0198 (7)0.0161 (7)0.0245 (7)0.0012 (5)0.0069 (6)0.0005 (6)
C240.0228 (8)0.0206 (7)0.0215 (7)0.0014 (6)0.0019 (6)0.0030 (6)
C250.0325 (8)0.0263 (8)0.0177 (7)0.0000 (6)0.0046 (6)0.0003 (6)
C260.0280 (8)0.0209 (7)0.0232 (7)0.0017 (6)0.0062 (6)0.0023 (6)
C270.0232 (7)0.0187 (7)0.0184 (7)0.0013 (6)0.0024 (5)0.0015 (6)
Geometric parameters (Å, º) top
N11—C121.3403 (19)C27—C211.4624 (19)
N11—C161.3428 (18)C27—H270.9674
C12—C131.385 (2)C21—C221.389 (2)
C12—H120.95C21—C261.3974 (19)
C13—C141.3831 (19)C22—C231.3844 (19)
C13—H130.95C22—H220.95
C14—C151.3885 (19)C23—C241.3788 (19)
C14—C171.5031 (19)C23—N31.4681 (18)
C15—C161.382 (2)N3—O321.2274 (15)
C15—H150.95N3—O311.2285 (15)
C16—H160.95C24—C251.392 (2)
C17—O11.2200 (16)C24—H240.95
C17—N171.3617 (18)C25—C261.384 (2)
N17—N271.3782 (16)C25—H250.95
N17—H170.8557C26—H260.95
C27—N271.2765 (18)
C12—N11—C16116.26 (12)C21—C27—H27116.9
N11—C12—C13124.02 (13)C27—N27—N17114.83 (11)
N11—C12—H12118.0C22—C21—C26118.94 (13)
C13—C12—H12118.0C22—C21—C27117.87 (12)
C14—C13—C12118.98 (13)C26—C21—C27123.19 (13)
C14—C13—H13120.5C23—C22—C21119.05 (12)
C12—C13—H13120.5C23—C22—H22120.5
C13—C14—C15117.71 (13)C21—C22—H22120.5
C13—C14—C17124.87 (12)C24—C23—C22122.98 (13)
C15—C14—C17117.33 (12)C24—C23—N3119.34 (12)
C16—C15—C14119.40 (13)C22—C23—N3117.67 (12)
C16—C15—H15120.3O32—N3—O31123.49 (12)
C14—C15—H15120.3O32—N3—C23118.31 (12)
N11—C16—C15123.54 (13)O31—N3—C23118.19 (11)
N11—C16—H16118.2C23—C24—C25117.52 (13)
C15—C16—H16118.2C23—C24—H24121.2
O1—C17—N17122.51 (13)C25—C24—H24121.2
O1—C17—C14121.27 (12)C26—C25—C24120.78 (13)
N17—C17—C14116.18 (11)C26—C25—H25119.6
C17—N17—N27118.65 (11)C24—C25—H25119.6
C17—N17—H17124.1C25—C26—C21120.70 (13)
N27—N17—H17117.3C25—C26—H26119.6
N27—C27—C21121.26 (12)C21—C26—H26119.6
N27—C27—H27121.8
C16—N11—C12—C132.8 (2)N27—C27—C21—C22174.50 (13)
N11—C12—C13—C140.5 (2)N27—C27—C21—C265.9 (2)
C12—C13—C14—C152.3 (2)C26—C21—C22—C230.4 (2)
C12—C13—C14—C17174.22 (13)C27—C21—C22—C23179.99 (12)
C13—C14—C15—C162.6 (2)C21—C22—C23—C241.1 (2)
C17—C14—C15—C16174.15 (12)C21—C22—C23—N3179.62 (12)
C12—N11—C16—C152.4 (2)C24—C23—N3—O3212.79 (19)
C14—C15—C16—N110.2 (2)C22—C23—N3—O32167.89 (12)
C13—C14—C17—O1178.46 (14)C24—C23—N3—O31167.31 (12)
C15—C14—C17—O11.9 (2)C22—C23—N3—O3112.01 (19)
C13—C14—C17—N170.6 (2)C22—C23—C24—C250.7 (2)
C15—C14—C17—N17175.96 (12)N3—C23—C24—C25179.95 (12)
O1—C17—N17—N270.6 (2)C23—C24—C25—C260.4 (2)
C14—C17—N17—N27177.29 (11)C24—C25—C26—C211.0 (2)
C21—C27—N27—N17179.15 (11)C22—C21—C26—C250.6 (2)
C17—N17—N27—C27173.52 (12)C27—C21—C26—C25178.97 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17···N11i0.862.413.2382 (16)162
C12—H12···O1ii0.952.363.0735 (18)132
C27—H27···N11i0.972.583.4154 (17)145
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
(III) 4-nitrobenzaldehyde isonicotinoylhydrazone top
Crystal data top
C13H10N4O3F(000) = 560
Mr = 270.25Dx = 1.484 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2777 reflections
a = 7.7821 (3) Åθ = 3.3–27.6°
b = 10.6633 (4) ŵ = 0.11 mm1
c = 14.8417 (6) ÅT = 120 K
β = 100.799 (2)°Block, yellow
V = 1209.80 (8) Å30.26 × 0.18 × 0.12 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2777 independent reflections
Radiation source: Bruker Nonius FR91 rotating anode1863 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.3°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1312
Tmin = 0.966, Tmax = 0.987l = 1919
14033 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0763P)2 + 0.0753P]
where P = (Fo2 + 2Fc2)/3
2777 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C13H10N4O3V = 1209.80 (8) Å3
Mr = 270.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7821 (3) ŵ = 0.11 mm1
b = 10.6633 (4) ÅT = 120 K
c = 14.8417 (6) Å0.26 × 0.18 × 0.12 mm
β = 100.799 (2)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2777 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1863 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.987Rint = 0.074
14033 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.02Δρmax = 0.22 e Å3
2777 reflectionsΔρmin = 0.39 e Å3
181 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.53700 (16)0.21852 (11)0.47092 (8)0.0301 (3)
O411.10742 (18)0.98498 (12)0.35702 (9)0.0379 (4)
O421.04779 (16)0.85858 (12)0.24169 (8)0.0342 (4)
N41.05125 (18)0.88479 (14)0.32258 (10)0.0254 (4)
N110.39030 (18)0.01128 (13)0.74976 (9)0.0237 (4)
N170.63095 (17)0.36522 (12)0.57953 (9)0.0202 (3)
N270.69412 (17)0.43935 (13)0.51673 (9)0.0210 (3)
C120.4819 (2)0.11547 (16)0.77683 (11)0.0241 (4)
C130.5381 (2)0.19787 (16)0.71665 (11)0.0225 (4)
C140.4974 (2)0.17409 (15)0.62267 (11)0.0192 (4)
C150.4027 (2)0.06623 (15)0.59397 (11)0.0216 (4)
C160.3528 (2)0.01163 (16)0.65923 (11)0.0231 (4)
C170.5551 (2)0.25445 (15)0.55039 (11)0.0208 (4)
C210.8477 (2)0.62469 (15)0.48943 (11)0.0197 (4)
C220.9307 (2)0.73385 (16)0.52716 (11)0.0227 (4)
C231.0001 (2)0.81825 (16)0.47304 (11)0.0231 (4)
C240.9846 (2)0.79239 (15)0.38075 (11)0.0202 (4)
C250.9066 (2)0.68334 (16)0.34084 (11)0.0220 (4)
C260.8388 (2)0.59960 (16)0.39608 (11)0.0211 (4)
C270.7741 (2)0.53896 (16)0.54928 (11)0.0208 (4)
H120.50950.13350.84060.029*
H130.60400.27010.73910.027*
H150.37260.04620.53060.026*
H160.28860.08530.63880.028*
H170.63090.39210.63560.024*
H220.93950.75030.59080.027*
H231.05710.89230.49870.028*
H250.90020.66690.27740.026*
H260.78560.52430.37050.025*
H270.78580.55740.61280.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0494 (8)0.0277 (7)0.0144 (7)0.0047 (6)0.0088 (5)0.0022 (5)
O410.0567 (9)0.0292 (7)0.0295 (8)0.0129 (7)0.0123 (6)0.0011 (6)
O420.0438 (8)0.0450 (8)0.0147 (7)0.0087 (6)0.0076 (6)0.0025 (6)
N40.0269 (8)0.0307 (9)0.0187 (8)0.0017 (6)0.0046 (6)0.0029 (7)
N110.0311 (8)0.0234 (8)0.0175 (8)0.0028 (6)0.0072 (6)0.0012 (6)
N170.0287 (8)0.0217 (8)0.0120 (7)0.0005 (6)0.0081 (6)0.0005 (6)
N270.0236 (7)0.0231 (8)0.0171 (7)0.0016 (6)0.0061 (6)0.0040 (6)
C120.0356 (10)0.0233 (9)0.0138 (9)0.0011 (8)0.0057 (7)0.0001 (7)
C130.0317 (9)0.0184 (9)0.0172 (9)0.0000 (7)0.0037 (7)0.0012 (7)
C140.0214 (8)0.0205 (9)0.0162 (9)0.0039 (7)0.0048 (6)0.0020 (7)
C150.0272 (9)0.0236 (9)0.0140 (8)0.0023 (7)0.0038 (7)0.0009 (7)
C160.0296 (9)0.0228 (9)0.0174 (9)0.0006 (7)0.0055 (7)0.0009 (7)
C170.0245 (9)0.0221 (9)0.0160 (9)0.0027 (7)0.0044 (7)0.0011 (7)
C210.0202 (8)0.0228 (9)0.0165 (9)0.0042 (7)0.0048 (6)0.0018 (7)
C220.0282 (9)0.0257 (9)0.0139 (9)0.0021 (7)0.0032 (7)0.0004 (7)
C230.0259 (9)0.0236 (9)0.0192 (9)0.0012 (7)0.0032 (7)0.0015 (7)
C240.0226 (8)0.0231 (9)0.0155 (9)0.0013 (7)0.0046 (6)0.0045 (7)
C250.0250 (9)0.0279 (10)0.0139 (8)0.0024 (7)0.0054 (7)0.0002 (7)
C260.0242 (9)0.0225 (9)0.0169 (9)0.0000 (7)0.0046 (7)0.0008 (7)
C270.0221 (8)0.0251 (9)0.0160 (9)0.0020 (7)0.0056 (7)0.0001 (7)
Geometric parameters (Å, º) top
N11—C121.340 (2)C27—C211.464 (2)
N11—C161.343 (2)C27—H270.95
C12—C131.381 (2)C21—C221.396 (2)
C12—H120.95C21—C261.400 (2)
C13—C141.395 (2)C22—C231.382 (2)
C13—H130.95C22—H220.95
C14—C151.389 (2)C23—C241.380 (2)
C14—C171.506 (2)C23—H230.95
C15—C161.385 (2)C24—C251.392 (2)
C15—H150.95C24—N41.467 (2)
C16—H160.95N4—O421.2280 (18)
C17—O11.2230 (19)N4—O411.2289 (18)
C17—N171.355 (2)C25—C261.382 (2)
N17—N271.3809 (19)C25—H250.95
N17—H170.88C26—H260.95
N27—C271.279 (2)
C12—N11—C16117.02 (14)N27—C27—H27119.8
N11—C12—C13123.27 (15)C21—C27—H27119.8
N11—C12—H12118.4C22—C21—C26119.30 (15)
C13—C12—H12118.4C22—C21—C27118.77 (15)
C12—C13—C14119.39 (16)C26—C21—C27121.93 (15)
C12—C13—H13120.3C23—C22—C21120.78 (16)
C14—C13—H13120.3C23—C22—H22119.6
C15—C14—C13117.74 (15)C21—C22—H22119.6
C15—C14—C17117.69 (14)C24—C23—C22118.41 (16)
C13—C14—C17124.52 (15)C24—C23—H23120.8
C16—C15—C14118.93 (15)C22—C23—H23120.8
C16—C15—H15120.5C23—C24—C25122.65 (15)
C14—C15—H15120.5C23—C24—N4118.36 (15)
N11—C16—C15123.64 (16)C25—C24—N4118.99 (14)
N11—C16—H16118.2O42—N4—O41123.06 (15)
C15—C16—H16118.2O42—N4—C24118.49 (14)
O1—C17—N17123.06 (15)O41—N4—C24118.45 (14)
O1—C17—C14120.87 (15)C26—C25—C24118.15 (15)
N17—C17—C14116.05 (14)C26—C25—H25120.9
C17—N17—N27118.21 (13)C24—C25—H25120.9
C17—N17—H17120.6C25—C26—C21120.68 (16)
N27—N17—H17121.0C25—C26—H26119.7
C27—N27—N17115.46 (14)C21—C26—H26119.7
N27—C27—C21120.48 (15)
C16—N11—C12—C130.2 (2)N27—C27—C21—C22178.61 (15)
N11—C12—C13—C140.8 (3)N27—C27—C21—C262.1 (2)
C12—C13—C14—C150.8 (2)C26—C21—C22—C231.5 (2)
C12—C13—C14—C17178.21 (15)C27—C21—C22—C23179.19 (15)
C13—C14—C15—C160.3 (2)C21—C22—C23—C240.3 (2)
C17—C14—C15—C16177.89 (14)C22—C23—C24—C251.9 (2)
C12—N11—C16—C150.4 (2)C22—C23—C24—N4177.28 (14)
C14—C15—C16—N110.3 (2)C23—C24—N4—O42175.43 (14)
C15—C14—C17—O18.3 (2)C25—C24—N4—O425.3 (2)
C13—C14—C17—O1169.08 (16)C23—C24—N4—O414.8 (2)
C15—C14—C17—N17173.36 (14)C25—C24—N4—O41174.42 (15)
C13—C14—C17—N179.2 (2)C23—C24—C25—C261.6 (2)
O1—C17—N17—N271.5 (2)N4—C24—C25—C26177.64 (14)
C14—C17—N17—N27176.77 (12)C24—C25—C26—C210.4 (2)
C17—N17—N27—C27175.78 (14)C22—C21—C26—C251.9 (2)
N17—N27—C27—C21179.69 (13)C27—C21—C26—C25178.84 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17···N11i0.882.153.005 (2)162
C12—H12···O1ii0.952.473.340 (2)151
C13—H13···N11i0.952.583.409 (2)146
C22—H22···O42iii0.952.523.294 (2)138
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z+1/2.
(IV) 2,4-dinitrobenzaldehyde isonicotinoylhydrazone monohydrate top
Crystal data top
C13H9N5O5·H2OF(000) = 688
Mr = 333.27Dx = 1.553 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3252 reflections
a = 6.7545 (2) Åθ = 3.1–27.5°
b = 13.8578 (5) ŵ = 0.13 mm1
c = 15.2311 (5) ÅT = 120 K
β = 91.098 (2)°Block, colourless
V = 1425.41 (8) Å30.50 × 0.40 × 0.35 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3252 independent reflections
Radiation source: Bruker Nonius FR91 rotating anode2621 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1717
Tmin = 0.946, Tmax = 0.957l = 1819
15552 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0652P)2 + 0.3739P]
where P = (Fo2 + 2Fc2)/3
3252 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C13H9N5O5·H2OV = 1425.41 (8) Å3
Mr = 333.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.7545 (2) ŵ = 0.13 mm1
b = 13.8578 (5) ÅT = 120 K
c = 15.2311 (5) Å0.50 × 0.40 × 0.35 mm
β = 91.098 (2)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3252 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2621 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.957Rint = 0.029
15552 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.07Δρmax = 0.29 e Å3
3252 reflectionsΔρmin = 0.29 e Å3
217 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27642 (13)0.61396 (7)0.65794 (7)0.0252 (2)
O210.71744 (15)0.20348 (9)0.59093 (9)0.0410 (3)
O220.55896 (15)0.06941 (8)0.60460 (7)0.0316 (3)
O410.02176 (15)0.01273 (8)0.40068 (7)0.0313 (3)
O420.21514 (15)0.11749 (8)0.40644 (8)0.0362 (3)
N20.57032 (15)0.15306 (8)0.57997 (8)0.0213 (3)
N40.04246 (16)0.09271 (9)0.41858 (8)0.0216 (3)
N110.86259 (16)0.80601 (9)0.76960 (8)0.0240 (3)
N170.53697 (15)0.51315 (8)0.63634 (7)0.0169 (2)
N270.41328 (15)0.44644 (8)0.59768 (7)0.0171 (2)
C120.8988 (2)0.71144 (11)0.77916 (9)0.0237 (3)
C130.77206 (18)0.63952 (10)0.74907 (8)0.0199 (3)
C140.59689 (18)0.66669 (9)0.70633 (8)0.0164 (3)
C150.55350 (19)0.76445 (10)0.69845 (8)0.0191 (3)
C160.6915 (2)0.83093 (10)0.72998 (9)0.0214 (3)
C170.45300 (18)0.59609 (9)0.66593 (8)0.0174 (3)
C210.36244 (17)0.29496 (9)0.53188 (8)0.0159 (3)
C220.39727 (17)0.19511 (10)0.53421 (8)0.0165 (3)
C230.26688 (18)0.12840 (9)0.49760 (8)0.0180 (3)
C240.09497 (18)0.16311 (10)0.45875 (8)0.0180 (3)
C250.04821 (18)0.26027 (10)0.45617 (8)0.0185 (3)
C260.18331 (18)0.32514 (10)0.49235 (8)0.0178 (3)
C270.49462 (18)0.36894 (9)0.57093 (9)0.0186 (3)
O20.94659 (13)0.46303 (7)0.63946 (6)0.0238 (2)
H121.01830.69260.80830.031*
H130.80400.57340.75740.026*
H150.43230.78530.67210.025*
H160.66280.89760.72310.028*
H170.66330.50100.64020.020*
H230.29490.06120.49920.023*
H250.07300.28200.43040.024*
H260.15370.39210.49030.023*
H270.63170.35870.57570.022*
H2A1.04680.50000.63550.029*
H2B0.98790.41230.66660.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0151 (5)0.0223 (5)0.0380 (6)0.0032 (4)0.0049 (4)0.0046 (4)
O210.0231 (6)0.0324 (6)0.0666 (8)0.0042 (5)0.0207 (5)0.0023 (6)
O220.0285 (6)0.0222 (6)0.0436 (7)0.0062 (4)0.0086 (5)0.0035 (5)
O410.0275 (6)0.0233 (6)0.0427 (7)0.0014 (4)0.0050 (5)0.0118 (5)
O420.0212 (5)0.0272 (6)0.0592 (8)0.0009 (4)0.0190 (5)0.0014 (5)
N20.0169 (5)0.0224 (6)0.0243 (6)0.0034 (5)0.0040 (4)0.0042 (5)
N40.0192 (6)0.0203 (6)0.0250 (6)0.0029 (4)0.0054 (4)0.0013 (5)
N110.0234 (6)0.0254 (6)0.0233 (6)0.0040 (5)0.0007 (5)0.0083 (5)
N170.0118 (5)0.0170 (6)0.0219 (6)0.0008 (4)0.0021 (4)0.0027 (4)
N270.0164 (5)0.0170 (6)0.0177 (5)0.0035 (4)0.0011 (4)0.0005 (4)
C120.0193 (6)0.0286 (8)0.0230 (7)0.0014 (5)0.0044 (5)0.0069 (6)
C130.0193 (6)0.0208 (7)0.0194 (7)0.0025 (5)0.0036 (5)0.0033 (5)
C140.0157 (6)0.0181 (6)0.0154 (6)0.0013 (5)0.0006 (4)0.0021 (5)
C150.0189 (6)0.0190 (7)0.0194 (6)0.0026 (5)0.0000 (5)0.0022 (5)
C160.0257 (7)0.0180 (7)0.0207 (7)0.0005 (5)0.0023 (5)0.0029 (5)
C170.0152 (6)0.0177 (6)0.0193 (6)0.0002 (5)0.0013 (5)0.0009 (5)
C210.0147 (6)0.0186 (6)0.0145 (6)0.0023 (5)0.0022 (4)0.0017 (5)
C220.0128 (6)0.0199 (7)0.0167 (6)0.0017 (5)0.0004 (4)0.0010 (5)
C230.0174 (6)0.0166 (6)0.0200 (7)0.0005 (5)0.0000 (5)0.0014 (5)
C240.0167 (6)0.0187 (7)0.0186 (7)0.0030 (5)0.0011 (5)0.0006 (5)
C250.0157 (6)0.0206 (7)0.0191 (7)0.0010 (5)0.0016 (5)0.0020 (5)
C260.0177 (6)0.0164 (6)0.0193 (6)0.0006 (5)0.0006 (5)0.0007 (5)
C270.0133 (6)0.0208 (7)0.0218 (7)0.0012 (5)0.0012 (5)0.0012 (5)
O20.0150 (4)0.0213 (5)0.0352 (6)0.0024 (4)0.0025 (4)0.0025 (4)
Geometric parameters (Å, º) top
N11—C161.3390 (18)C21—C221.4039 (18)
N11—C121.3407 (19)C21—C261.4047 (17)
C12—C131.3859 (19)C22—C231.3865 (18)
C12—H120.95C22—N21.4699 (16)
C13—C141.3913 (17)N2—O221.2212 (16)
C13—H130.95N2—O211.2236 (15)
C14—C151.3908 (19)C23—C241.3797 (18)
C14—C171.5025 (17)C23—H230.95
C15—C161.3895 (19)C24—C251.3834 (19)
C15—H150.95C24—N41.4717 (16)
C16—H160.95N4—O411.2229 (15)
C17—O11.2219 (15)N4—O421.2265 (15)
C17—N171.3622 (17)C25—C261.3876 (18)
N17—N271.3714 (15)C25—H250.95
N17—H170.8705C26—H260.95
N27—C271.2766 (17)O2—H2A0.8521
C27—C211.4770 (17)O2—H2B0.8594
C27—H270.9382
C16—N11—C12117.07 (12)C22—C21—C26116.54 (11)
N11—C12—C13123.84 (13)C22—C21—C27125.04 (11)
N11—C12—H12118.1C26—C21—C27118.36 (12)
C13—C12—H12118.1C23—C22—C21122.83 (12)
C12—C13—C14118.32 (13)C23—C22—N2114.81 (11)
C12—C13—H13120.8C21—C22—N2122.28 (11)
C14—C13—H13120.8O22—N2—O21123.77 (12)
C15—C14—C13118.68 (12)O22—N2—C22117.90 (11)
C15—C14—C17117.73 (11)O21—N2—C22118.34 (12)
C13—C14—C17123.58 (12)C24—C23—C22117.58 (12)
C16—C15—C14118.50 (12)C24—C23—H23121.2
C16—C15—H15120.7C22—C23—H23121.2
C14—C15—H15120.7C23—C24—C25122.77 (12)
N11—C16—C15123.52 (13)C23—C24—N4117.79 (12)
N11—C16—H16118.2C25—C24—N4119.44 (11)
C15—C16—H16118.2O41—N4—O42124.09 (11)
O1—C17—N17123.36 (12)O41—N4—C24118.02 (11)
O1—C17—C14122.09 (12)O42—N4—C24117.87 (11)
N17—C17—C14114.50 (10)C24—C25—C26118.11 (12)
C17—N17—N27117.18 (10)C24—C25—H25120.9
C17—N17—H17123.7C26—C25—H25120.9
N27—N17—H17119.1C25—C26—C21122.13 (12)
C27—N27—N17116.22 (11)C25—C26—H26118.9
N27—C27—C21116.86 (11)C21—C26—H26118.9
N27—C27—H27122.2H2A—O2—H2B106.0
C21—C27—H27120.9
C16—N11—C12—C131.3 (2)C26—C21—C22—N2174.78 (11)
N11—C12—C13—C140.0 (2)C27—C21—C22—N22.39 (19)
C12—C13—C14—C152.23 (19)C23—C22—N2—O2221.01 (16)
C12—C13—C14—C17176.22 (12)C21—C22—N2—O22155.88 (12)
C13—C14—C15—C162.98 (19)C23—C22—N2—O21158.71 (12)
C17—C14—C15—C16175.56 (11)C21—C22—N2—O2124.41 (18)
C12—N11—C16—C150.5 (2)C21—C22—C23—C241.03 (19)
C14—C15—C16—N111.7 (2)N2—C22—C23—C24175.84 (11)
C15—C14—C17—O128.83 (19)C22—C23—C24—C250.83 (19)
C13—C14—C17—O1152.71 (13)C22—C23—C24—N4179.06 (11)
C15—C14—C17—N17148.77 (12)C23—C24—N4—O4118.96 (18)
C13—C14—C17—N1729.69 (18)C25—C24—N4—O41160.94 (13)
O1—C17—N17—N271.57 (19)C23—C24—N4—O42159.91 (12)
C14—C17—N17—N27179.13 (10)C25—C24—N4—O4220.19 (18)
C17—N17—N27—C27179.53 (11)C23—C24—C25—C261.7 (2)
N17—N27—C27—C21177.97 (10)N4—C24—C25—C26178.18 (11)
N27—C27—C21—C22150.33 (13)C24—C25—C26—C210.79 (19)
N27—C27—C21—C2626.79 (17)C22—C21—C26—C250.91 (18)
C26—C21—C22—C231.85 (18)C27—C21—C26—C25178.27 (12)
C27—C21—C22—C23179.02 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17···O20.871.982.8521 (14)174
O2—H2A···O1i0.852.243.0648 (13)165
O2—H2B···N11ii0.862.022.8716 (15)169
C12—H12···O21iii0.952.343.2326 (18)157
C15—H15···O42iv0.952.313.2113 (17)158
C25—H25···O1iv0.952.393.2742 (16)155
Symmetry codes: (i) x+1, y, z; (ii) x+2, y1/2, z+3/2; (iii) x+2, y+1/2, z+3/2; (iv) x, y+1, z+1.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC13H10N4O3C13H10N4O3C13H10N4O3C13H9N5O5·H2O
Mr270.25270.25270.25333.27
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/cMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)120120120120
a, b, c (Å)7.3096 (2), 10.9305 (4), 15.3801 (5)8.2161 (3), 10.8475 (3), 14.1397 (4)7.7821 (3), 10.6633 (4), 14.8417 (6)6.7545 (2), 13.8578 (5), 15.2311 (5)
β (°) 94.569 (2) 106.2920 (18) 100.799 (2) 91.098 (2)
V3)1224.93 (7)1209.58 (7)1209.80 (8)1425.41 (8)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.110.110.110.13
Crystal size (mm)0.38 × 0.14 × 0.120.28 × 0.26 × 0.220.26 × 0.18 × 0.120.50 × 0.40 × 0.35
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.967, 0.9870.954, 0.9760.966, 0.9870.946, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
14989, 2802, 2401 16374, 2767, 2118 14033, 2777, 1863 15552, 3252, 2621
Rint0.0380.0490.0740.029
(sin θ/λ)max1)0.6500.6500.6520.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 1.06 0.045, 0.132, 1.07 0.051, 0.139, 1.02 0.039, 0.116, 1.07
No. of reflections2802276727773252
No. of parameters181181181217
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.260.21, 0.360.22, 0.390.29, 0.29

Computer programs: COLLECT (Nonius, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N17—H17···N11i0.862.233.0776 (16)169
C23—H23···O22ii0.952.453.2294 (18)139
C24—H24···O21iii0.952.553.2147 (18)127
C25—H25···O22iii0.952.593.5052 (18)163
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y+2, z+1; (iii) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N17—H17···N11i0.862.413.2382 (16)162
C12—H12···O1ii0.952.363.0735 (18)132
C27—H27···N11i0.972.583.4154 (17)145
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N17—H17···N11i0.882.153.005 (2)162
C12—H12···O1ii0.952.473.340 (2)151
C13—H13···N11i0.952.583.409 (2)146
C22—H22···O42iii0.952.523.294 (2)138
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
N17—H17···O20.871.982.8521 (14)174
O2—H2A···O1i0.852.243.0648 (13)165
O2—H2B···N11ii0.862.022.8716 (15)169
C12—H12···O21iii0.952.343.2326 (18)157
C15—H15···O42iv0.952.313.2113 (17)158
C25—H25···O1iv0.952.393.2742 (16)155
Symmetry codes: (i) x+1, y, z; (ii) x+2, y1/2, z+3/2; (iii) x+2, y+1/2, z+3/2; (iv) x, y+1, z+1.
Selected torsion angles (°) for compounds (I)–(IV) top
Parameter(I)(II)(III)(IV)
C13-C14-C17-N17-16.33 (19)-0.6 (2)-9.2 (2)-29.69 (18)
C14-C17-N17-N27173.53 (1)-177.29 (11)176.77 (12)-179.13 (10)
C17-N17-N27-C27-175.01 (12)173.52 (12)-175.78 (14)-179.53 (11)
N17-N27-C27-C21179.85 (11)179.15 (11)179.69 (13)177.97 (10)
N27-C27-C21-C22-174.50 (12)-174.50 (13)178.61 (15)150.33 (13)
C21-C22-N2-O2138.40 (18)-24.41 (18)
C22-C23-N3-O31-12.01 (19)
C23-C24-N4-O41-4.8 (2)-18.96 (18)
 

Acknowledgements

The X-ray data were collected at the EPSRC X-Ray Crystallographic Service, University of Southampton, England; the authors thank the staff of the Service for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

First citationAtovmyan, E. G., Nikonova, L. A., Filipenko, O. S., Fedotova, T. N. & Aldoshin, S. M. (2002). Russ. Chem. Bull. 51, 99–104.  Web of Science CrossRef CAS Google Scholar
First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationChuev, I. I., Aldoshin, S. M., Atovmyan, E. G., Frolov, D. B. & Utenyshev, A. N. (1996). Russ. Chem. Bull. 45, 851–855.  CrossRef Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFun, H.-K., Lu, Z.-L., Duan, C.-Y., Tian, Y.-P., You, X.-Z., Guo, Y.-M. & Gong, X.-Y. (1997). Acta Cryst. C53, 1452–1454.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, S.-H., Chen, X.-F., Xu, Y.-H., You, X.-Z., Chen, W. & Arifin, Z. (1998). Acta Cryst. C54, 1919–1921.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds