organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

1,2-Bis(di­phenyl­phosphino)benzene and two related mono-me­thio­dides, [o-C6H4(PR2)(PR2Me)]I (R = Ph or Me)

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of Southampton, Southampton SO17 1BJ, England
*Correspondence e-mail: m.webster@soton.ac.uk

(Received 25 March 2006; accepted 30 April 2006; online 30 June 2006)

The structures of the compounds 1,2-bis­(diphenyl­phosphino)benzene, C30H24P2, [2-(diphenyl­phosphino)phen­yl]methyl­diphenyl­phos­pho­nium iodide, C31H27P2+·I, and [2-(dimethyl­phosphino)phen­yl]­trimethyl­phospho­nium iodide, C11H19P2+·I, show that quaternization only occurs at one P centre and results in significantly shorter P—C bonds and larger C—P—C angles, consistent with the formal oxidation from PIII to PV.

Comment

Diphosphines, o-C6H4(PR2)2 (R = Ph, Me, etc.), are widely used in coordination and organometallic chemistry. The rigid o-phenyl­ene backbone pre-organizes the ligands for chelation and its rigidity resists dissociation from metal centres (the `o-phenyl­ene backbone' effect; Levason, 1990[Levason, W. (1990). Comments Inorg. Chem. 9, 331-361.]). A combination of these effects, especially when combined as in the case of R = Me with small steric requirements and exceptionally strong σ donation, produces ligands that can form robust complexes with most transition metals, even hard 3d-metal centres, such as MnII, FeIV or NiIV, or oxophilic early metals including ZrIV and HfIV (Warren & Bennett, 1976[Warren, L. F. & Bennett, M. A. (1976). Inorg. Chem. 15, 3126-3140.]; Levason, 1990[Levason, W. (1990). Comments Inorg. Chem. 9, 331-361.]; Levason et al., 2004[Levason, W., Matthews, M. L., Patel, B., Reid, G. & Webster, M. (2004). Dalton Trans. pp. 3305-3312.]). Complexes with p-block Lewis acids, including the halides of Ga, Sb and As, are also readily prepared (Hill et al., 2002[Hill, N. J., Levason, W. & Reid, G. (2002). J. Chem. Soc. Dalton Trans. pp. 1188-1192.]; Genge et al., 2001[Genge, A. R. J., Hill, N. J., Levason, W. & Reid, G. (2001). J. Chem. Soc. Dalton Trans. pp. 1007-1012.]; Sigl et al., 1998a[Sigl, M., Schier, A. & Schmidbaur, H. (1998a). Eur. J. Inorg. Chem. pp. 203-210.]). A further consequence of the o-phenyl­ene backbone is that, in contrast to diphosphinoalkanes, quaternization of o-C6H4(PR2)2 with MeI in acetone or alcohols affords exclusively the mono-phospho­nium salts [o-C6H4(PR2)(PR2Me)]I, since the nucleophilicity of the second P atom is markedly reduced by the positive charge on the neighbouring phospho­nium centre. Phospho­nium salts, [PR4]+, are widely used as large cations to stabilize a variety of anionic species and to phase-transfer anions into low polarity organic media. The (2-di-R-phosphinophen­yl)phospho­nium species behave similarly but also have the potential to function as positively charged ligands, binding through the phosphane function to metals leading to zwitterionic products. A related example involving mono-quaternized Ph2PCH2PPh2H+ has been structurally characterized in [TiCl5(Ph2PCH2PPh2H)] (Hart et al., 2001[Hart, R., Levason, W., Patel, B. & Reid, G. (2001). Eur. J. Inorg. Chem. pp. 2927-2933.]). During the course of studies on the coordination chemistry of o-C6H4(PR2)2 (R = Ph or Me), we obtained crystals of the three title materials and report their structures here.

[Scheme 1]

o-C6H4(PPh2)2, (I)[link] (Fig. 1[link] and Table 1[link]), has P—C distances of 1.836 (3)–1.851 (3) Å; addition of the Me group in the phospho­nium salt (II)[link] results in shortening of the P1—C distances to 1.787 (2)–1.814 (2) Å, consistent with formal oxidation from PIII to PV, leaving the P2—C distances essentially unchanged (Fig. 2[link] and Table 2[link]). Although even with excess MeI quaternization only occurs at one P centre (evidence of transmitted electronic effects), there are no significant differences in the P—C bond lengths and the C—P—C angles at P2 in (II)[link] [the average of the three angles is 102.2 (19)°] compared with those in (I)[link] [the average of the six angles is 101.8 (16)°]. The P⋯P distance of the neutral ligand [3.166 (1) Å] increases in the methio­dide to 3.300 (1) Å, and the C—P—C angles increase by about 7° at the phospho­nium P atom. The observed structural changes on quaternization generally parallel those observed by Dunne et al. (1991[Dunne, B. J., Morris, R. B. & Orpen, A. G. (1991). J. Chem. Soc. Dalton Trans. pp. 653-661.]) in PPh3 derivatives, although the presence of PIII and PV within the same mol­ecule in [o-C6H4(PPh2)(PPh2Me)]I provides a particularly clear example. Comparison of (I)[link] with the crystal structure of o-C6H4[P(O)Ph2]2 (Davis et al., 2006[Davis, M. F., Levason, W., Reid, G. & Webster, M. (2006). Polyhedron, 25, 930-936.]) reveals similar changes in the geometry at both P atoms.

o-C6H4(PMe2)2 is a liquid at ambient temperatures and has not been obtained in crystalline form; thus, comparisons with the mono-methio­dide [o-C6H4(PMe2)(PMe3)]I, (III)[link], are not possible. However, the same trends as observed in (II)[link] are apparent in the cation, with the P1—C distances shorter by ca 0.04 Å than the P2—C distances and with the C—P—C angles at P1 some 8° larger than those at P2 (Fig. 3[link] and Table 3[link]). While o-C6H4(PMe2)2 very readily oxidizes in air, the PIII centre in the mono-methio­dide appears to be stable to air oxidation. The shortest anion–cation distance in the methio­dides is 3.04 Å (I⋯H), indicating no unusual inter­actions. Related compounds in the literature include o-C6H4(PMePh)2 (Roberts et al., 1980[Roberts, N. K., Skelton, B. W. & White, A. H. (1980). J. Chem. Soc. Dalton Trans. pp. 1567-1571.]) and [o-C6H4(PPh2)(PPh2H)]+ (Sigl et al., 1998b[Sigl, M., Schier, A. & Schmidbaur, H. (1998b). Z. Naturforsch. Teil B, 53, 1313-1315.])

[Figure 1]
Figure 1
The discrete mol­ecule of o-C6H4(PPh2)2, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
[Figure 2]
Figure 2
The structure of [o-C6H4(PPh2)(PPh2Me)]I, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
[Figure 3]
Figure 3
The structure of [o-C6H4(PMe2)(PMe3)]I, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.

Experimental

o-C6H4(PR2)2 (R = Ph or Me) were prepared according to published procedures (McFarlane & McFarlane, 1983[McFarlane, H. C. E. & McFarlane, W. (1983). Polyhedron, 2, 303-304.]; Kyba et al., 1983[Kyba, E. P., Liu, S. T. & Harris, R. L. (1983). Organometallics, 2, 1877-1879.]). [o-C6H4(PR2)(PR2Me)]I (R = Me or Ph) were prepared by reaction of the diphosphanes with excess MeI in gently refluxing acetone. White microcrystalline products separated on cooling. o-C6H4(PPh2)2: m.p. 458 K; 31P{1H} NMR (CH2Cl2 relative 85% H3PO4): δ −13.0; EI–MS (m/z) = 446 a.m.u. (M+). [o-C6H4(PPh2)(PPh2Me)]I: 31P{1H} NMR (CH2Cl2): δ −14.8 (d, 3JPP = 26 Hz), 22.6 (d, 3JPP = 26 Hz); ES–MS (m/z) = 461 a.m.u. (M+). [o-C6H4(PMe2)(PMe3)]I: 31P{1H} NMR (CH2Cl2): δ −53.4 (d, 3JPP = 22 Hz), 22.0 (d, 3JPP = 22 Hz); ES–MS (m/z) = 213 a.m.u. (M+). Crystals of o-C6H4(PPh2)2 were obtained by slow evaporation from a CH2Cl2 solution in an inert atmosphere. Crystals of the other two compounds were obtained directly from the preparations.

Compound (I)[link]

Crystal data
  • C30H24P2

  • Mr = 446.43

  • Triclinic, [P \overline 1]

  • a = 8.1930 (15) Å

  • b = 12.442 (2) Å

  • c = 12.584 (3) Å

  • α = 109.846 (5)°

  • β = 99.918 (5)°

  • γ = 98.330 (15)°

  • V = 1159.6 (4) Å3

  • Z = 2

  • Dx = 1.279 Mg m−3

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.12 × 0.10 × 0.06 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.892, Tmax = 0.985

  • 15781 measured reflections

  • 5122 independent reflections

  • 2565 reflections with I > 2σ(I)

  • Rint = 0.132

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.132

  • S = 0.93

  • 5122 reflections

  • 290 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0398P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected geometric parameters (Å, °) for (I)[link]

P1—C1 1.851 (3) 
P1—C7 1.839 (3)
P1—C13 1.836 (3)
P2—C2 1.849 (3)
P2—C19 1.846 (3)
P2—C25 1.838 (3)
C1—C2 1.420 (4)
C13—P1—C7 104.17 (13)
C13—P1—C1 102.65 (13)
C7—P1—C1 100.67 (13)
C25—P2—C19 99.70 (14)
C25—P2—C2 101.79 (13)
C19—P2—C2 101.67 (13)
C2—C1—P1 117.8 (2)
C1—C2—P2 118.4 (2)

Compound (II)[link]

Crystal data
  • C31H27P2+·I

  • Mr = 588.37

  • Triclinic, [P \overline 1]

  • a = 10.3323 (5) Å

  • b = 11.8412 (10) Å

  • c = 12.7828 (10) Å

  • α = 69.536 (3)°

  • β = 67.260 (3)°

  • γ = 70.847 (4)°

  • V = 1317.22 (16) Å3

  • Z = 2

  • Dx = 1.483 Mg m−3

  • Mo Kα radiation

  • μ = 1.36 mm−1

  • T = 120 (2) K

  • Needle, colourless

  • 0.20 × 0.08 × 0.04 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.855, Tmax = 0.945

  • 20101 measured reflections

  • 5956 independent reflections

  • 5063 reflections with I > 2σ(I)

  • Rint = 0.053

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.074

  • S = 1.02

  • 5956 reflections

  • 308 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.036P)2 + 0.2511P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.95 e Å−3

  • Δρmin = −1.08 e Å−3

Table 2
Selected geometric parameters (Å, °) for (II)[link]

P1—C1 1.814 (2) 
P1—C7 1.801 (2)
P1—C13 1.789 (2)
P1—C31 1.787 (2)
P2—C2 1.858 (2)
P2—C19 1.838 (2)
P2—C25 1.834 (2)
C1—C2 1.406 (3)
C31—P1—C13 111.96 (11)
C31—P1—C7 106.12 (11)
C13—P1—C7 109.57 (10)
C31—P1—C1 111.19 (11)
C13—P1—C1 107.57 (10)
C7—P1—C1 110.46 (10)
C25—P2—C19 104.26 (10)
C25—P2—C2 100.67 (10)
C19—P2—C2 101.50 (10)
C2—C1—P1 120.79 (16)
C1—C2—P2 121.29 (17)

Compound (III)[link]

Crystal data
  • C11H19P2+·I

  • Mr = 340.10

  • Monoclinic, P 21 /c

  • a = 9.2002 (16) Å

  • b = 11.846 (3) Å

  • c = 13.566 (2) Å

  • β = 94.312 (14)°

  • V = 1474.3 (5) Å3

  • Z = 4

  • Dx = 1.532 Mg m−3

  • Mo Kα radiation

  • μ = 2.36 mm−1

  • T = 150 (2) K

  • Rhomb, colourless

  • 0.2 × 0.2 × 0.05 mm

Data collection
  • Rigaku AFC-7S diffractometer

  • ω/2θ scans

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.596, Tmax = 0.890

  • 5375 measured reflections

  • 2587 independent reflections

  • 1772 reflections with I > 2σ(I)

  • Rint = 0.120

  • θmax = 25.0°

  • 3 standard reflections every 150 reflections intensity decay: none

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.121

  • S = 0.97

  • 2587 reflections

  • 128 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0668P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 2.21 e Å−3

  • Δρmin = −2.89 e Å−3

Table 3
Selected geometric parameters (Å, °) for (III)[link]

P1—C1 1.820 (5)
P1—C7 1.794 (6)
P1—C8 1.795 (6)
P1—C9 1.792 (5)
P2—C2 1.858 (5)
P2—C10 1.832 (6)
P2—C11 1.843 (7)
C1—C2 1.390 (8)
C9—P1—C8 110.4 (3)
C9—P1—C7 106.4 (3)
C8—P1—C7 106.5 (3)
C9—P1—C1 111.4 (3)
C8—P1—C1 112.2 (3)
C7—P1—C1 109.6 (3)
C10—P2—C11 100.4 (3)
C10—P2—C2 101.3 (3)
C11—P2—C2 100.5 (3)
C2—C1—P1 123.3 (4)
C1—C2—P2 121.4 (4)

H atoms were placed in calculated positions [C—H = 0.95 (aromatic) and 0.98 Å (methyl)]. For (I)[link] and (II)[link], a common refined Uiso(H) value was used for all the H atoms. For (III)[link], Uiso(H) values for phenyl H atoms were set at 1.2Ueq(C) of the bonded C atoms, whilst the methyl H atoms were given a common refined Uiso(H) value. The largest peak and trough in the difference electron-density map for [o-C6H4(PMe2)(PMe3)]I were less than 1 Å from the I atom.

For compounds (I) and (II), data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]) and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO. For compound (III), data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988[Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.]); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1995[Molecular Structure Corporation (1995). TEXSAN. Version 1.7-1. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.]). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Diphosphines, o-C6H4(PR2)2 (R = Ph, Me etc.), are widely used in coordination and organometallic chemistry. The rigid o-phenylene backbone pre-organizes the ligands for chelation and its rigidity resists dissociation from metal centres (the `o-phenylene backbone' effect; Levason, 1990). A combination of these effects, especially when combined as in the case of R = Me with small steric requirements and exceptionally strong σ donation, produces ligands that can form robust complexes with most transition metals, even hard 3d-metal centres, such as MnII, FeIV or NiIV, or oxophilic early metals including ZrIV and HfIV (Warren & Bennett, 1976; Levason, 1990; Levason et al., 2004). Complexes with p-block Lewis acids, including the halides of Ga, Sb and As, are also readily prepared (Hill et al., 2002; Genge et al., 2001; Sigl et al., 1998a). A further consequence of the o-phenylene backbone is that, in contrast to diphosphinoalkanes, quaternization of o-C6H4(PR2)2 with MeI in acetone or alcohols affords exclusively the mono-phosphonium salts [o-C6H4(PR2)(PR2Me)]I, since the nucleophilicity of the second phosphorus is markedly reduced by the positive charge on the neighbouring phosphonium centre. Phosphonium salts [PR4]+ are widely used as large cations to stabilize a variety of anionic species and to phase-transfer anions into low polarity organic media. The (2-di-R-phosphanylphenyl)phosphonium species behave similarly but also have the potential to function as positively charged ligands, binding through the phosphane function to metals leading to zwitterionic products. A related example involving mono-quaternized [Ph2PCH2PPh2H]+ has been structurally characterized in [TiCl5(Ph2PCH2PPh2H)] (Hart et al., 2001). During the course of studies on the coordination chemistry of o-C6H4(PR2)2 (R = Ph or Me) we obtained crystals of the three title materials and report here their structures.

o-C6H4(PPh2)2, (I) (Fig. 1 and Table 1), has P—C distances 1.836 (3)–1.851 (3) Å and addition of the Me group in the phosphonium salt (II) results in shortening of the P1—C distances to 1.787 (2)–1.814 (2) Å, consistent with formal oxidation from PIII to PV and leaving the P2—C distances essentially unchanged (Fig. 2 and Table 2). Although even with excess MeI, quaternization only occurs at one P centre (evidence of transmitted electronic effects), there is no significant difference in the P—C bond lengths and the C—P—C angles at P2 in (II) [the average of the three angles is 102.2 (19)°] compared with those in (I) [the average of six angles is 101.8 (16)°]. The P···P distance of the neutral ligand [3.166 (1) Å] increases in the methiodide to 3.300 (1) Å,and the C—P—C angles increase by about 7° at the phosphonium P atom. The observed structural changes on quaternization generally parallel those observed by Dunne et al. (1991) in PPh3 derivatives, although the presence of PIII and PV within the same molecule in [o-C6H4(PPh2)(PPh2Me)]I provides a particularly clear example. Comparison of (I) with the crystal structure of [o-C6H4{P(O)Ph2}2] (Davis et al., 2006) reveals similar changes in the geometry at both P atoms.

o-C6H4(PMe2)2 is a liquid at ambient temperatures and has not been obtained in crystalline form, thus comparisons with the mono methiodide [o-C6H4(PMe2)(PMe3)]I, (III), are not possible. However, the same trends are apparent in the cation, with P1—C shorter by ca 0.04 Å than P2—C distances and increases in the C—P—C angles with those at P1 some 8° larger than those at P2 (Fig. 3 and Table 3). While o-C6H4(PMe2)2 very readily oxidizes in air, the PIII centre in the mono-methiodide appears to be stable to air oxidation. The shortest anion–cation distance in the methiodides is 3.04 Å (I···H), indicating no unusual interactions. Related compounds in the literature include o-C6H4(PMePh)2 (Roberts et al., 1980) and [o-C6H4(PPh2)(PPh2H)]+ (Sigl et al., 1998b)

Experimental top

o-C6H4(PR2)2 (R = Ph or Me) were prepared according to published procedures (McFarlane & McFarlane, 1983; Kyba et al., 1983). [o-C6H4(PR2)(PR2Me)]I (R = Me or Ph) were prepared by reaction of the diphosphanes with excess MeI in gently refluxing acetone. White microcrystalline products separated on cooling. o-C6H4(PPh2)2: m.p. 458 K; 31P{1H} NMR (CH2Cl2 relative 85% H3PO4): δ −13.0; EIMS (m/z) = 446 a.m.u. (M+). [o-C6H4(PPh2)(PPh2Me)]I: 31P{1H} NMR (CH2Cl2): δ −14.8 (d, 3JPP = 26 Hz), 22.6 (d, 3JPP = 26 Hz); ES+MS (m/z) = 461 a.m.u. (M+). [o-C6H4(PMe2)(PMe3)]I: 31P{1H} NMR (CH2Cl2): δ −53.4 (d, 3JPP = 22 Hz), 22.0 (d, 3JPP = 22 Hz); ES+MS (m/z) = 213 a.m.u. (M+). Crystals of o-C6H4(PPh2)2 were obtained by slow evaporation from CH2Cl2 solution in an inert atmosphere. Crystals of the other two compounds were obtained directly from the preparations.

Refinement top

H atoms were placed in calculated positions [C—H = 0.95 (aromatic) and 0.98 Å (Me)]. For (I) and (II), a common refined Uiso(H) value was used for all the H atoms. For (III), Uiso(H) for phenyl H atoms was set at 1.2Ueq(C) of the bonded C atom, whilst the methyl H atoms were given a common refined Uiso(H) value. The largest peak and trough in the difference electron-density map for [o-C6H4(PMe2)(PMe3)]I were less than 1 Å from the I atom.

Computing details top

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997) for (I), (II); MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988) for (III). Cell refinement: COLLECT and DENZO for (I), (II); MSC/AFC Diffractometer Control Software for (III). Data reduction: COLLECT and DENZO for (I), (II); TEXSAN (Molecular Structure Corporation, 1995) for (III). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976).

Figures top
[Figure 1] Fig. 1. The discrete molecule of [o-C6H4(PPh2)2], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The structure of [o-C6H4(PPh2)(PPh2Me)]I, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The structure of [o-C6H4(PMe2)(PMe3)]I, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
(I) 1,2-bis(diphenylphosphino)benzene top
Crystal data top
C30H24P2Z = 2
Mr = 446.43F(000) = 468
Triclinic, P1Dx = 1.279 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1930 (15) ÅCell parameters from 19324 reflections
b = 12.442 (2) Åθ = 2.9–27.5°
c = 12.584 (3) ŵ = 0.20 mm1
α = 109.846 (5)°T = 120 K
β = 99.918 (5)°Block, colourless
γ = 98.330 (15)°0.12 × 0.10 × 0.06 mm
V = 1159.6 (4) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
5122 independent reflections
Radiation source: Nonius rotating anode2565 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.132
ϕ and ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1010
Tmin = 0.892, Tmax = 0.985k = 1616
15781 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0398P)2]
where P = (Fo2 + 2Fc2)/3
5122 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C30H24P2γ = 98.330 (15)°
Mr = 446.43V = 1159.6 (4) Å3
Triclinic, P1Z = 2
a = 8.1930 (15) ÅMo Kα radiation
b = 12.442 (2) ŵ = 0.20 mm1
c = 12.584 (3) ÅT = 120 K
α = 109.846 (5)°0.12 × 0.10 × 0.06 mm
β = 99.918 (5)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
5122 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2565 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 0.985Rint = 0.132
15781 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 0.93Δρmax = 0.54 e Å3
5122 reflectionsΔρmin = 0.33 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.09646 (10)0.23706 (7)0.30948 (7)0.0236 (2)
P20.13684 (10)0.00554 (7)0.13258 (7)0.0268 (2)
C10.1175 (3)0.1934 (2)0.3309 (2)0.0202 (7)
C20.2208 (4)0.0838 (2)0.2523 (2)0.0221 (7)
C30.3839 (4)0.0516 (3)0.2645 (3)0.0261 (7)
H30.45270.02260.21390.0307 (18)*
C40.4490 (4)0.1255 (3)0.3493 (3)0.0270 (8)
H40.56230.10270.35430.0307 (18)*
C50.3474 (4)0.2330 (3)0.4268 (2)0.0243 (7)
H50.39070.28440.48460.0307 (18)*
C60.1820 (4)0.2634 (2)0.4181 (2)0.0230 (7)
H60.11050.33450.47360.0307 (18)*
C70.2186 (3)0.3115 (3)0.4613 (2)0.0224 (7)
C80.2469 (4)0.2409 (3)0.5256 (3)0.0272 (7)
H80.19230.16020.49300.0307 (18)*
C90.3531 (4)0.2868 (3)0.6358 (3)0.0327 (8)
H90.37060.23770.67850.0307 (18)*
C100.4340 (4)0.4038 (3)0.6841 (3)0.0329 (8)
H100.50860.43500.75930.0307 (18)*
C110.4059 (4)0.4748 (3)0.6227 (3)0.0317 (8)
H110.45960.55560.65650.0307 (18)*
C120.2997 (4)0.4293 (3)0.5117 (3)0.0266 (7)
H120.28230.47910.46990.0307 (18)*
C130.0741 (3)0.3568 (2)0.2578 (2)0.0217 (7)
C140.1414 (4)0.3541 (3)0.1622 (3)0.0299 (8)
H140.19470.29240.12830.0307 (18)*
C150.1312 (4)0.4405 (3)0.1164 (3)0.0346 (8)
H150.17550.43660.05060.0307 (18)*
C160.0572 (4)0.5320 (3)0.1659 (3)0.0312 (8)
H160.05280.59180.13520.0307 (18)*
C170.0109 (4)0.5367 (3)0.2603 (3)0.0300 (8)
H170.06230.59950.29450.0307 (18)*
C180.0034 (4)0.4487 (3)0.3048 (3)0.0274 (8)
H180.05220.45140.36860.0307 (18)*
C190.3111 (4)0.1371 (3)0.0608 (3)0.0275 (8)
C200.3281 (4)0.2339 (3)0.0934 (3)0.0298 (8)
H200.24690.23380.15720.0307 (18)*
C210.4619 (4)0.3301 (3)0.0343 (3)0.0329 (8)
H210.47310.39460.05870.0307 (18)*
C220.5789 (4)0.3324 (3)0.0599 (3)0.0368 (9)
H220.67090.39810.10020.0307 (18)*
C230.5618 (4)0.2388 (3)0.0956 (3)0.0397 (9)
H230.64160.24060.16100.0307 (18)*
C240.4291 (4)0.1425 (3)0.0364 (3)0.0360 (9)
H240.41780.07900.06220.0307 (18)*
C250.0162 (4)0.0645 (2)0.2096 (3)0.0243 (7)
C260.0205 (4)0.0640 (3)0.3206 (3)0.0293 (8)
H260.05790.03050.36190.0307 (18)*
C270.1393 (4)0.1126 (3)0.3720 (3)0.0333 (8)
H270.14360.11020.44870.0307 (18)*
C280.2503 (4)0.1641 (3)0.3110 (3)0.0335 (8)
H280.33140.19700.34590.0307 (18)*
C290.2443 (4)0.1679 (3)0.1997 (3)0.0336 (8)
H290.31920.20530.15740.0307 (18)*
C300.1294 (4)0.1173 (2)0.1487 (3)0.0279 (8)
H300.12780.11850.07270.0307 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0213 (5)0.0221 (5)0.0248 (5)0.0055 (4)0.0049 (3)0.0055 (4)
P20.0283 (5)0.0226 (5)0.0248 (5)0.0069 (4)0.0035 (4)0.0037 (4)
C10.0197 (16)0.0199 (16)0.0211 (16)0.0069 (13)0.0014 (13)0.0087 (13)
C20.0220 (17)0.0194 (16)0.0237 (17)0.0063 (13)0.0015 (13)0.0075 (14)
C30.0245 (18)0.0219 (17)0.0270 (18)0.0003 (14)0.0032 (14)0.0063 (14)
C40.0202 (18)0.0276 (18)0.0327 (19)0.0057 (14)0.0058 (14)0.0107 (15)
C50.0251 (18)0.0261 (17)0.0240 (17)0.0106 (15)0.0087 (14)0.0089 (14)
C60.0247 (18)0.0173 (16)0.0225 (17)0.0028 (14)0.0015 (14)0.0047 (14)
C70.0160 (16)0.0264 (18)0.0231 (17)0.0048 (14)0.0042 (13)0.0074 (14)
C80.0203 (17)0.0298 (18)0.0315 (19)0.0056 (14)0.0072 (14)0.0110 (15)
C90.0268 (19)0.050 (2)0.032 (2)0.0166 (17)0.0093 (15)0.0245 (17)
C100.0252 (19)0.047 (2)0.0199 (18)0.0047 (17)0.0014 (14)0.0070 (17)
C110.0239 (19)0.032 (2)0.0276 (19)0.0008 (15)0.0026 (15)0.0021 (16)
C120.0230 (18)0.0273 (18)0.0282 (18)0.0054 (14)0.0077 (14)0.0080 (15)
C130.0173 (16)0.0212 (16)0.0212 (17)0.0011 (13)0.0001 (13)0.0048 (13)
C140.0279 (18)0.0319 (19)0.0261 (18)0.0083 (15)0.0062 (15)0.0053 (15)
C150.037 (2)0.044 (2)0.0278 (19)0.0083 (17)0.0069 (16)0.0192 (17)
C160.0304 (19)0.0277 (19)0.032 (2)0.0026 (16)0.0041 (15)0.0153 (16)
C170.0300 (19)0.0215 (18)0.032 (2)0.0049 (15)0.0004 (15)0.0056 (15)
C180.0275 (18)0.0274 (19)0.0262 (18)0.0056 (15)0.0092 (14)0.0076 (15)
C190.0298 (19)0.0251 (18)0.0219 (18)0.0091 (15)0.0051 (14)0.0009 (14)
C200.0321 (19)0.0300 (19)0.0204 (17)0.0060 (15)0.0031 (14)0.0030 (15)
C210.038 (2)0.0206 (18)0.034 (2)0.0030 (15)0.0075 (16)0.0050 (15)
C220.030 (2)0.028 (2)0.034 (2)0.0006 (16)0.0013 (16)0.0048 (16)
C230.037 (2)0.032 (2)0.033 (2)0.0104 (17)0.0103 (16)0.0010 (17)
C240.047 (2)0.0252 (19)0.031 (2)0.0127 (17)0.0010 (17)0.0057 (15)
C250.0230 (17)0.0182 (16)0.0258 (18)0.0019 (14)0.0022 (14)0.0039 (14)
C260.0277 (18)0.0294 (19)0.0301 (19)0.0110 (15)0.0069 (15)0.0084 (15)
C270.038 (2)0.0288 (19)0.034 (2)0.0105 (16)0.0043 (16)0.0139 (16)
C280.0254 (19)0.0253 (19)0.050 (2)0.0079 (15)0.0029 (16)0.0160 (17)
C290.0212 (18)0.0228 (18)0.053 (2)0.0051 (15)0.0125 (16)0.0078 (17)
C300.0251 (18)0.0233 (18)0.0322 (19)0.0008 (15)0.0107 (15)0.0064 (15)
Geometric parameters (Å, º) top
P1—C11.851 (3)C14—H140.9500
P1—C71.839 (3)C15—C161.378 (4)
P1—C131.836 (3)C15—H150.9500
P2—C21.849 (3)C16—C171.385 (4)
P2—C191.846 (3)C16—H160.9500
P2—C251.838 (3)C17—C181.393 (4)
C1—C61.388 (4)C17—H170.9500
C1—C21.420 (4)C18—H180.9500
C2—C31.388 (4)C19—C201.394 (4)
C3—C41.393 (4)C19—C241.398 (4)
C3—H30.9500C20—C211.387 (4)
C4—C51.394 (4)C20—H200.9500
C4—H40.9500C21—C221.380 (4)
C5—C61.387 (4)C21—H210.9500
C5—H50.9500C22—C231.380 (4)
C6—H60.9500C22—H220.9500
C7—C121.390 (4)C23—C241.382 (4)
C7—C81.399 (4)C23—H230.9500
C8—C91.382 (4)C24—H240.9500
C8—H80.9500C25—C261.390 (4)
C9—C101.382 (4)C25—C301.399 (4)
C9—H90.9500C26—C271.396 (4)
C10—C111.375 (4)C26—H260.9500
C10—H100.9500C27—C281.380 (4)
C11—C121.389 (4)C27—H270.9500
C11—H110.9500C28—C291.377 (4)
C12—H120.9500C28—H280.9500
C13—C181.394 (4)C29—C301.389 (4)
C13—C141.398 (4)C29—H290.9500
C14—C151.387 (4)C30—H300.9500
C13—P1—C7104.17 (13)C16—C15—C14120.4 (3)
C13—P1—C1102.65 (13)C16—C15—H15119.8
C7—P1—C1100.67 (13)C14—C15—H15119.8
C25—P2—C1999.70 (14)C15—C16—C17120.0 (3)
C25—P2—C2101.79 (13)C15—C16—H16120.0
C19—P2—C2101.67 (13)C17—C16—H16120.0
C6—C1—C2118.9 (3)C16—C17—C18119.5 (3)
C6—C1—P1123.2 (2)C16—C17—H17120.2
C2—C1—P1117.8 (2)C18—C17—H17120.2
C3—C2—C1118.6 (3)C17—C18—C13121.5 (3)
C3—C2—P2122.9 (2)C17—C18—H18119.3
C1—C2—P2118.4 (2)C13—C18—H18119.3
C2—C3—C4121.6 (3)C20—C19—C24117.8 (3)
C2—C3—H3119.2C20—C19—P2124.4 (2)
C4—C3—H3119.2C24—C19—P2117.7 (3)
C3—C4—C5119.8 (3)C21—C20—C19121.0 (3)
C3—C4—H4120.1C21—C20—H20119.5
C5—C4—H4120.1C19—C20—H20119.5
C6—C5—C4118.8 (3)C22—C21—C20120.1 (3)
C6—C5—H5120.6C22—C21—H21120.0
C4—C5—H5120.6C20—C21—H21120.0
C5—C6—C1122.1 (3)C21—C22—C23119.8 (3)
C5—C6—H6118.9C21—C22—H22120.1
C1—C6—H6118.9C23—C22—H22120.1
C12—C7—C8118.2 (3)C22—C23—C24120.2 (3)
C12—C7—P1124.7 (2)C22—C23—H23119.9
C8—C7—P1116.8 (2)C24—C23—H23119.9
C9—C8—C7120.9 (3)C23—C24—C19121.0 (3)
C9—C8—H8119.6C23—C24—H24119.5
C7—C8—H8119.6C19—C24—H24119.5
C10—C9—C8120.2 (3)C26—C25—C30119.0 (3)
C10—C9—H9119.9C26—C25—P2124.2 (2)
C8—C9—H9119.9C30—C25—P2116.7 (2)
C11—C10—C9119.6 (3)C25—C26—C27120.5 (3)
C11—C10—H10120.2C25—C26—H26119.8
C9—C10—H10120.2C27—C26—H26119.8
C10—C11—C12120.5 (3)C28—C27—C26119.8 (3)
C10—C11—H11119.7C28—C27—H27120.1
C12—C11—H11119.7C26—C27—H27120.1
C11—C12—C7120.6 (3)C29—C28—C27120.3 (3)
C11—C12—H12119.7C29—C28—H28119.9
C7—C12—H12119.7C27—C28—H28119.9
C18—C13—C14117.8 (3)C28—C29—C30120.4 (3)
C18—C13—P1126.0 (2)C28—C29—H29119.8
C14—C13—P1116.3 (2)C30—C29—H29119.8
C15—C14—C13120.8 (3)C29—C30—C25120.0 (3)
C15—C14—H14119.6C29—C30—H30120.0
C13—C14—H14119.6C25—C30—H30120.0
C13—P1—C1—C669.3 (3)C1—P1—C13—C14134.7 (2)
C7—P1—C1—C638.0 (3)C18—C13—C14—C150.2 (4)
C13—P1—C1—C2109.4 (2)P1—C13—C14—C15180.0 (2)
C7—P1—C1—C2143.3 (2)C13—C14—C15—C161.2 (4)
C6—C1—C2—C31.0 (4)C14—C15—C16—C171.4 (4)
P1—C1—C2—C3177.7 (2)C15—C16—C17—C180.2 (4)
C6—C1—C2—P2177.3 (2)C16—C17—C18—C131.3 (4)
P1—C1—C2—P21.4 (3)C14—C13—C18—C171.4 (4)
C25—P2—C2—C3108.3 (3)P1—C13—C18—C17178.8 (2)
C19—P2—C2—C35.7 (3)C25—P2—C19—C2017.6 (3)
C25—P2—C2—C175.6 (2)C2—P2—C19—C2086.7 (3)
C19—P2—C2—C1178.2 (2)C25—P2—C19—C24159.1 (2)
C1—C2—C3—C41.9 (4)C2—P2—C19—C2496.6 (3)
P2—C2—C3—C4174.2 (2)C24—C19—C20—C212.7 (5)
C2—C3—C4—C52.2 (5)P2—C19—C20—C21179.3 (2)
C3—C4—C5—C60.5 (4)C19—C20—C21—C221.4 (5)
C4—C5—C6—C13.6 (4)C20—C21—C22—C230.4 (5)
C2—C1—C6—C53.8 (4)C21—C22—C23—C240.7 (5)
P1—C1—C6—C5174.8 (2)C22—C23—C24—C190.7 (5)
C13—P1—C7—C1211.1 (3)C20—C19—C24—C232.3 (5)
C1—P1—C7—C12117.2 (3)P2—C19—C24—C23179.2 (2)
C13—P1—C7—C8176.5 (2)C19—P2—C25—C2688.4 (3)
C1—P1—C7—C870.4 (2)C2—P2—C25—C2615.8 (3)
C12—C7—C8—C90.3 (4)C19—P2—C25—C3088.7 (2)
P1—C7—C8—C9172.6 (2)C2—P2—C25—C30167.1 (2)
C7—C8—C9—C100.3 (4)C30—C25—C26—C271.8 (4)
C8—C9—C10—C111.1 (5)P2—C25—C26—C27178.8 (2)
C9—C10—C11—C121.3 (5)C25—C26—C27—C281.7 (5)
C10—C11—C12—C70.6 (5)C26—C27—C28—C290.1 (5)
C8—C7—C12—C110.2 (4)C27—C28—C29—C301.7 (5)
P1—C7—C12—C11172.2 (2)C28—C29—C30—C251.5 (5)
C7—P1—C13—C1859.5 (3)C26—C25—C30—C290.2 (4)
C1—P1—C13—C1845.1 (3)P2—C25—C30—C29177.5 (2)
C7—P1—C13—C14120.7 (2)
(II) [2-(diphenylphosphino)phenyl]methyldiphenylphosphonium iodide top
Crystal data top
C31H27P2+·IZ = 2
Mr = 588.37F(000) = 592
Triclinic, P1Dx = 1.483 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3323 (5) ÅCell parameters from 26612 reflections
b = 11.8412 (10) Åθ = 2.9–27.5°
c = 12.7828 (10) ŵ = 1.36 mm1
α = 69.536 (3)°T = 120 K
β = 67.260 (3)°Needle, colourless
γ = 70.847 (4)°0.20 × 0.08 × 0.04 mm
V = 1317.22 (16) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
5956 independent reflections
Radiation source: Nonius rotating anode5063 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1313
Tmin = 0.855, Tmax = 0.945k = 1515
20101 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.036P)2 + 0.2511P]
where P = (Fo2 + 2Fc2)/3
5956 reflections(Δ/σ)max = 0.001
308 parametersΔρmax = 0.95 e Å3
0 restraintsΔρmin = 1.08 e Å3
Crystal data top
C31H27P2+·Iγ = 70.847 (4)°
Mr = 588.37V = 1317.22 (16) Å3
Triclinic, P1Z = 2
a = 10.3323 (5) ÅMo Kα radiation
b = 11.8412 (10) ŵ = 1.36 mm1
c = 12.7828 (10) ÅT = 120 K
α = 69.536 (3)°0.20 × 0.08 × 0.04 mm
β = 67.260 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
5956 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
5063 reflections with I > 2σ(I)
Tmin = 0.855, Tmax = 0.945Rint = 0.053
20101 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.02Δρmax = 0.95 e Å3
5956 reflectionsΔρmin = 1.08 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.117295 (15)0.172142 (14)0.149953 (13)0.02858 (7)
P10.62201 (6)0.24647 (5)0.79838 (5)0.01708 (12)
P20.40964 (6)0.15057 (5)0.72616 (5)0.02066 (13)
C10.6882 (2)0.19519 (19)0.66503 (19)0.0176 (4)
C20.5980 (2)0.15597 (19)0.63244 (19)0.0187 (4)
C30.6539 (2)0.1208 (2)0.5274 (2)0.0221 (5)
H30.59390.09550.50330.0358 (15)*
C40.7952 (2)0.1218 (2)0.4572 (2)0.0230 (5)
H40.83150.09630.38660.0358 (15)*
C50.8832 (2)0.1604 (2)0.4905 (2)0.0238 (5)
H50.97980.16150.44260.0358 (15)*
C60.8301 (2)0.1971 (2)0.5935 (2)0.0205 (5)
H60.89040.22380.61600.0358 (15)*
C70.7634 (2)0.2857 (2)0.81887 (19)0.0206 (5)
C80.7573 (3)0.4069 (2)0.8120 (2)0.0259 (5)
H80.68310.47220.78860.0358 (15)*
C90.8612 (3)0.4318 (2)0.8398 (2)0.0322 (6)
H90.85860.51460.83430.0358 (15)*
C100.9672 (3)0.3371 (2)0.8752 (2)0.0297 (6)
H101.03650.35490.89530.0358 (15)*
C110.9745 (3)0.2161 (3)0.8819 (2)0.0301 (6)
H111.04900.15150.90570.0358 (15)*
C120.8726 (2)0.1893 (2)0.8537 (2)0.0259 (5)
H120.87700.10640.85800.0358 (15)*
C130.4791 (2)0.38034 (19)0.78352 (19)0.0184 (4)
C140.4939 (2)0.4686 (2)0.6759 (2)0.0231 (5)
H140.58050.45860.61300.0358 (15)*
C150.3829 (3)0.5707 (2)0.6606 (2)0.0284 (5)
H150.39360.63100.58730.0358 (15)*
C160.2559 (3)0.5851 (2)0.7523 (2)0.0282 (5)
H160.17920.65470.74140.0358 (15)*
C170.2410 (2)0.4978 (2)0.8599 (2)0.0269 (5)
H170.15420.50840.92250.0358 (15)*
C180.3514 (2)0.3958 (2)0.8768 (2)0.0233 (5)
H180.34100.33670.95080.0358 (15)*
C190.3121 (2)0.2234 (2)0.6171 (2)0.0233 (5)
C200.2954 (3)0.1611 (2)0.5502 (2)0.0305 (6)
H200.33590.07500.56020.0358 (15)*
C210.2211 (3)0.2225 (3)0.4700 (2)0.0373 (6)
H210.21010.17880.42540.0358 (15)*
C220.1626 (3)0.3472 (3)0.4545 (2)0.0430 (7)
H220.11170.38980.39880.0358 (15)*
C230.1780 (3)0.4107 (3)0.5201 (3)0.0423 (7)
H230.13810.49710.50880.0358 (15)*
C240.2512 (3)0.3493 (2)0.6021 (2)0.0319 (6)
H240.25970.39300.64790.0358 (15)*
C250.4167 (2)0.0148 (2)0.76049 (19)0.0211 (5)
C260.2891 (2)0.0556 (2)0.7960 (2)0.0264 (5)
H260.20160.00330.79190.0358 (15)*
C270.2896 (3)0.1805 (2)0.8369 (2)0.0287 (5)
H270.20300.20700.85940.0358 (15)*
C280.4165 (3)0.2674 (2)0.8450 (2)0.0285 (5)
H280.41660.35310.87370.0358 (15)*
C290.5427 (3)0.2286 (2)0.8111 (2)0.0257 (5)
H290.62960.28770.81650.0358 (15)*
C300.5423 (2)0.1028 (2)0.7690 (2)0.0226 (5)
H300.62940.07700.74580.0358 (15)*
C310.5646 (3)0.1262 (2)0.9247 (2)0.0236 (5)
H31A0.64570.05480.92970.0358 (15)*
H31B0.48660.10180.91830.0358 (15)*
H31C0.53010.15620.99530.0358 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01795 (9)0.03424 (11)0.02820 (10)0.00356 (7)0.00608 (7)0.00499 (7)
P10.0174 (3)0.0166 (3)0.0173 (3)0.0063 (2)0.0039 (2)0.0036 (2)
P20.0173 (3)0.0212 (3)0.0251 (3)0.0071 (2)0.0029 (2)0.0093 (2)
C10.0187 (10)0.0141 (10)0.0182 (11)0.0037 (9)0.0055 (9)0.0025 (8)
C20.0182 (10)0.0150 (11)0.0225 (12)0.0047 (9)0.0045 (9)0.0052 (9)
C30.0224 (11)0.0214 (12)0.0244 (12)0.0082 (10)0.0048 (10)0.0075 (9)
C40.0255 (12)0.0209 (12)0.0203 (12)0.0044 (10)0.0037 (10)0.0069 (9)
C50.0173 (11)0.0262 (12)0.0234 (12)0.0056 (10)0.0010 (9)0.0062 (9)
C60.0151 (10)0.0224 (11)0.0228 (12)0.0046 (9)0.0041 (9)0.0058 (9)
C70.0204 (11)0.0261 (12)0.0161 (11)0.0097 (10)0.0021 (9)0.0059 (9)
C80.0279 (12)0.0265 (13)0.0253 (13)0.0099 (11)0.0099 (10)0.0034 (10)
C90.0409 (15)0.0344 (14)0.0311 (14)0.0208 (13)0.0132 (12)0.0060 (11)
C100.0254 (12)0.0432 (16)0.0272 (14)0.0166 (12)0.0057 (11)0.0113 (11)
C110.0234 (12)0.0409 (15)0.0290 (14)0.0047 (11)0.0102 (11)0.0121 (11)
C120.0245 (12)0.0287 (13)0.0274 (13)0.0051 (10)0.0089 (10)0.0100 (10)
C130.0195 (11)0.0162 (11)0.0228 (12)0.0069 (9)0.0056 (9)0.0071 (9)
C140.0232 (11)0.0201 (12)0.0247 (12)0.0065 (10)0.0053 (10)0.0048 (9)
C150.0354 (14)0.0187 (12)0.0318 (14)0.0050 (11)0.0136 (11)0.0043 (10)
C160.0275 (13)0.0186 (12)0.0430 (15)0.0015 (10)0.0158 (12)0.0137 (11)
C170.0185 (11)0.0293 (13)0.0364 (14)0.0051 (10)0.0021 (10)0.0196 (11)
C180.0243 (12)0.0256 (12)0.0232 (12)0.0111 (10)0.0027 (10)0.0100 (10)
C190.0143 (10)0.0259 (12)0.0262 (13)0.0067 (10)0.0012 (9)0.0064 (10)
C200.0223 (12)0.0357 (15)0.0348 (15)0.0034 (11)0.0071 (11)0.0153 (11)
C210.0231 (13)0.0563 (19)0.0329 (15)0.0084 (13)0.0060 (11)0.0152 (13)
C220.0254 (14)0.060 (2)0.0349 (16)0.0145 (14)0.0124 (12)0.0063 (14)
C230.0275 (14)0.0292 (15)0.057 (2)0.0066 (12)0.0141 (14)0.0054 (13)
C240.0224 (12)0.0269 (14)0.0430 (16)0.0089 (11)0.0057 (11)0.0066 (11)
C250.0201 (11)0.0267 (12)0.0183 (11)0.0092 (10)0.0018 (9)0.0088 (9)
C260.0199 (11)0.0293 (13)0.0316 (14)0.0091 (10)0.0028 (10)0.0119 (10)
C270.0268 (12)0.0323 (14)0.0315 (14)0.0168 (11)0.0009 (11)0.0127 (11)
C280.0338 (14)0.0263 (13)0.0279 (14)0.0150 (11)0.0047 (11)0.0073 (10)
C290.0273 (12)0.0219 (12)0.0282 (13)0.0053 (10)0.0094 (10)0.0059 (10)
C300.0217 (11)0.0250 (12)0.0221 (12)0.0092 (10)0.0033 (9)0.0070 (9)
C310.0249 (12)0.0227 (12)0.0208 (12)0.0078 (10)0.0058 (10)0.0020 (9)
Geometric parameters (Å, º) top
P1—C11.814 (2)C15—C161.389 (4)
P1—C71.801 (2)C15—H150.9500
P1—C131.789 (2)C16—C171.390 (4)
P1—C311.787 (2)C16—H160.9500
P2—C21.858 (2)C17—C181.382 (3)
P2—C191.838 (2)C17—H170.9500
P2—C251.834 (2)C18—H180.9500
C1—C61.399 (3)C19—C241.390 (3)
C1—C21.406 (3)C19—C201.395 (3)
C2—C31.394 (3)C20—C211.374 (4)
C3—C41.389 (3)C20—H200.9500
C3—H30.9500C21—C221.374 (4)
C4—C51.387 (3)C21—H210.9500
C4—H40.9500C22—C231.385 (4)
C5—C61.382 (3)C22—H220.9500
C5—H50.9500C23—C241.384 (4)
C6—H60.9500C23—H230.9500
C7—C81.390 (3)C24—H240.9500
C7—C121.401 (3)C25—C301.387 (3)
C8—C91.393 (3)C25—C261.407 (3)
C8—H80.9500C26—C271.386 (3)
C9—C101.372 (4)C26—H260.9500
C9—H90.9500C27—C281.391 (4)
C10—C111.383 (4)C27—H270.9500
C10—H100.9500C28—C291.384 (3)
C11—C121.390 (3)C28—H280.9500
C11—H110.9500C29—C301.395 (3)
C12—H120.9500C29—H290.9500
C13—C141.395 (3)C30—H300.9500
C13—C181.405 (3)C31—H31A0.9800
C14—C151.383 (3)C31—H31B0.9800
C14—H140.9500C31—H31C0.9800
C31—P1—C13111.96 (11)C16—C15—H15120.0
C31—P1—C7106.12 (11)C15—C16—C17120.0 (2)
C13—P1—C7109.57 (10)C15—C16—H16120.0
C31—P1—C1111.19 (11)C17—C16—H16120.0
C13—P1—C1107.57 (10)C18—C17—C16120.7 (2)
C7—P1—C1110.46 (10)C18—C17—H17119.7
C25—P2—C19104.26 (10)C16—C17—H17119.7
C25—P2—C2100.67 (10)C17—C18—C13119.3 (2)
C19—P2—C2101.50 (10)C17—C18—H18120.3
C6—C1—C2120.2 (2)C13—C18—H18120.3
C6—C1—P1119.05 (16)C24—C19—C20118.8 (2)
C2—C1—P1120.79 (16)C24—C19—P2116.69 (19)
C3—C2—C1118.1 (2)C20—C19—P2124.54 (18)
C3—C2—P2120.60 (17)C21—C20—C19121.0 (2)
C1—C2—P2121.29 (17)C21—C20—H20119.5
C4—C3—C2121.5 (2)C19—C20—H20119.5
C4—C3—H3119.2C22—C21—C20120.0 (3)
C2—C3—H3119.2C22—C21—H21120.0
C5—C4—C3119.8 (2)C20—C21—H21120.0
C5—C4—H4120.1C21—C22—C23119.9 (3)
C3—C4—H4120.1C21—C22—H22120.0
C6—C5—C4119.9 (2)C23—C22—H22120.0
C6—C5—H5120.1C22—C23—C24120.4 (3)
C4—C5—H5120.1C22—C23—H23119.8
C5—C6—C1120.5 (2)C24—C23—H23119.8
C5—C6—H6119.7C23—C24—C19119.9 (3)
C1—C6—H6119.7C23—C24—H24120.1
C8—C7—C12120.4 (2)C19—C24—H24120.1
C8—C7—P1121.09 (17)C30—C25—C26118.3 (2)
C12—C7—P1118.25 (17)C30—C25—P2121.11 (17)
C7—C8—C9119.3 (2)C26—C25—P2119.94 (17)
C7—C8—H8120.3C27—C26—C25120.7 (2)
C9—C8—H8120.3C27—C26—H26119.6
C10—C9—C8120.2 (2)C25—C26—H26119.6
C10—C9—H9119.9C26—C27—C28120.2 (2)
C8—C9—H9119.9C26—C27—H27119.9
C9—C10—C11120.9 (2)C28—C27—H27119.9
C9—C10—H10119.6C29—C28—C27119.7 (2)
C11—C10—H10119.6C29—C28—H28120.1
C10—C11—C12119.9 (2)C27—C28—H28120.1
C10—C11—H11120.1C28—C29—C30120.0 (2)
C12—C11—H11120.1C28—C29—H29120.0
C11—C12—C7119.3 (2)C30—C29—H29120.0
C11—C12—H12120.3C25—C30—C29121.1 (2)
C7—C12—H12120.3C25—C30—H30119.5
C14—C13—C18119.8 (2)C29—C30—H30119.5
C14—C13—P1118.95 (17)P1—C31—H31A109.5
C18—C13—P1121.20 (18)P1—C31—H31B109.5
C15—C14—C13120.2 (2)H31A—C31—H31B109.5
C15—C14—H14119.9P1—C31—H31C109.5
C13—C14—H14119.9H31A—C31—H31C109.5
C14—C15—C16120.0 (2)H31B—C31—H31C109.5
C14—C15—H15120.0
C31—P1—C1—C6120.55 (18)C1—P1—C13—C1441.0 (2)
C13—P1—C1—C6116.54 (18)C31—P1—C13—C1814.6 (2)
C7—P1—C1—C63.0 (2)C7—P1—C13—C18102.85 (19)
C31—P1—C1—C260.5 (2)C1—P1—C13—C18137.03 (18)
C13—P1—C1—C262.4 (2)C18—C13—C14—C150.5 (3)
C7—P1—C1—C2178.05 (18)P1—C13—C14—C15177.57 (17)
C6—C1—C2—C30.6 (3)C13—C14—C15—C160.4 (3)
P1—C1—C2—C3178.32 (16)C14—C15—C16—C170.9 (4)
C6—C1—C2—P2179.28 (16)C15—C16—C17—C180.4 (4)
P1—C1—C2—P21.8 (3)C16—C17—C18—C130.5 (3)
C25—P2—C2—C361.1 (2)C14—C13—C18—C171.0 (3)
C19—P2—C2—C346.0 (2)P1—C13—C18—C17177.07 (17)
C25—P2—C2—C1118.77 (19)C25—P2—C19—C24160.35 (18)
C19—P2—C2—C1134.12 (19)C2—P2—C19—C2495.36 (19)
C1—C2—C3—C41.2 (3)C25—P2—C19—C2019.4 (2)
P2—C2—C3—C4178.73 (18)C2—P2—C19—C2084.9 (2)
C2—C3—C4—C51.0 (4)C24—C19—C20—C210.5 (4)
C3—C4—C5—C60.2 (3)P2—C19—C20—C21179.8 (2)
C4—C5—C6—C10.3 (3)C19—C20—C21—C220.3 (4)
C2—C1—C6—C50.1 (3)C20—C21—C22—C230.3 (4)
P1—C1—C6—C5179.05 (18)C21—C22—C23—C240.5 (4)
C31—P1—C7—C8126.2 (2)C22—C23—C24—C191.3 (4)
C13—P1—C7—C85.2 (2)C20—C19—C24—C231.3 (4)
C1—P1—C7—C8113.14 (19)P2—C19—C24—C23179.0 (2)
C31—P1—C7—C1247.4 (2)C19—P2—C25—C30136.05 (19)
C13—P1—C7—C12168.42 (18)C2—P2—C25—C3031.1 (2)
C1—P1—C7—C1273.2 (2)C19—P2—C25—C2653.6 (2)
C12—C7—C8—C90.2 (4)C2—P2—C25—C26158.46 (19)
P1—C7—C8—C9173.65 (19)C30—C25—C26—C270.9 (3)
C7—C8—C9—C100.9 (4)P2—C25—C26—C27171.54 (19)
C8—C9—C10—C111.1 (4)C25—C26—C27—C281.0 (4)
C9—C10—C11—C120.6 (4)C26—C27—C28—C290.6 (4)
C10—C11—C12—C70.1 (4)C27—C28—C29—C300.0 (4)
C8—C7—C12—C110.3 (4)C26—C25—C30—C290.3 (3)
P1—C7—C12—C11173.35 (18)P2—C25—C30—C29170.87 (18)
C31—P1—C13—C14163.44 (17)C28—C29—C30—C250.1 (4)
C7—P1—C13—C1479.11 (19)
(III) [2-(diphenylphosphino)phenyl]trimethylphosphonium iodide top
Crystal data top
C11H19P2+·IF(000) = 672
Mr = 340.10Dx = 1.532 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 20 reflections
a = 9.2002 (16) Åθ = 14.2–17.8°
b = 11.846 (3) ŵ = 2.36 mm1
c = 13.566 (2) ÅT = 150 K
β = 94.312 (14)°Rhomb, colourless
V = 1474.3 (5) Å30.2 × 0.2 × 0.05 mm
Z = 4
Data collection top
Rigaku AFC-7S
diffractometer
1772 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.120
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 1414
Tmin = 0.596, Tmax = 0.890l = 1616
5375 measured reflections3 standard reflections every 150 reflections
2587 independent reflections intensity decay: 0.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0668P)2]
where P = (Fo2 + 2Fc2)/3
2587 reflections(Δ/σ)max = 0.001
128 parametersΔρmax = 2.21 e Å3
0 restraintsΔρmin = 2.89 e Å3
Crystal data top
C11H19P2+·IV = 1474.3 (5) Å3
Mr = 340.10Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.2002 (16) ŵ = 2.36 mm1
b = 11.846 (3) ÅT = 150 K
c = 13.566 (2) Å0.2 × 0.2 × 0.05 mm
β = 94.312 (14)°
Data collection top
Rigaku AFC-7S
diffractometer
1772 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.120
Tmin = 0.596, Tmax = 0.8903 standard reflections every 150 reflections
5375 measured reflections intensity decay: 0.0%
2587 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 0.97Δρmax = 2.21 e Å3
2587 reflectionsΔρmin = 2.89 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.65499 (4)0.22429 (3)0.41541 (2)0.03245 (18)
P10.38142 (16)0.15971 (12)0.66226 (9)0.0239 (3)
P20.07559 (19)0.30052 (14)0.70472 (11)0.0325 (4)
C10.2839 (6)0.1354 (5)0.7721 (3)0.0234 (12)
C20.1562 (7)0.1915 (5)0.7908 (4)0.0248 (12)
C30.0909 (7)0.1654 (5)0.8773 (4)0.0310 (13)
H30.00440.20390.89170.037*
C40.1491 (7)0.0849 (5)0.9426 (4)0.0320 (14)
H40.10160.06751.00060.038*
C50.2768 (7)0.0295 (5)0.9235 (4)0.0334 (14)
H50.31800.02480.96900.040*
C60.3440 (7)0.0533 (5)0.8382 (4)0.0319 (14)
H60.43050.01440.82430.038*
C70.5420 (6)0.0735 (5)0.6670 (4)0.0294 (13)
H7A0.51440.00610.67160.066 (6)*
H7B0.60650.09420.72500.066 (6)*
H7C0.59300.08530.60690.066 (6)*
C80.4417 (7)0.3032 (5)0.6534 (4)0.0291 (13)
H8A0.50070.32370.71390.066 (6)*
H8B0.35680.35330.64510.066 (6)*
H8C0.50040.31100.59640.066 (6)*
C90.2738 (7)0.1198 (5)0.5522 (4)0.0344 (15)
H9A0.24250.04110.55780.066 (6)*
H9B0.33210.12770.49500.066 (6)*
H9C0.18790.16880.54350.066 (6)*
C100.0333 (8)0.4127 (5)0.7911 (4)0.0434 (17)
H10A0.12300.45260.81340.066 (6)*
H10B0.01020.37950.84810.066 (6)*
H10C0.03570.46590.75780.066 (6)*
C110.1076 (8)0.2407 (6)0.6756 (5)0.0401 (16)
H11A0.10150.17830.62870.066 (6)*
H11B0.17240.29930.64630.066 (6)*
H11C0.14620.21270.73640.066 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0407 (3)0.0340 (3)0.0227 (2)0.00266 (19)0.00296 (15)0.00182 (15)
P10.0308 (8)0.0203 (7)0.0209 (6)0.0020 (7)0.0039 (5)0.0014 (5)
P20.0377 (9)0.0300 (9)0.0296 (7)0.0065 (8)0.0017 (6)0.0075 (6)
C10.033 (3)0.019 (3)0.018 (2)0.002 (3)0.002 (2)0.000 (2)
C20.034 (3)0.017 (3)0.023 (2)0.002 (3)0.002 (2)0.001 (2)
C30.039 (4)0.028 (3)0.026 (3)0.001 (3)0.006 (2)0.006 (2)
C40.047 (4)0.030 (3)0.019 (2)0.008 (3)0.008 (2)0.002 (2)
C50.048 (4)0.025 (3)0.027 (3)0.001 (3)0.005 (3)0.004 (2)
C60.043 (4)0.026 (3)0.027 (3)0.007 (3)0.002 (3)0.001 (2)
C70.028 (3)0.027 (3)0.035 (3)0.001 (3)0.007 (2)0.004 (2)
C80.039 (4)0.020 (3)0.029 (3)0.007 (3)0.005 (2)0.003 (2)
C90.045 (4)0.034 (4)0.023 (3)0.003 (3)0.003 (2)0.003 (2)
C100.054 (5)0.025 (3)0.050 (4)0.011 (4)0.002 (3)0.000 (3)
C110.039 (4)0.039 (4)0.040 (3)0.009 (3)0.009 (3)0.003 (3)
Geometric parameters (Å, º) top
P1—C11.820 (5)C6—H60.9500
P1—C71.794 (6)C7—H7A0.9800
P1—C81.795 (6)C7—H7B0.9800
P1—C91.792 (5)C7—H7C0.9800
P2—C21.858 (5)C8—H8A0.9800
P2—C101.832 (6)C8—H8B0.9800
P2—C111.843 (7)C8—H8C0.9800
C1—C21.390 (8)C9—H9A0.9800
C1—C61.408 (7)C9—H9B0.9800
C2—C31.392 (8)C9—H9C0.9800
C3—C41.383 (8)C10—H10A0.9800
C3—H30.9500C10—H10B0.9800
C4—C51.388 (9)C10—H10C0.9800
C4—H40.9500C11—H11A0.9800
C5—C61.381 (8)C11—H11B0.9800
C5—H50.9500C11—H11C0.9800
C9—P1—C8110.4 (3)H7A—C7—H7B109.5
C9—P1—C7106.4 (3)P1—C7—H7C109.5
C8—P1—C7106.5 (3)H7A—C7—H7C109.5
C9—P1—C1111.4 (3)H7B—C7—H7C109.5
C8—P1—C1112.2 (3)P1—C8—H8A109.5
C7—P1—C1109.6 (3)P1—C8—H8B109.5
C10—P2—C11100.4 (3)H8A—C8—H8B109.5
C10—P2—C2101.3 (3)P1—C8—H8C109.5
C11—P2—C2100.5 (3)H8A—C8—H8C109.5
C2—C1—C6120.8 (5)H8B—C8—H8C109.5
C2—C1—P1123.3 (4)P1—C9—H9A109.5
C6—C1—P1115.9 (5)P1—C9—H9B109.5
C1—C2—C3118.2 (5)H9A—C9—H9B109.5
C1—C2—P2121.4 (4)P1—C9—H9C109.5
C3—C2—P2120.4 (5)H9A—C9—H9C109.5
C4—C3—C2121.5 (6)H9B—C9—H9C109.5
C4—C3—H3119.2P2—C10—H10A109.5
C2—C3—H3119.2P2—C10—H10B109.5
C3—C4—C5119.9 (6)H10A—C10—H10B109.5
C3—C4—H4120.0P2—C10—H10C109.5
C5—C4—H4120.0H10A—C10—H10C109.5
C6—C5—C4120.0 (5)H10B—C10—H10C109.5
C6—C5—H5120.0P2—C11—H11A109.5
C4—C5—H5120.0P2—C11—H11B109.5
C5—C6—C1119.7 (6)H11A—C11—H11B109.5
C5—C6—H6120.2P2—C11—H11C109.5
C1—C6—H6120.2H11A—C11—H11C109.5
P1—C7—H7A109.5H11B—C11—H11C109.5
P1—C7—H7B109.5
C9—P1—C1—C263.7 (5)C11—P2—C2—C1122.7 (5)
C8—P1—C1—C260.6 (5)C10—P2—C2—C344.5 (6)
C7—P1—C1—C2178.8 (5)C11—P2—C2—C358.5 (5)
C9—P1—C1—C6115.1 (5)C1—C2—C3—C41.0 (9)
C8—P1—C1—C6120.5 (5)P2—C2—C3—C4179.8 (5)
C7—P1—C1—C62.4 (5)C2—C3—C4—C51.2 (9)
C6—C1—C2—C31.0 (8)C3—C4—C5—C61.3 (9)
P1—C1—C2—C3179.7 (4)C4—C5—C6—C11.2 (9)
C6—C1—C2—P2179.7 (4)C2—C1—C6—C51.1 (9)
P1—C1—C2—P21.5 (7)P1—C1—C6—C5179.9 (5)
C10—P2—C2—C1134.3 (5)

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC30H24P2C31H27P2+·IC11H19P2+·I
Mr446.43588.37340.10
Crystal system, space groupTriclinic, P1Triclinic, P1Monoclinic, P21/c
Temperature (K)120120150
a, b, c (Å)8.1930 (15), 12.442 (2), 12.584 (3)10.3323 (5), 11.8412 (10), 12.7828 (10)9.2002 (16), 11.846 (3), 13.566 (2)
α, β, γ (°)109.846 (5), 99.918 (5), 98.330 (15)69.536 (3), 67.260 (3), 70.847 (4)90, 94.312 (14), 90
V3)1159.6 (4)1317.22 (16)1474.3 (5)
Z224
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.201.362.36
Crystal size (mm)0.12 × 0.10 × 0.060.20 × 0.08 × 0.040.2 × 0.2 × 0.05
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Rigaku AFC-7S
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Multi-scan
(SORTAV; Blessing, 1997)
ψ scan
(North et al., 1968)
Tmin, Tmax0.892, 0.9850.855, 0.9450.596, 0.890
No. of measured, independent and
observed [I > 2σ(I)] reflections
15781, 5122, 2565 20101, 5956, 5063 5375, 2587, 1772
Rint0.1320.0530.120
(sin θ/λ)max1)0.6500.6500.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.132, 0.93 0.031, 0.074, 1.02 0.046, 0.121, 0.97
No. of reflections512259562587
No. of parameters290308128
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.330.95, 1.082.21, 2.89

Computer programs: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988), COLLECT and DENZO, MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) for (I) top
P1—C11.851 (3)P2—C191.846 (3)
P1—C71.839 (3)P2—C251.838 (3)
P1—C131.836 (3)C1—C21.420 (4)
P2—C21.849 (3)
C13—P1—C7104.17 (13)C25—P2—C2101.79 (13)
C13—P1—C1102.65 (13)C19—P2—C2101.67 (13)
C7—P1—C1100.67 (13)C2—C1—P1117.8 (2)
C25—P2—C1999.70 (14)C1—C2—P2118.4 (2)
Selected geometric parameters (Å, º) for (II) top
P1—C11.814 (2)P2—C21.858 (2)
P1—C71.801 (2)P2—C191.838 (2)
P1—C131.789 (2)P2—C251.834 (2)
P1—C311.787 (2)C1—C21.406 (3)
C31—P1—C13111.96 (11)C25—P2—C19104.26 (10)
C31—P1—C7106.12 (11)C25—P2—C2100.67 (10)
C13—P1—C7109.57 (10)C19—P2—C2101.50 (10)
C31—P1—C1111.19 (11)C2—C1—P1120.79 (16)
C13—P1—C1107.57 (10)C1—C2—P2121.29 (17)
C7—P1—C1110.46 (10)
Selected geometric parameters (Å, º) for (III) top
P1—C11.820 (5)P2—C21.858 (5)
P1—C71.794 (6)P2—C101.832 (6)
P1—C81.795 (6)P2—C111.843 (7)
P1—C91.792 (5)C1—C21.390 (8)
C9—P1—C8110.4 (3)C10—P2—C11100.4 (3)
C9—P1—C7106.4 (3)C10—P2—C2101.3 (3)
C8—P1—C7106.5 (3)C11—P2—C2100.5 (3)
C9—P1—C1111.4 (3)C2—C1—P1123.3 (4)
C8—P1—C1112.2 (3)C1—C2—P2121.4 (4)
C7—P1—C1109.6 (3)
 

Acknowledgements

The authors thank the EPSRC for access to the Chemical Database Service at Daresbury and Dr N. J. Hill for data collections.

References

First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDavis, M. F., Levason, W., Reid, G. & Webster, M. (2006). Polyhedron, 25, 930–936.  Web of Science CSD CrossRef CAS Google Scholar
First citationDunne, B. J., Morris, R. B. & Orpen, A. G. (1991). J. Chem. Soc. Dalton Trans. pp. 653–661.  CrossRef Web of Science Google Scholar
First citationGenge, A. R. J., Hill, N. J., Levason, W. & Reid, G. (2001). J. Chem. Soc. Dalton Trans. pp. 1007–1012.  Web of Science CSD CrossRef Google Scholar
First citationHart, R., Levason, W., Patel, B. & Reid, G. (2001). Eur. J. Inorg. Chem. pp. 2927–2933.  CrossRef Google Scholar
First citationHill, N. J., Levason, W. & Reid, G. (2002). J. Chem. Soc. Dalton Trans. pp. 1188–1192.  CrossRef Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKyba, E. P., Liu, S. T. & Harris, R. L. (1983). Organometallics, 2, 1877–1879.  CrossRef CAS Web of Science Google Scholar
First citationLevason, W. (1990). Comments Inorg. Chem. 9, 331–361.  CrossRef CAS Google Scholar
First citationLevason, W., Matthews, M. L., Patel, B., Reid, G. & Webster, M. (2004). Dalton Trans. pp. 3305–3312.  CrossRef Google Scholar
First citationMcFarlane, H. C. E. & McFarlane, W. (1983). Polyhedron, 2, 303–304.  CrossRef CAS Web of Science Google Scholar
First citationMolecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.  Google Scholar
First citationMolecular Structure Corporation (1995). TEXSAN. Version 1.7-1. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRoberts, N. K., Skelton, B. W. & White, A. H. (1980). J. Chem. Soc. Dalton Trans. pp. 1567–1571.  CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSigl, M., Schier, A. & Schmidbaur, H. (1998a). Eur. J. Inorg. Chem. pp. 203–210.  CrossRef Google Scholar
First citationSigl, M., Schier, A. & Schmidbaur, H. (1998b). Z. Naturforsch. Teil B, 53, 1313–1315.  CAS Google Scholar
First citationWarren, L. F. & Bennett, M. A. (1976). Inorg. Chem. 15, 3126–3140.  CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds