metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

A polymeric solvent-free variant of a hydridomagnesium inverse crown

CROSSMARK_Color_square_no_text.svg

aWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, and bDepartment of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, England
*Correspondence e-mail: a.r.kennedy@strath.ac.uk

(Received 23 May 2006; accepted 29 June 2006; online 22 July 2006)

A solvent-free agostically propagated polymeric variant of a previously reported hydride-containing inverse crown mol­ecule has been prepared, namely tetra-μ2-diisopropyl­amido-di-μ2-hydrido-dimagnesium(II)disodium(I), [Mg2Na2H2(C6H14N)4]. The asymmetric unit contains two crystallographically independent centrosymmetric mol­ecules, each existing as a cationic eight-membered ring, with alternating metal and N atoms, which acts as a host towards two hydride anions. The metal amide rings are linked via Na⋯C agostic inter­actions to produce one-dimensional polymeric chains propagating along the crystallographic b direction.

Comment

Recent work in our group has focused on the special synergic chemistry which can take place when an alkali metal amide is placed within the same mol­ecular environment as its magnesium bis­(amide) congener (Mulvey, 2006[Mulvey, R. E. (2006). Organometallics, 25, 1060-1075.]). A consequence of this work was the development of a new class of compounds which have become known as `inverse crown ethers', due to their inverse topological relationship with conventional crown ether complexes (Mulvey, 2001[Mulvey, R. E. (2001). Chem. Commun. pp. 1049-1056.]). Further compounds were subsequently prepared which had a similar cationic `host' ring, but the `guests' were anions which did not contain oxygen. These oxygen-free compounds have become known as `inverse crowns' (Mulvey, 2006[Mulvey, R. E. (2006). Organometallics, 25, 1060-1075.]).

[Scheme 1]

As part of our study, the reaction of mixed sodium–magnesium tris­(diisopropyl­amide), NaMg(DA)3, with different substrates was probed. In the presence of ferrocene, ruthenocene or osmocene, a simultaneous regioselective fourfold deprotonation of the metallocene occurred to give a 16-membered inverse crown mol­ecule (Clegg et al., 2001[Clegg, W., Henderson, K. W., Kennedy, A. R., Mulvey, R. E., O'Hara, C. T., Rowlings, R. B. & Tooke, D. M. (2001). Angew. Chem. Int. Ed. 40, 3902-3905.]; Andrikopoulos et al., 2004[Andrikopoulos, P. C., Armstrong, D. R., Clegg, W., Gilfillan, C. J., Hevia, E., Kennedy, A. R., Mulvey, R. E., O'Hara, C. T., Parkinson, J. A. & Tooke, D. M. (2004). J. Am. Chem. Soc. 126, 11612-11620.]). The title complex, (I)[link], was serendipitously prepared by heating under reflux a hydro­carbon solution of NaMg(DA)3 with the arene complex bis­(benzene)chromium. The reaction was attempted in order to ascertain whether the arene complex could undergo deprotonation akin to the metallocenes. No deprotonation was detected by X-ray or NMR spectroscopic analyses, and the only compounds to precipitate from solution were (I)[link] and unreacted bis­(benzene)chromium. It is now known that bis­(benzene)chromium can be selectively monodeprotonated using a different base, [(TMEDA)·Na(μ-Bu)(μ-TMP)Mg(TMP)], where TMP is 2,2,6,6-tetra­methyl­piperidide and TMEDA is N,N,N′,N′-tetramethylethylenediamine (Hevia et al., 2005[Hevia, E., Honeyman, G. W., Kennedy, A. R., Mulvey, R. E. & Sherrington, D. C. (2005). Angew. Chem. Int. Ed. 44, 68-72.]).

The structure of (I)[link] contains two crystallographically independent mol­ecules, each residing on a centre of symmetry (Fig. 1[link]). The inter­nal geometric parameters of both mol­ecules are essentially identical: Mg1—N2 = 2.078 (2) Å versus Mg2—N4 2.062 (2) Å is the largest difference between the two inverse-crown frames. Key geometric parameters can be found in Table 1[link]. Compound (I)[link] is a polymeric solvent-free variant of the previously prepared compound [Na2Mg2(μ-DA)4(μ-H)2.(toluene)2], (II), which has the same connectivity as (I)[link] but with the addition of a toluene mol­ecule π-bonded to each Na atom (Gallagher et al., 2002[Gallagher, D. J., Henderson, K. W., Kennedy, A. R., O'Hara, C. T., Mulvey, R. E. & Rowlings, R. B. (2002). Chem. Commun. pp. 376-377.]). This toluene-to-Na π–ion inter­action causes a significant difference in the Na—N bond lengths, which are shorter in (I)[link] [2.397 (2)–2.407 (2) Å] than in the solvated (II) [2.481 (2) Å]. The endocyclic N—Na—N angles are also different [136.1 (1)–137.5 (1)° for (I)[link] and 132.1 (1)° for (II)]. The Na atoms of (I)[link] compensate for the loss of bound toluene by forming a range of agostic inter­actions. Some of these are intra­molecular [Na⋯C = 2.962 (4)–3.124 (4) Å], but each Na atom also forms one inter­molecular agostic bond [Na⋯C = 3.014 (4) and 3.125 (4) Å], hence propagating one-dimensional polymeric chains along the crystallographic b direction (Fig. 2[link]).

Metal hydrides are of inter­est as reducing agents, but magnesium hydrides are not as well known as their aluminium counterparts. In fact, in addition to (I)[link] and (II), only two similar mol­ecular magnesium hydrides have been structurally characterized to date, namely the K analogue of (II) (Andrikopoulos et al., 2003[Andrikopoulos, P. C., Armstrong, D. R., Kennedy, A. R., Mulvey, R. E., O'Hara, C. T. & Rowlings, R. B. (2003). Eur. J. Inorg. Chem. pp. 3354-3362.]) and a TiMg2 species where the hydrides bridge all three metals (Mokuolu et al., 2003[Mokuolu, Q. F., Duckmanton, P. A., Blake, A. J., Wilson, C. & Love, J. B. (2003). Organometallics, 22, 4387-4389.]). In (I)[link], each hydride forms a slightly asymmetrical bridge between the two Mg atoms of a ring, with Mg—H distances in the range 1.91 (2)–1.94 (2) Å. Comparing small differences in M—H bond distances from X-ray data is of course dangerous. We note, however, that these distances are similar to those found for (II) [1.88 (2) Å] and for the K analogue of (II) [1.94 (2) Å], which has a larger metal amide ring than the Na species. More significance can be attached to the collective difference between these Mg—H distances and the longer distances [2.029 (15)–2.045 (15) Å] found in the μ3-hydrido TiMg2 complex.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Non-hydride H atoms have been omitted for clarity. Atoms labelled with an asterisk (*) or hash (#) are generated by the symmetry codes (-x, -y+1, -z+2) and (-x+1, -y+2, -z+1), respectively.
[Figure 2]
Figure 2
Part of the polymeric chain that extends along the b direction. Each chain is constructed of units from only one of the two crystallographically independent fragments shown in Fig. 1[link]. Atoms labelled with an asterisk are generated by the symmetry code (-x+1, -y+1, -z+1).

Experimental

All experimental manipulations were carried out using standard Schlenk techniques under an argon atmosphere. n-BuNa (5 mmol) (Lochmann et al., 1966[Lochmann, L., Pospisil, J. & Lim, D. (1966). Tetrahedron Lett. 7, 257-262.]) was suspended in hexane (10 ml) and a heptane solution of dibutyl­magnesium (5 mmol) was added to produce a congealed brown mass. Diisopropyl­amine (15 mmol) was then introduced slowly to give a yellow solution. Bis(benzene)chromium (1.25 mmol) (Fischer & Hafner, 1955[Fischer, E. O. & Hafner, W. (1955). Z. Naturforsch. Teil B, 10, 665-667.]) was added and the mixture was heated under reflux for 2 h. The resulting dark solution was left to cool to ambient temperature in a Dewar flask filled with hot water. Large colourless crystals of (I)[link] and small black crystals of bis­(benzene)chromium were isolated. 1H NMR (400.13 MHz, C6D5CD3, 300 K): δ 3.70 (2H, s, Mg—H), 3.17 (8H, m, CH), 1.19 (48H, d, CH3); 13C NMR (100.62 MHz, C6D5CD3, 300 K): δ 49.5 (CH), 27.7 (CH3).

Crystal data
  • [Mg2Na2H2(C6H14N)4]

  • Mr = 497.34

  • Triclinic, [P \overline 1]

  • a = 8.2448 (4) Å

  • b = 10.1118 (5) Å

  • c = 20.1990 (9) Å

  • α = 82.419 (3)°

  • β = 83.897 (3)°

  • γ = 68.916 (2)°

  • V = 1554.36 (13) Å3

  • Z = 2

  • Dx = 1.063 Mg m−3

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 123 (2) K

  • Cut tablet, colourless

  • 0.40 × 0.38 × 0.30 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • ω and φ scans

  • 27877 measured reflections

  • 7078 independent reflections

  • 3944 reflections with I > 2σ(I)

  • Rint = 0.064

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.140

  • S = 1.08

  • 7078 reflections

  • 383 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0385P)2 + 0.9833P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mg1—N1 2.051 (2) 
Mg2—N3i 2.051 (2)
Mg1—N2 2.078 (2)
Mg2—N4 2.062 (2)
Mg1—H1H 1.92 (2)
Mg1—H1Hii 1.91 (2)
Mg2—H2H 1.94 (2)
Mg2—H2Hi 1.91 (2)
Na1—N2 2.397 (2)
Na2—N4 2.399 (2)
Na1—N1ii 2.405 (2)
Na2—N3 2.407 (2)
Na1—C7iii 3.014 (3)
Na1—C6ii 3.072 (5)
Na1—C10 3.089 (3)
Na2—C13 2.962 (4)
Na2—C19 2.980 (4)
Na2—C20 3.124 (3)
Na2—C22iv 3.125 (4)
N1—Mg1—N2 136.48 (9)
N3i—Mg2—N4 137.00 (10)
N2—Na1—N1ii 137.51 (9)
N4—Na2—N3 136.06 (9)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+1, -z+2; (iii) -x, -y+2, -z+2; (iv) -x+1, -y+1, -z+1.

The hydride H atoms and those attached to agostic C atoms were found in a difference synthesis and refined isotropically. All other H atoms were constrained to geometrically idealized positions using a riding model; for CH atoms, C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C), and for CH3 atoms, C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C).

Data collection: COLLECT (Nonius, 1988[Nonius (1988). COLLECT. Nonius BV, Delft, The Netherlands.]) and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recent work in our group has focused on the special synergic chemistry which can take place when an alkali metal amide is placed within the same molecular environment as its magnesium bis(amide) congener (Mulvey, 2006). A consequence of this work was the development of a new class of compounds which have become known as `inverse crown ethers', due to their inverse topological relationship with conventional crown ether complexes (Mulvey, 2001). Further compounds were subsequently prepared which had a similar cationic `host' ring, but the `guests' were anions which did not contain oxygen. These oxygen-free compounds have become known as `inverse crowns' (Mulvey, 2006).

As part of our study, the reaction of mixed sodium–magnesium tris(diisopropylamide), NaMg(DA)3, with various different substrates was probed. In the presence of ferrocene, ruthenocene or osmocene, a simultaneous regioselective fourfold deprotonation of the metallocene occurred to give a 16-membered inverse crown molecule (Clegg et al., 2001; Andrikopoulos et al., 2004). The title complex, (I), [Na2Mg2(H)2{(C3H7)2N}4]n, was serendipitously prepared by heating to reflux a hydrocarbon solution of NaMg(DA)3 with the arene complex bis(benzene)chromium. The reaction was attempted in order to ascertain whether the arene complex could undergo deprotonation akin to the metallocenes. No deprotonation was detected by X-ray or NMR spectroscopic analyses, and the only compounds to precipitate from solution were (I) and unreacted bis(benzene)chromium. It is now known that bis(benzene)chromium can be selectively monodeprotonated using a different base, [(TMEDA)·Na(µ-Bu)(µ-TMP)Mg(TMP)], where TMP is 2,2,6,6-tetramethylpiperidide (Hevia et al., 2005).

The structure of (I) contains two crystallographically independent molecules, each residing on a centre of symmetry (Fig. 1). The internal geometric parameters of both molecules are essentially identical: Mg1—N2 = 2.078 (2) Å versus Mg2—N4 2.062 (2) Å is the largest difference between the two inverse-crown frames. Key geometric parameters can be found in Table 1. Compound (I) is a polymeric solvent-free variant of the previously prepared compound [Na2Mg2(µ-DA)4(µ-H)2.(toluene)2], (II), which has the same connectivity as (I) but with the addition of a toluene molecule π-bonded to each Na atom (Gallagher et al., 2002). This toluene-to-Na ππ interaction causes a significant difference in the Na—N bond lengths, which are shorter in (I) [2.397 (2)–2.407 (2) Å] than in the solvated (II) [2.481 (2) Å]. The endocyclic N—Na—N angles are also different [136.1 (1)–137.5 (1)° for (I) and 132.1 (1)° for (II)]. The Na atoms of (I) compensate for the loss of bound toluene by forming a range of agostic interactions. Some of these are intramolecular [Na···C 2.962 (4)–3.124 (4) Å], but each Na atom also forms one intermolecular agostic bond [Na···C 3.014 (4) and 3.125 (4) Å], hence propagating one-dimensional polymeric chains along the crystallographic b direction (Fig. 2).

Metal hydrides are of interest as reducing agents, but magnesium hydrides are not as well known as their aluminium counterparts. In fact, in addition to (I) and (II), only two similar molecular magnesium hydrides have been structurally characterized to date, namely the K analogue of (II) (Andrikopoulos et al., 2003) and a TiMg2 species where the hydrides bridge all three metals (Mokuolu et al., 2003). In (I), each hydride forms a slightly asymmetrical bridge between the two Mg atoms of a ring, with Mg—H distances in the range 1.91 (2)–1.94 (2) Å. Comparing small differences in M—H bond distances from X-ray data is of course dangerous. We note, however, that these distances are similar to those found for (II) [1.88 (2) Å] and for the K analogue of (II) [1.94 (2) Å], which has a larger metal amide ring than the Na species. More significance can be attached to the collective difference between these Mg—H distances and the longer ones [2.029 (15)–2.045 (15) Å] found in the µ3-hydrido TiMg2 complex.

Experimental top

All experimental manipulations were carried out using standard Schlenk techniques under an argon atmosphere. n-BuNa (5 mmol) (Lochmann et al., 1966) was suspended in hexane (10 ml) and a heptane solution of dibutylmagnesium (5 mmol) was added to produce a congealed brown mass. Diisopropylamine (15 mmol) was then introduced slowly to give a yellow solution. Bis(benzene)chromium (1.25 mmol) (Fischer & Hafner, 1955) was added and the mixture was heated to reflux for 2 h. The resulting dark solution was left to cool to ambient temperature in a Dewar flask filled with hot water. Large colourless crystals of (I) and small black crystals of bis(benzene)chromium were isolated. Spectroscopic analysis: 1H NMR (400.13 MHz, C6D5CD3, 300 K, δ, p.p.m.): 3.70 (2H, s, Mg—H), 3,17 (8H, m, CH), 1.19 (48H, d, CH3); 13C NMR (100.62 MHz, C6D5CD3, 300 K, δ, p.p.m.): 49.5 (CH), 27.7 (CH3).

Refinement top

The hydride H atoms and those attached to agostic C atoms were found in the difference synthesis and refined isotropically. All other H atoms were constrained to geometrically idealized positions using a riding model; for CH atoms, C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C), and for CH3 atoms, C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1988) and DENZO (Otwinowski & Minor, 1997); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Non-hydride H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Part of the polymeric chain that extends along the b direction. Each chain is constructed of units from only one of the two crystallographically independent fragments shown in Fig. 1.
Tetra-µ2-diisopropylamido-di-µ2-hydrido-dimagnesium(II)disodium(I) top
Crystal data top
[Mg2Na2H2(C6H14N)4]Z = 2
Mr = 497.34F(000) = 552
Triclinic, P1Dx = 1.063 Mg m3
a = 8.2448 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1118 (5) ÅCell parameters from 27877 reflections
c = 20.1990 (9) Åθ = 1.0–27.5°
α = 82.419 (3)°µ = 0.12 mm1
β = 83.897 (3)°T = 123 K
γ = 68.916 (2)°Cut tablet, colourless
V = 1554.36 (13) Å30.40 × 0.38 × 0.30 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
3944 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.064
Graphite monochromatorθmax = 27.5°, θmin = 1.0°
ω and ϕ scansh = 1010
27877 measured reflectionsk = 1312
7078 independent reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0385P)2 + 0.9833P]
where P = (Fo2 + 2Fc2)/3
7078 reflections(Δ/σ)max = 0.001
383 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Mg2Na2H2(C6H14N)4]γ = 68.916 (2)°
Mr = 497.34V = 1554.36 (13) Å3
Triclinic, P1Z = 2
a = 8.2448 (4) ÅMo Kα radiation
b = 10.1118 (5) ŵ = 0.12 mm1
c = 20.1990 (9) ÅT = 123 K
α = 82.419 (3)°0.40 × 0.38 × 0.30 mm
β = 83.897 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
3944 reflections with I > 2σ(I)
27877 measured reflectionsRint = 0.064
7078 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.31 e Å3
7078 reflectionsΔρmin = 0.35 e Å3
383 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.03200 (12)0.56412 (9)0.93234 (4)0.0220 (2)
Mg20.47299 (12)0.98155 (9)0.43125 (4)0.0208 (2)
Na10.08348 (16)0.75621 (12)1.04797 (5)0.0368 (3)
Na20.44062 (16)0.75794 (12)0.54499 (5)0.0353 (3)
N10.0755 (3)0.4255 (2)0.86140 (10)0.0258 (6)
N20.0322 (3)0.7691 (2)0.93427 (10)0.0217 (5)
N30.5443 (3)0.8397 (2)0.63300 (10)0.0229 (5)
N40.4696 (3)0.7807 (2)0.42496 (10)0.0230 (5)
C10.2398 (4)0.5322 (3)0.84208 (14)0.0343 (7)
H1A0.26610.49790.88820.051*
H1B0.32790.53090.81340.051*
H1C0.24070.62970.84060.051*
C20.0612 (4)0.4360 (3)0.81724 (14)0.0303 (7)
H20.03260.47900.77210.036*
C30.0705 (5)0.2907 (3)0.80860 (17)0.0457 (9)
H3A0.04600.22560.79570.069*
H3B0.14950.30190.77360.069*
H3C0.11380.25170.85090.069*
C40.2878 (4)0.5061 (3)0.78403 (15)0.0425 (9)
H4A0.19200.56070.75550.064*
H4B0.39600.47010.75610.064*
H4C0.30100.56770.81510.064*
C50.2476 (4)0.3810 (3)0.82365 (15)0.0322 (7)
C60.3930 (5)0.2971 (5)0.8693 (2)0.0510 (10)
C70.2060 (5)0.9323 (4)0.93143 (18)0.0322 (7)
C80.2053 (4)0.7851 (3)0.92144 (13)0.0260 (7)
H80.24640.76680.87400.031*
C90.3354 (4)0.6743 (3)0.96666 (16)0.0403 (8)
H9A0.29990.69221.01350.060*
H9B0.45120.68050.95550.060*
H9C0.33880.57900.96010.060*
C100.2842 (4)0.8848 (4)0.92044 (17)0.0301 (7)
C110.1023 (4)0.8845 (3)0.89692 (13)0.0293 (7)
H110.09590.97670.90690.035*
C120.0759 (4)0.8809 (4)0.82088 (14)0.0459 (9)
H12A0.03840.88670.80550.069*
H12B0.16720.96180.79920.069*
H12C0.08180.79170.80920.069*
C130.2317 (4)0.8908 (4)0.66313 (18)0.0391 (9)
C140.4100 (4)0.8528 (3)0.68899 (13)0.0302 (7)
H140.43830.75700.71510.036*
C150.4103 (4)0.9577 (4)0.73705 (15)0.0422 (9)
H15A0.52780.93160.75230.063*
H15B0.32880.95440.77570.063*
H15C0.37461.05430.71390.063*
C160.7212 (4)0.5817 (3)0.64939 (15)0.0342 (7)
H16A0.61750.56740.67280.051*
H16B0.82560.51460.67030.051*
H16C0.72690.56530.60230.051*
C170.7113 (4)0.7345 (3)0.65381 (13)0.0270 (7)
H170.72310.74470.70150.032*
C180.8654 (4)0.7580 (3)0.61175 (16)0.0371 (8)
H18A0.85220.75500.56440.056*
H18B0.97370.68300.62550.056*
H18C0.86930.85110.61830.056*
C190.1531 (4)0.8403 (4)0.45291 (16)0.0313 (7)
C200.3062 (4)0.7735 (3)0.40427 (14)0.0282 (7)
H200.32150.67050.40570.034*
C210.2644 (4)0.8413 (4)0.33283 (15)0.0448 (9)
H21A0.24540.94320.33000.067*
H21B0.15900.82850.32110.067*
H21C0.36210.79540.30170.067*
C220.6442 (5)0.5219 (4)0.4218 (2)0.0445 (9)
C230.6215 (4)0.6745 (3)0.39362 (14)0.0283 (7)
H230.60390.68380.34480.034*
C240.7886 (4)0.7004 (3)0.40082 (18)0.0442 (9)
H24A0.77970.79530.37940.066*
H24B0.88670.62830.37930.066*
H24C0.80720.69430.44840.066*
H1H0.157 (3)0.563 (3)0.9967 (12)0.027 (7)*
H2H0.344 (3)1.028 (3)0.5160 (12)0.030 (7)*
H6A0.378 (4)0.206 (4)0.8933 (16)0.055 (10)*
H6B0.501 (5)0.273 (4)0.8461 (18)0.061 (12)*
H6C0.399 (4)0.347 (4)0.9063 (18)0.060 (12)*
H7A0.139 (5)1.007 (4)0.8969 (17)0.063 (11)*
H7B0.325 (4)0.933 (3)0.9276 (14)0.039 (9)*
H7C0.164 (4)0.951 (3)0.9755 (15)0.030 (8)*
H10A0.299 (3)0.795 (3)0.9170 (12)0.021 (7)*
H10B0.371 (4)0.958 (3)0.8952 (14)0.040 (9)*
H10C0.316 (4)0.911 (3)0.9673 (16)0.041 (9)*
H50.248 (4)0.318 (3)0.7913 (15)0.041 (9)*
H13A0.144 (4)0.911 (3)0.6967 (16)0.050 (10)*
H13B0.217 (4)0.811 (3)0.6423 (15)0.045 (10)*
H13C0.205 (4)0.971 (3)0.6302 (15)0.035 (8)*
H19A0.166 (4)0.785 (3)0.4994 (15)0.037 (8)*
H19B0.046 (4)0.845 (3)0.4376 (14)0.042 (9)*
H19C0.138 (4)0.940 (3)0.4570 (14)0.039 (9)*
H22A0.681 (4)0.507 (3)0.4671 (17)0.048 (10)*
H22B0.734 (5)0.454 (4)0.3961 (16)0.058 (11)*
H22C0.534 (5)0.501 (4)0.4218 (17)0.066 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0274 (6)0.0232 (5)0.0179 (4)0.0127 (4)0.0014 (4)0.0005 (4)
Mg20.0254 (6)0.0216 (5)0.0179 (4)0.0110 (4)0.0022 (4)0.0020 (4)
Na10.0513 (8)0.0300 (7)0.0285 (6)0.0160 (6)0.0043 (6)0.0018 (5)
Na20.0462 (8)0.0372 (7)0.0290 (6)0.0224 (6)0.0047 (6)0.0012 (5)
N10.0285 (15)0.0285 (13)0.0236 (12)0.0121 (12)0.0035 (11)0.0059 (10)
N20.0217 (13)0.0236 (13)0.0204 (11)0.0099 (11)0.0006 (10)0.0006 (10)
N30.0216 (13)0.0243 (13)0.0223 (12)0.0093 (11)0.0010 (10)0.0027 (10)
N40.0238 (13)0.0216 (12)0.0251 (12)0.0085 (11)0.0019 (10)0.0058 (10)
C10.037 (2)0.0406 (19)0.0309 (16)0.0176 (16)0.0108 (14)0.0046 (14)
C20.041 (2)0.0326 (17)0.0233 (15)0.0186 (15)0.0043 (14)0.0051 (13)
C30.050 (2)0.042 (2)0.054 (2)0.0208 (18)0.0126 (18)0.0139 (17)
C40.049 (2)0.045 (2)0.0384 (18)0.0253 (18)0.0143 (16)0.0109 (16)
C50.036 (2)0.0362 (18)0.0271 (16)0.0146 (16)0.0054 (14)0.0114 (14)
C60.034 (2)0.063 (3)0.047 (2)0.009 (2)0.0029 (19)0.002 (2)
C70.031 (2)0.0361 (19)0.0361 (19)0.0196 (16)0.0031 (16)0.0096 (16)
C80.0308 (18)0.0267 (16)0.0247 (14)0.0158 (14)0.0024 (13)0.0041 (12)
C90.0280 (19)0.0382 (19)0.058 (2)0.0176 (16)0.0099 (16)0.0084 (16)
C100.0279 (19)0.0270 (18)0.0354 (18)0.0095 (15)0.0077 (15)0.0002 (15)
C110.0327 (18)0.0255 (16)0.0316 (16)0.0134 (14)0.0076 (14)0.0046 (13)
C120.042 (2)0.064 (2)0.0301 (17)0.0221 (19)0.0112 (15)0.0179 (16)
C130.030 (2)0.055 (2)0.0304 (18)0.0161 (18)0.0040 (16)0.0044 (18)
C140.0297 (18)0.0364 (18)0.0215 (14)0.0117 (15)0.0011 (13)0.0052 (13)
C150.046 (2)0.053 (2)0.0295 (17)0.0197 (18)0.0104 (15)0.0104 (16)
C160.0349 (19)0.0285 (17)0.0374 (17)0.0104 (15)0.0057 (15)0.0032 (14)
C170.0299 (18)0.0264 (16)0.0248 (14)0.0108 (14)0.0058 (13)0.0024 (12)
C180.0245 (18)0.0328 (18)0.0511 (19)0.0084 (15)0.0028 (15)0.0012 (15)
C190.0248 (19)0.0332 (19)0.0392 (19)0.0146 (15)0.0065 (15)0.0013 (15)
C200.0295 (18)0.0222 (15)0.0372 (16)0.0111 (14)0.0071 (14)0.0077 (13)
C210.037 (2)0.061 (2)0.0368 (18)0.0116 (18)0.0102 (16)0.0173 (17)
C220.034 (2)0.0257 (19)0.070 (3)0.0071 (17)0.003 (2)0.0075 (18)
C230.0306 (18)0.0266 (16)0.0286 (15)0.0099 (14)0.0028 (13)0.0061 (13)
C240.0282 (19)0.0343 (19)0.069 (2)0.0091 (15)0.0086 (17)0.0178 (17)
Geometric parameters (Å, º) top
Mg1—N12.051 (2)C6—H6B0.92 (4)
Mg2—N3i2.051 (2)C6—H6C0.97 (4)
Mg1—N22.078 (2)C7—C81.531 (4)
Mg2—N42.062 (2)C7—Na1iii3.014 (3)
Mg1—H1H1.92 (2)C7—H7A1.00 (4)
Mg1—H1Hii1.91 (2)C7—H7B0.98 (3)
Mg2—H2H1.94 (2)C7—H7C0.94 (3)
Mg2—H2Hi1.91 (2)C8—C91.521 (4)
Na1—N22.397 (2)C8—H81.0000
Na2—N42.399 (2)C9—H9A0.9800
Na1—N1ii2.405 (2)C9—H9B0.9800
Na2—N32.407 (2)C9—H9C0.9800
Na1—C7iii3.014 (3)C10—C111.524 (4)
Na1—C6ii3.072 (5)C10—H10A0.97 (3)
Na1—C103.089 (3)C10—H10B0.96 (3)
Na2—C132.962 (4)C10—H10C1.00 (3)
Na2—C192.980 (4)C11—C121.532 (4)
Na2—C203.124 (3)C11—H111.0000
Na2—C22iv3.125 (4)C12—H12A0.9800
Mg1—Mg1ii2.9462 (16)C12—H12B0.9800
Mg1—Na13.0866 (14)C12—H12C0.9800
Mg1—Na1ii3.0881 (14)C13—C141.512 (4)
Mg2—Mg2i2.9509 (16)C13—H13A0.92 (3)
Mg2—Na23.0652 (13)C13—H13B1.00 (3)
Mg2—Na2i3.0713 (14)C13—H13C0.95 (3)
Na1—Mg1ii3.0881 (14)C14—C151.530 (4)
Na1—H1H2.60 (2)C14—H141.0000
Na1—H10C2.57 (3)C15—H15A0.9800
Na2—Mg2i3.0713 (14)C15—H15B0.9800
Na2—H2H2.56 (2)C15—H15C0.9800
Na2—H13B2.52 (3)C16—C171.532 (4)
Na2—H19A2.45 (3)C16—H16A0.9800
N1—C21.477 (3)C16—H16B0.9800
N1—C51.483 (4)C16—H16C0.9800
N1—Na1ii2.405 (2)C17—C181.525 (4)
N2—C111.475 (3)C17—H171.0000
N2—C81.486 (3)C18—H18A0.9800
N3—C171.468 (3)C18—H18B0.9800
N3—C141.480 (3)C18—H18C0.9800
N3—Mg2i2.051 (2)C19—C201.521 (4)
N4—C231.471 (3)C19—H19A1.02 (3)
N4—C201.481 (3)C19—H19B0.95 (3)
C1—C21.519 (4)C19—H19C0.98 (3)
C1—H1A0.9800C20—C211.531 (4)
C1—H1B0.9800C20—H201.0000
C1—H1C0.9800C21—H21A0.9800
C2—C31.531 (4)C21—H21B0.9800
C2—H21.0000C21—H21C0.9800
C3—H3A0.9800C22—C231.524 (4)
C3—H3B0.9800C22—Na2iv3.125 (4)
C3—H3C0.9800C22—H22A0.97 (3)
C4—C51.525 (4)C22—H22B0.97 (4)
C4—H4A0.9800C22—H22C1.00 (4)
C4—H4B0.9800C23—C241.516 (4)
C4—H4C0.9800C23—H231.0000
C5—C61.518 (5)C24—H24A0.9800
C5—H50.97 (3)C24—H24B0.9800
C6—Na1ii3.072 (5)C24—H24C0.9800
C6—H6A1.02 (3)
N1—Mg1—N2136.48 (9)H3A—C3—H3B109.5
N1—Mg1—Mg1ii112.02 (8)C2—C3—H3C109.5
N2—Mg1—Mg1ii111.43 (7)H3A—C3—H3C109.5
N1—Mg1—Na1170.60 (8)H3B—C3—H3C109.5
N2—Mg1—Na150.84 (6)C5—C4—H4A109.5
Mg1ii—Mg1—Na161.53 (4)C5—C4—H4B109.5
N1—Mg1—Na1ii51.07 (7)H4A—C4—H4B109.5
N2—Mg1—Na1ii168.43 (8)C5—C4—H4C109.5
Mg1ii—Mg1—Na1ii61.48 (4)H4A—C4—H4C109.5
Na1—Mg1—Na1ii123.00 (3)H4B—C4—H4C109.5
N1—Mg1—H1H113.5 (7)N1—C5—C6111.5 (3)
N2—Mg1—H1H101.4 (7)N1—C5—C4112.8 (3)
Mg1ii—Mg1—H1H39.6 (7)C6—C5—C4110.1 (3)
Na1—Mg1—H1H57.1 (7)N1—C5—H5109.1 (18)
Na1ii—Mg1—H1H78.9 (7)C6—C5—H5106.6 (18)
N3i—Mg2—N4137.00 (10)C4—C5—H5106.5 (17)
N3i—Mg2—Mg2i111.61 (8)C5—C6—Na1ii80.1 (2)
N4—Mg2—Mg2i111.36 (7)C5—C6—H6A113.0 (19)
N3i—Mg2—Na2168.08 (8)Na1ii—C6—H6A48.2 (19)
N4—Mg2—Na251.38 (6)C5—C6—H6B111 (2)
Mg2i—Mg2—Na261.36 (3)Na1ii—C6—H6B157 (2)
N3i—Mg2—Na2i51.49 (7)H6A—C6—H6B109 (3)
N4—Mg2—Na2i166.64 (8)C5—C6—H6C114 (2)
Mg2i—Mg2—Na2i61.15 (4)Na1ii—C6—H6C85 (2)
Na2—Mg2—Na2i122.52 (3)H6A—C6—H6C102 (3)
N3i—Mg2—H2H111.9 (7)H6B—C6—H6C107 (3)
N4—Mg2—H2H102.0 (7)C8—C7—Na1iii161.6 (2)
Mg2i—Mg2—H2H39.5 (8)C8—C7—H7A111 (2)
Na2—Mg2—H2H56.3 (7)Na1iii—C7—H7A59.1 (19)
Na2i—Mg2—H2H79.2 (7)C8—C7—H7B110.7 (18)
N2—Na1—N1ii137.51 (9)Na1iii—C7—H7B87.6 (17)
N2—Na1—C7iii99.04 (9)H7A—C7—H7B107 (3)
N1ii—Na1—C7iii122.40 (9)C8—C7—H7C107.9 (17)
N2—Na1—C6ii140.23 (11)Na1iii—C7—H7C66.8 (16)
N1ii—Na1—C6ii52.14 (10)H7A—C7—H7C114 (3)
C7iii—Na1—C6ii94.62 (12)H7B—C7—H7C106 (2)
N2—Na1—Mg142.25 (6)N2—C8—C9109.9 (2)
N1ii—Na1—Mg198.16 (7)N2—C8—C7114.6 (2)
C7iii—Na1—Mg1139.29 (8)C9—C8—C7108.3 (3)
C6ii—Na1—Mg1109.38 (10)N2—C8—H8108.0
N2—Na1—Mg1ii98.52 (6)C9—C8—H8108.0
N1ii—Na1—Mg1ii41.56 (6)C7—C8—H8108.0
C7iii—Na1—Mg1ii161.86 (8)C8—C9—H9A109.5
C6ii—Na1—Mg1ii68.73 (9)C8—C9—H9B109.5
Mg1—Na1—Mg1ii57.00 (3)H9A—C9—H9B109.5
N2—Na1—C1051.78 (8)C8—C9—H9C109.5
N1ii—Na1—C10137.67 (9)H9A—C9—H9C109.5
C7iii—Na1—C1080.40 (10)H9B—C9—H9C109.5
C6ii—Na1—C1094.71 (10)C11—C10—Na178.14 (16)
Mg1—Na1—C1065.68 (7)C11—C10—H10A113.3 (15)
Mg1ii—Na1—C10107.26 (7)Na1—C10—H10A90.5 (15)
N2—Na1—H1H76.4 (5)C11—C10—H10B111.2 (18)
N1ii—Na1—H1H74.6 (5)Na1—C10—H10B153.0 (18)
C7iii—Na1—H1H144.7 (6)H10A—C10—H10B107 (2)
C6ii—Na1—H1H71.0 (5)C11—C10—H10C111.3 (17)
Mg1—Na1—H1H38.3 (5)Na1—C10—H10C50.5 (17)
Mg1ii—Na1—H1H38.0 (5)H10A—C10—H10C110 (2)
C10—Na1—H1H69.3 (5)H10B—C10—H10C103 (2)
N2—Na1—H10C67.4 (7)N2—C11—C10111.2 (2)
N1ii—Na1—H10C133.9 (7)N2—C11—C12113.8 (2)
C7iii—Na1—H10C67.7 (7)C10—C11—C12109.6 (2)
C6ii—Na1—H10C84.0 (7)N2—C11—H11107.3
Mg1—Na1—H10C82.3 (7)C10—C11—H11107.3
Mg1ii—Na1—H10C115.6 (7)C12—C11—H11107.3
C10—Na1—H10C17.4 (7)C11—C12—H12A109.5
H1H—Na1—H10C78.6 (9)C11—C12—H12B109.5
N4—Na2—N3136.06 (9)H12A—C12—H12B109.5
N4—Na2—C13144.25 (10)C11—C12—H12C109.5
N3—Na2—C1353.43 (9)H12A—C12—H12C109.5
N4—Na2—C1953.52 (8)H12B—C12—H12C109.5
N3—Na2—C19142.84 (10)C14—C13—Na282.24 (18)
C13—Na2—C1997.98 (10)C14—C13—H13A113 (2)
N4—Na2—Mg242.18 (6)Na2—C13—H13A158 (2)
N3—Na2—Mg298.49 (6)C14—C13—H13B113.3 (18)
C13—Na2—Mg2111.87 (8)Na2—C13—H13B54.6 (18)
C19—Na2—Mg268.18 (7)H13A—C13—H13B104 (3)
N4—Na2—Mg2i98.60 (6)C14—C13—H13C112.5 (18)
N3—Na2—Mg2i41.80 (5)Na2—C13—H13C79.2 (17)
C13—Na2—Mg2i69.55 (8)H13A—C13—H13C107 (3)
C19—Na2—Mg2i110.96 (8)H13B—C13—H13C106 (2)
Mg2—Na2—Mg2i57.48 (3)N3—C14—C13110.9 (2)
N4—Na2—C2027.29 (7)N3—C14—C15112.7 (2)
N3—Na2—C20156.43 (8)C13—C14—C15111.3 (3)
C13—Na2—C20126.55 (9)N3—C14—H14107.2
C19—Na2—C2028.73 (8)C13—C14—H14107.2
Mg2—Na2—C2058.54 (6)C15—C14—H14107.2
Mg2i—Na2—C20114.63 (6)C14—C15—H15A109.5
N4—Na2—C22iv102.50 (11)C14—C15—H15B109.5
N3—Na2—C22iv117.60 (10)H15A—C15—H15B109.5
C13—Na2—C22iv94.05 (12)C14—C15—H15C109.5
C19—Na2—C22iv83.88 (11)H15A—C15—H15C109.5
Mg2—Na2—C22iv143.68 (9)H15B—C15—H15C109.5
Mg2i—Na2—C22iv158.77 (9)C17—C16—H16A109.5
C20—Na2—C22iv85.78 (10)C17—C16—H16B109.5
N4—Na2—H2H77.5 (5)H16A—C16—H16B109.5
N3—Na2—H2H75.8 (6)C17—C16—H16C109.5
C13—Na2—H2H72.9 (5)H16A—C16—H16C109.5
C19—Na2—H2H72.7 (6)H16B—C16—H16C109.5
Mg2—Na2—H2H39.0 (5)N3—C17—C18111.9 (2)
Mg2i—Na2—H2H38.3 (6)N3—C17—C16111.9 (2)
C20—Na2—H2H81.9 (5)C18—C17—C16108.4 (2)
C22iv—Na2—H2H150.9 (6)N3—C17—H17108.2
N4—Na2—H13B142.3 (7)C18—C17—H17108.2
N3—Na2—H13B69.1 (8)C16—C17—H17108.2
C13—Na2—H13B18.9 (7)C17—C18—H18A109.5
C19—Na2—H13B89.3 (7)C17—C18—H18B109.5
Mg2—Na2—H13B123.9 (7)H18A—C18—H18B109.5
Mg2i—Na2—H13B88.3 (8)C17—C18—H18C109.5
C20—Na2—H13B117.4 (7)H18A—C18—H18C109.5
C22iv—Na2—H13B76.4 (8)H18B—C18—H18C109.5
H2H—Na2—H13B86.0 (9)C20—C19—Na280.90 (17)
N4—Na2—H19A69.7 (7)C20—C19—H19A112.2 (16)
N3—Na2—H19A139.6 (7)Na2—C19—H19A49.8 (16)
C13—Na2—H19A87.5 (7)C20—C19—H19B111.7 (18)
C19—Na2—H19A18.6 (7)Na2—C19—H19B157.4 (18)
Mg2—Na2—H19A86.3 (7)H19A—C19—H19B108 (2)
Mg2i—Na2—H19A121.3 (7)C20—C19—H19C111.3 (17)
C20—Na2—H19A42.8 (7)Na2—C19—H19C86.9 (17)
C22iv—Na2—H19A69.2 (7)H19A—C19—H19C109 (2)
H2H—Na2—H19A84.0 (9)H19B—C19—H19C105 (2)
H13B—Na2—H19A75.0 (10)N4—C20—C19111.2 (2)
C2—N1—C5109.5 (2)N4—C20—C21113.2 (2)
C2—N1—Mg1121.68 (18)C19—C20—C21110.0 (3)
C5—N1—Mg1118.25 (18)N4—C20—Na247.97 (12)
C2—N1—Na1ii108.68 (16)C19—C20—Na270.37 (16)
C5—N1—Na1ii107.59 (17)C21—C20—Na2153.6 (2)
Mg1—N1—Na1ii87.37 (8)N4—C20—H20107.4
C11—N2—C8111.5 (2)C19—C20—H20107.4
C11—N2—Mg1116.29 (17)C21—C20—H20107.4
C8—N2—Mg1115.46 (16)Na2—C20—H2097.1
C11—N2—Na1106.50 (16)C20—C21—H21A109.5
C8—N2—Na1117.98 (16)C20—C21—H21B109.5
Mg1—N2—Na186.91 (8)H21A—C21—H21B109.5
C17—N3—C14109.8 (2)C20—C21—H21C109.5
C17—N3—Mg2i122.74 (17)H21A—C21—H21C109.5
C14—N3—Mg2i117.80 (17)H21B—C21—H21C109.5
C17—N3—Na2110.23 (16)C23—C22—Na2iv158.7 (3)
C14—N3—Na2105.17 (16)C23—C22—H22A108 (2)
Mg2i—N3—Na286.71 (8)Na2iv—C22—H22A87.2 (19)
C23—N4—C20110.3 (2)C23—C22—H22B111 (2)
C23—N4—Mg2119.50 (17)Na2iv—C22—H22B76 (2)
C20—N4—Mg2116.36 (17)H22A—C22—H22B107 (3)
C23—N4—Na2116.66 (16)C23—C22—H22C112 (2)
C20—N4—Na2104.74 (16)Na2iv—C22—H22C47 (2)
Mg2—N4—Na286.44 (8)H22A—C22—H22C110 (3)
C2—C1—H1A109.5H22B—C22—H22C108 (3)
C2—C1—H1B109.5N4—C23—C24111.6 (2)
H1A—C1—H1B109.5N4—C23—C22113.0 (3)
C2—C1—H1C109.5C24—C23—C22108.5 (3)
H1A—C1—H1C109.5N4—C23—H23107.8
H1B—C1—H1C109.5C24—C23—H23107.8
N1—C2—C1111.9 (2)C22—C23—H23107.8
N1—C2—C3112.8 (2)C23—C24—H24A109.5
C1—C2—C3108.8 (3)C23—C24—H24B109.5
N1—C2—H2107.7H24A—C24—H24B109.5
C1—C2—H2107.7C23—C24—H24C109.5
C3—C2—H2107.7H24A—C24—H24C109.5
C2—C3—H3A109.5H24B—C24—H24C109.5
C2—C3—H3B109.5
N2—Mg1—N1—C281.6 (2)Na1—N2—C8—C772.3 (3)
N2—Mg1—N1—C559.4 (2)Na1iii—C7—C8—N212.2 (8)
N2—Mg1—N1—Na1ii168.02 (12)Na1iii—C7—C8—C9135.2 (7)
N1—Mg1—N2—C1165.1 (2)N2—Na1—C10—C1120.34 (15)
N1—Mg1—N2—C868.4 (2)N1ii—Na1—C10—C11142.29 (17)
N1—Mg1—N2—Na1171.95 (12)C7iii—Na1—C10—C1189.30 (18)
N1ii—Na1—N2—C11143.74 (17)C6ii—Na1—C10—C11176.80 (19)
C7iii—Na1—N2—C1148.60 (18)C8—N2—C11—C10168.8 (2)
C6ii—Na1—N2—C1160.0 (2)Mg1—N2—C11—C1056.0 (3)
C10—Na1—N2—C1121.51 (16)Na1—N2—C11—C1038.8 (3)
N1ii—Na1—N2—C890.1 (2)C8—N2—C11—C1266.8 (3)
C7iii—Na1—N2—C877.56 (19)Mg1—N2—C11—C1268.4 (3)
C6ii—Na1—N2—C8173.85 (19)Na1—N2—C11—C12163.2 (2)
C10—Na1—N2—C8147.7 (2)Na1—C10—C11—N228.44 (19)
N1ii—Na1—N2—Mg127.21 (16)Na1—C10—C11—C12155.2 (2)
C7iii—Na1—N2—Mg1165.12 (9)N4—Na2—C13—C14137.14 (18)
C6ii—Na1—N2—Mg156.54 (18)N3—Na2—C13—C1416.87 (15)
C10—Na1—N2—Mg195.02 (11)C19—Na2—C13—C14170.77 (18)
N4—Na2—N3—C1790.65 (19)C20—Na2—C13—C14167.41 (16)
C13—Na2—N3—C17136.00 (19)C22iv—Na2—C13—C14104.85 (19)
C19—Na2—N3—C17177.84 (16)C17—N3—C14—C13149.4 (3)
C20—Na2—N3—C17125.2 (2)Mg2i—N3—C14—C1363.5 (3)
C22iv—Na2—N3—C1762.78 (19)Na2—N3—C14—C1330.8 (3)
N4—Na2—N3—C14151.07 (16)C17—N3—C14—C1585.1 (3)
C13—Na2—N3—C1417.72 (16)Mg2i—N3—C14—C1562.0 (3)
C19—Na2—N3—C1463.9 (2)Na2—N3—C14—C15156.3 (2)
C20—Na2—N3—C14116.6 (2)Na2—C13—C14—N323.9 (2)
C22iv—Na2—N3—C1455.50 (19)Na2—C13—C14—C15150.2 (2)
N4—Na2—N3—Mg2i33.14 (15)C14—N3—C17—C18156.8 (2)
C13—Na2—N3—Mg2i100.21 (12)Mg2i—N3—C17—C1811.7 (3)
C19—Na2—N3—Mg2i54.05 (17)Na2—N3—C17—C1887.7 (2)
C20—Na2—N3—Mg2i1.4 (3)C14—N3—C17—C1681.3 (3)
C22iv—Na2—N3—Mg2i173.43 (10)Mg2i—N3—C17—C16133.5 (2)
N3i—Mg2—N4—C2372.8 (2)Na2—N3—C17—C1634.1 (3)
N3i—Mg2—N4—C2063.7 (2)N4—Na2—C19—C2018.10 (14)
Mg2i—Mg2—N4—C20118.47 (17)N3—Na2—C19—C20138.58 (17)
N3i—Mg2—N4—Na2168.39 (12)C13—Na2—C19—C20174.38 (17)
N3—Na2—N4—C2387.3 (2)C22iv—Na2—C19—C2092.38 (18)
C13—Na2—N4—C23175.70 (19)C23—N4—C20—C19159.7 (2)
C19—Na2—N4—C23141.3 (2)Mg2—N4—C20—C1960.0 (3)
C20—Na2—N4—C23122.3 (3)Na2—N4—C20—C1933.4 (3)
C22iv—Na2—N4—C2368.7 (2)C23—N4—C20—C2175.9 (3)
N3—Na2—N4—C20150.40 (16)Mg2—N4—C20—C2164.5 (3)
C13—Na2—N4—C2062.0 (2)Na2—N4—C20—C21157.8 (2)
C19—Na2—N4—C2019.01 (16)C23—N4—C20—Na2126.3 (2)
C22iv—Na2—N4—C2053.56 (18)Mg2—N4—C20—Na293.37 (15)
N3—Na2—N4—Mg234.07 (15)Na2—C19—C20—N425.73 (19)
C13—Na2—N4—Mg254.31 (19)Na2—C19—C20—C21151.9 (2)
C19—Na2—N4—Mg297.32 (11)N3—Na2—C20—N459.0 (3)
C20—Na2—N4—Mg2116.33 (18)C13—Na2—C20—N4140.04 (18)
C22iv—Na2—N4—Mg2169.89 (10)C19—Na2—C20—N4147.0 (3)
C5—N1—C2—C1158.0 (2)C22iv—Na2—C20—N4128.05 (17)
Mg1—N1—C2—C114.0 (3)N4—Na2—C20—C19147.0 (3)
Na1ii—N1—C2—C184.7 (2)N3—Na2—C20—C1988.0 (3)
C5—N1—C2—C378.9 (3)C13—Na2—C20—C196.9 (2)
Mg1—N1—C2—C3137.1 (2)C22iv—Na2—C20—C1984.97 (18)
Na1ii—N1—C2—C338.4 (3)N4—Na2—C20—C2151.3 (4)
C2—N1—C5—C6150.5 (3)N3—Na2—C20—C217.7 (6)
Mg1—N1—C5—C664.1 (3)C13—Na2—C20—C2188.7 (5)
Na1ii—N1—C5—C632.5 (3)C19—Na2—C20—C2195.7 (5)
C2—N1—C5—C485.0 (3)C22iv—Na2—C20—C21179.4 (5)
Mg1—N1—C5—C460.4 (3)C20—N4—C23—C24167.2 (2)
Na1ii—N1—C5—C4157.0 (2)Mg2—N4—C23—C2428.3 (3)
N1—C5—C6—Na1ii24.0 (2)Na2—N4—C23—C2473.5 (3)
C4—C5—C6—Na1ii150.0 (2)C20—N4—C23—C2270.2 (3)
C11—N2—C8—C9173.6 (2)Mg2—N4—C23—C22150.9 (2)
Mg1—N2—C8—C950.8 (3)Na2—N4—C23—C2249.1 (3)
Na1—N2—C8—C949.9 (3)Na2iv—C22—C23—N464.6 (8)
C11—N2—C8—C751.4 (3)Na2iv—C22—C23—C24171.1 (6)
Mg1—N2—C8—C7172.9 (2)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z+2; (iii) x, y+2, z+2; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mg2Na2H2(C6H14N)4]
Mr497.34
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)8.2448 (4), 10.1118 (5), 20.1990 (9)
α, β, γ (°)82.419 (3), 83.897 (3), 68.916 (2)
V3)1554.36 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.40 × 0.38 × 0.30
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
27877, 7078, 3944
Rint0.064
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.140, 1.08
No. of reflections7078
No. of parameters383
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.35

Computer programs: COLLECT (Nonius, 1988) and DENZO (Otwinowski & Minor, 1997), DENZO and COLLECT, DENZO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Mg1—N12.051 (2)Na1—N1ii2.405 (2)
Mg2—N3i2.051 (2)Na2—N32.407 (2)
Mg1—N22.078 (2)Na1—C7iii3.014 (3)
Mg2—N42.062 (2)Na1—C6ii3.072 (5)
Mg1—H1H1.92 (2)Na1—C103.089 (3)
Mg1—H1Hii1.91 (2)Na2—C132.962 (4)
Mg2—H2H1.94 (2)Na2—C192.980 (4)
Mg2—H2Hi1.91 (2)Na2—C203.124 (3)
Na1—N22.397 (2)Na2—C22iv3.125 (4)
Na2—N42.399 (2)
N1—Mg1—N2136.48 (9)N2—Na1—N1ii137.51 (9)
N3i—Mg2—N4137.00 (10)N4—Na2—N3136.06 (9)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z+2; (iii) x, y+2, z+2; (iv) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the EPSRC (grant award No. GR/T27228/01) for generously sponsoring this research.

References

First citationAndrikopoulos, P. C., Armstrong, D. R., Clegg, W., Gilfillan, C. J., Hevia, E., Kennedy, A. R., Mulvey, R. E., O'Hara, C. T., Parkinson, J. A. & Tooke, D. M. (2004). J. Am. Chem. Soc. 126, 11612–11620.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAndrikopoulos, P. C., Armstrong, D. R., Kennedy, A. R., Mulvey, R. E., O'Hara, C. T. & Rowlings, R. B. (2003). Eur. J. Inorg. Chem. pp. 3354–3362.  CSD CrossRef Google Scholar
First citationClegg, W., Henderson, K. W., Kennedy, A. R., Mulvey, R. E., O'Hara, C. T., Rowlings, R. B. & Tooke, D. M. (2001). Angew. Chem. Int. Ed. 40, 3902–3905.  CrossRef CAS Google Scholar
First citationFischer, E. O. & Hafner, W. (1955). Z. Naturforsch. Teil B, 10, 665–667.  Google Scholar
First citationGallagher, D. J., Henderson, K. W., Kennedy, A. R., O'Hara, C. T., Mulvey, R. E. & Rowlings, R. B. (2002). Chem. Commun. pp. 376–377.  CSD CrossRef Google Scholar
First citationHevia, E., Honeyman, G. W., Kennedy, A. R., Mulvey, R. E. & Sherrington, D. C. (2005). Angew. Chem. Int. Ed. 44, 68–72.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLochmann, L., Pospisil, J. & Lim, D. (1966). Tetrahedron Lett. 7, 257–262.  CrossRef Google Scholar
First citationMokuolu, Q. F., Duckmanton, P. A., Blake, A. J., Wilson, C. & Love, J. B. (2003). Organometallics, 22, 4387–4389.  Web of Science CSD CrossRef CAS Google Scholar
First citationMulvey, R. E. (2001). Chem. Commun. pp. 1049–1056.  Web of Science CrossRef Google Scholar
First citationMulvey, R. E. (2006). Organometallics, 25, 1060–1075.  Web of Science CrossRef CAS Google Scholar
First citationNonius (1988). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds