metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Chloro­(di­ethyl­enetri­amine)copper(II) chloride: a disordered quasi-one-dimensional structure

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Faraday Building, Sackville Street, University of Manchester, Manchester M60 1QD, England
*Correspondence e-mail: robin.pritchard@manchester.ac.uk

(Received 13 August 2006; accepted 25 August 2006; online 12 September 2006)

The title structure, [CuCl(C4H13N3)]Cl, consists of alternating [CuCl(dien)]+ (dien is diethylene­triamine) and Cl ions arranged in quasi-one-dimensional stacks along the crystallographic a axis and forming tetragonally elongated octa­hedral coordination shells around each Cu atom [equatorial Cu—Cl = 2.2552 (8) Å, and axial Cu—Cl = 2.831 (1) and 3.341 (1) Å]. Crystallographic mirror planes bisect each stack vertically through the Cu, Cl and central N atoms, and horizontally through the [CuCl(dien)]+ cation. The horizontal mirrors lead to each atom in the puckered [CuCl(dien)]+ cations being disordered over two crystallographically equivalent sites. Comparison of the title structure with its Br and I analogues shows a growing influence of hydrogen bonding relative to coordination bonds on traversing the series I < Br < Cl.

Comment

The title structure, (I)[link], is a member of an approximately isostructural series, the other members being [CuBr(dien)]Br (Boeyens et al., 1991[Boeyens, J. C. A., Dobson, S. M. & Mboweni, R. C. M. (1991). Acta Cryst. C47, 186-188.]) and the polymeric polymorph of [CuI2(dien)]n (Hodgson et al., 1991[Hodgson, D. J., Towle, D. K. & Hatfield, W. E. (1991). Inorg. Chim. Acta, 179, 275-280.]). The bromide and iodide crystal structures are almost identical, despite the bromide being described as ionic and the iodide as mol­ecular. Both compounds crystallize in the ortho­rhom­bic space group Pmn21 [Br: a = 8.716 (1), b = 8.588 (1) and c = 6.337 (1) Å; I: a = 8.873 (2), b = 8.890 (3) and c = 6.658 (1) Å]. In both cases, alternating [CuX(dien)] and capping X form quasi-one-dimensional stacks along c, which are bisected vertically by crystallographic mirror planes through the Cu, X and central N atoms. In contrast, the Cl analogue crystallizes in ortho­rhom­bic space group Pmmn, with a = 6.0925 (4), b = 8.6440 (4) and c = 8.3575 (4) Å. However, resolution of the disorder clearly shows a chemically sensible P21mn system (Fig. 1[link]), isomorphous with the Br and I analogues, with an added mirror plane associated with the disordered [CuCl(dien)]+ group. The Cu⋯Cu separation along the stack corresponds to the shortest lattice repeat and, along with the geometry around the bridging halide, shows a steady progression from I to Cl (Table 3[link]).

[Scheme 1]

The increasing asymmetry of the two capping Cu⋯X distances arises because an N—H⋯X hydrogen bond (Fig. 1[link] and Table 2[link]) replaces one of the direct Cu⋯X inter­actions. Accompanying these changes, the flattened five-membered rings of the iodide relax to a more typical puckered envelope shape in the Br and Cl structures. This ring conformation, in which the CH2 adjacent to NH represents the flap of the envelope, is also the norm for the dimeric cations [CuCl(dien)]22+ (Draper et al., 2004[Draper, N. D., Batchelor, R. J. & Lenznoff, D. B. (2004). Cryst. Growth Des. 4, 621-632.]; Urtiaga et al., 1996[Urtiaga, M. K., Arriortua, M. I., Cortés, R. & Rojo, T. (1996). Acta Cryst. C52, 3007-3009.]; Utz et al., 2003[Utz, D., Heinemann, F. W., Hampel, F., Richens, D. T. & Schindler, S. (2003). Inorg. Chem. 42, 1430-1436.]) and is even retained when additional capping ligands inter­act with the Cu atoms, e.g. H2O (Willett, 2001[Willett, R. D. (2001). Acta Cryst. E57, m605-m606.]; Zhu et al., 2003[Zhu, H.-L., Liu, H.-L., Li, Y.-H. & Yu, K.-B. (2003). Z. Kristallogr. New Cryst. Struct. 218, 41-42.]) and ClO4 in the Br analogue (Towle et al., 1985[Towle, D. K., Hoffmann, S. K., Hatfield, W. E., Singh, P., Chaudhuri, P. & Wieghardt, K. (1985). Inorg. Chem. 24, 4393-4397.]). Ironically, this is also the conformation seen in the monomeric polymorph of CuI2(dien) (Hodgson et al., 1991[Hodgson, D. J., Towle, D. K. & Hatfield, W. E. (1991). Inorg. Chim. Acta, 179, 275-280.])

The nature of the disorder is not clear from the current work. Weak inter­stitial reflections suggest that the determination may well be a subcell. However, attempts at working with larger and lower-symmetry unit cells did not reduce the disorder, and neither did refining the crystals as pseudo-tetra­gonal twins. It is also unclear whether the disorder is static or dynamic. The asymmetry introduced by the Cu⋯Cl and N—H⋯Cl inter­actions suggests a static system. However, it is worth noting that the direction of the central NH bond does not, in the case of the above dimeric cations, dictate on which side of the [CuCl(dien)]+ system the capping halide approaches the Cu atom. It is therefore possible to envisage the capping halide hopping from Cu to Cu with minimal conformational disturbance, so that at least part of the disorder may be dynamic.

[Figure 1]
Figure 1
A view of the [CuCl(dien)]Cl stack in (I)[link], with 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.

Experimental

Crystals suitable for crystallographic study were prepared by mixing equal volumes of 0.02 M methanol solutions of CuCl2 and dien. The resulting solution was then subjected to vapour diffusion using diethyl ether as the anti-solvent.

Crystal data
  • [CuCl(C4H13N3)]Cl

  • Mr = 237.61

  • Orthorhombic, P m m n

  • a = 6.0925 (4) Å

  • b = 8.6440 (4) Å

  • c = 8.3575 (4) Å

  • V = 440.14 (4) Å3

  • Z = 2

  • Dx = 1.793 Mg m−3

  • Mo Kα radiation

  • μ = 3.02 mm−1

  • T = 133 (2) K

  • Plate, blue

  • 0.25 × 0.25 × 0.05 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.519, Tmax = 0.864

  • 1086 measured reflections

  • 579 independent reflections

  • 576 reflections with I > 2σ(I)

  • Rint = 0.023

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.03

  • wR(F2) = 0.080

  • S = 1.21

  • 579 reflections

  • 77 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.0416P)2 + 0.2888P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.28 e Å−3

  • Extinction correction: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.])

  • Extinction coefficient: 0.045 (5)

Table 1
Selected geometric parameters (Å, °)

C1—N1 1.459 (3) 
C1—C2 1.523 (4)
C2—N2 1.489 (4)
N1—Cu1 2.014 (3)
N2—Cu1 2.016 (2)
Cl1—Cu1 2.2552 (8)
N1—C1—C2 106.75 (19)
N2—C2—C1 106.6 (2)
C1—N1—Cu1 108.27 (14)
C2—N2—Cu1 109.86 (16)
N1—Cu1—N2 83.76 (7)
Cu1—N2—C2—C1 35.6 (3) 
N2—C2—C1—N1 −53.7 (3)
C2—C1—N1—Cu1 46.2 (2)
C1—N1—Cu1—N2 −21.3 (2)
N1—Cu1—N2—C2 −8.8 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯Cl2i 0.83 (2) 2.48 (5) 3.188 (3) 144 (7)
N2—H2C⋯Cl1ii 0.85 (2) 2.69 (3) 3.437 (2) 147 (4)
N2—H2D⋯Cl2ii 0.83 (2) 2.68 (2) 3.429 (2) 150.8 (14)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z+1.

Table 3
Comparison of geometric parameters (Å, °) for [CuX2(dien)] complexes

X Cu⋯X Cu⋯X Cu⋯Cu Cu⋯X⋯Cu
I 3.328 (1) 3.368 (1) 6.658 (1) 167.7 (1)
Br 3.139 (4) 3.298 (4) 6.377 (1) 164.3 (1)
Cl§ 2.831 (1) 3.341 (1) 6.092 (1) 161.6 (1)
†Hodgson et al. (1991[Hodgson, D. J., Towle, D. K. & Hatfield, W. E. (1991). Inorg. Chim. Acta, 179, 275-280.]).
‡Boeyens et al. (1991[Boeyens, J. C. A., Dobson, S. M. & Mboweni, R. C. M. (1991). Acta Cryst. C47, 186-188.]).
§This work.

The final refinement was carried out in the space group Pmmn, which resulted in each atom of the [CuCl(dien)]+ cation semi-occupying two sites on either side of the bc mirror plane. Decisions regarding which atoms constituted a mol­ecular fragment were made by selecting a combination that generated bond lengths and angles which matched those in similar previously published structures. Also, H atoms were subjected to DFIX rather than AFIX constraints, so that angles involving H atoms could also be used to avoid incorrect assignments. Although dihedral angles did not form part of the above selection process, their final values showed excellent agreement with those in similar structures.

Data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]) and COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title structure, (I), is a member of an approximately isostructural series, the other members being [CuBr(dien)]Br (Boeyens et al., 1991) and the polymeric polymorph of [CuI2(dien)]n (Hodgson et al., 1991). The bromide and iodide crystal structures are almost identical, despite the bromide being described as ionic and the iodide as molecular. Both compounds crystallize in orthorhombic space group Pmn21 [Br: a = 8.716 (1), b = 8.588 (1) and c = 6.337 (1) Å; I: a = 8.873 (2), b = 8.890 (3) and c = 6.658 (1) Å]. In both cases, alternating [CuX(dien)] and capping X form quasi-one-dimensional stacks along c, which are bisected vertically by crystallographic mirror planes through the Cu, X and central N atoms. In contrast, the Cl analogue crystallizes in orthorhombic space group Pmmn, with a = 6.0925 (4), b = 8.6440 (4) and c = 8.3575 (4) Å. However, resolution of the disorder clearly shows a chemically sensible P21mn system (Fig. 1), isomorphous with the Br and I analogues, with an added mirror plane associated with the disordered [CuCl(dien)]+ group. The Cu···Cu separation along the stack corresponds to the shortest lattice repeat and, along with the geometry around the bridging halide, shows a steady progression from I to Cl (Table 3).

The increasing asymmetry of the two capping Cu···X distances arises because an N—H···X hydrogen bond (Fig 1, Table 2) replaces one of the direct Cu···X interactions. Accompanying these changes, the flattened five-membered rings of the iodide relax to a more typical puckered envelope shape in the Br and Cl structures. This ring conformation, in which the CH2 adjacent to NH represents the flap of the envelope, is also the norm for the dimeric cations [CuCl(dien)]22+ (Draper et al., 2004; Urtiga et al., 1996; Utz et al., 2003) and is even retained when additional capping ligands interact with the Cu atoms, e.g. H2O (Willett, 2001; Zhu et al., 2003) and ClO4 in the Br analogue (Towle et al., 1985). Ironically, this is also the conformation seen in the monomeric polymorph of CuI2(dien) (Hodgson et al., 1991)

The nature of the disorder is not clear from the current work. Weak interstitial reflections suggest that the determination may well be a subcell. However, attempts at working with larger and lower-symmetry unit cells did not reduce the disorder, and neither did refining the crystals as pseudo-tetragonal twins. It is also unclear whether the disorder is static or dynamic. The asymmetry introduced by the Cu···Cl and N—H···Cl interactions suggests a static system. However, it is worth noting that the direction of the central NH bond does not, in the case of the above dimeric cations, dictate on which side of the [CuCl(dien)]+ system the capping halide approaches the Cu atom. It is therefore possible to envisage the capping halide hopping from Cu to Cu with minimal conformational disturbance, so that at least part of the disorder may be dynamic.

Experimental top

Crystals suitable for crystallographic study were prepared by mixing equal volumes of 0.02 M methanolic solutions of CuCl2 and dien. This solution was then subjected to vapour diffusion using diethyl ether as the anti-solvent.

Refinement top

The final refinement was carried out in space group Pmmn, which resulted in each atom in the [CuCl(dien)]+ cation semi-occupying two sites on either side of the bc mirror plane. Decisions regarding which atoms constituted a molecular fragment were made by selecting a combination that generated bond lengths and angles which matched those in similar previously published structures. Also, H atoms were subjected to DFIX rather than AFIX constraints, so that angles involving H atoms could also be used to avoid incorrect assignments. Although dihedral angles did not form part of the above selection process, their final values showed excellent agreement with those in similar structures.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997) and COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK; data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the [CuCl(dien)]Cl stack in (I), with 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
Chloro(diethylenetriamine)copper(II) chloride top
Crystal data top
[CuCl(C4H13N3)]ClF(000) = 242
Mr = 237.61Dx = 1.793 Mg m3
Orthorhombic, PmmnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2aCell parameters from 1086 reflections
a = 6.0925 (4) Åθ = 1–27.5°
b = 8.6440 (4) ŵ = 3.02 mm1
c = 8.3575 (4) ÅT = 133 K
V = 440.14 (4) Å3Plate, blue
Z = 20.25 × 0.25 × 0.05 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
576 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
CCD scansθmax = 27.5°, θmin = 4.1°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 07
Tmin = 0.519, Tmax = 0.864k = 011
1086 measured reflectionsl = 010
579 independent reflections
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0416P)2 + 0.2888P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.03(Δ/σ)max < 0.001
wR(F2) = 0.080Δρmax = 0.47 e Å3
S = 1.21Δρmin = 0.28 e Å3
579 reflectionsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
77 parametersExtinction coefficient: 0.045 (5)
19 restraints
Crystal data top
[CuCl(C4H13N3)]ClV = 440.14 (4) Å3
Mr = 237.61Z = 2
Orthorhombic, PmmnMo Kα radiation
a = 6.0925 (4) ŵ = 3.02 mm1
b = 8.6440 (4) ÅT = 133 K
c = 8.3575 (4) Å0.25 × 0.25 × 0.05 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
579 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
576 reflections with I > 2σ(I)
Tmin = 0.519, Tmax = 0.864Rint = 0.023
1086 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0319 restraints
wR(F2) = 0.080All H-atom parameters refined
S = 1.21Δρmax = 0.47 e Å3
579 reflectionsΔρmin = 0.28 e Å3
77 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2941 (4)0.1060 (3)0.0908 (3)0.0264 (8)0.5
C20.2262 (6)0.0237 (3)0.2038 (3)0.0335 (7)0.5
N10.2147 (4)0.250.1611 (3)0.0216 (8)0.5
N20.3107 (4)0.0190 (3)0.3651 (3)0.0311 (6)0.5
Cl10.2759 (2)0.250.66488 (9)0.0367 (3)0.5
Cl20.750.250.33658 (8)0.02624 (14)
Cu10.29242 (8)0.250.39530 (4)0.02485 (18)0.5
H1A0.250.089 (3)0.014 (2)0.024 (6)*
H1B0.448 (3)0.110 (5)0.077 (4)0.032 (9)*0.5
H1C0.079 (4)0.250.161 (9)0.08 (2)*0.5
H2A0.250.123 (3)0.163 (4)0.052 (8)*
H2B0.070 (4)0.027 (5)0.202 (5)0.044 (10)*0.5
H2C0.444 (4)0.012 (5)0.370 (4)0.047 (12)*0.5
H2D0.250.028 (3)0.439 (3)0.044 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.025 (2)0.0267 (10)0.0271 (10)0.0025 (9)0.0021 (8)0.0074 (8)
C20.0288 (16)0.0231 (9)0.0487 (12)0.0016 (13)0.0004 (14)0.0082 (9)
N10.014 (2)0.0252 (11)0.0251 (11)00.0012 (10)0
N20.0375 (15)0.0210 (9)0.0348 (10)0.0018 (8)0.0076 (8)0.0090 (9)
Cl10.0338 (7)0.0583 (5)0.0181 (3)00.0031 (4)0
Cl20.0229 (2)0.0244 (3)0.0314 (3)000
Cu10.0367 (5)0.01915 (17)0.01874 (18)00.00409 (15)0
Geometric parameters (Å, º) top
C1—N11.459 (3)N1—Cu12.014 (3)
C1—C21.523 (4)N1—H1C0.83 (2)
C1—H1A0.926 (17)N2—Cu12.016 (2)
C1—H1B0.95 (2)N2—H2C0.85 (2)
C2—N21.489 (4)N2—H2D0.83 (2)
C2—H2A0.93 (2)Cl1—Cu12.2552 (8)
C2—H2B0.95 (2)
N1—C1—C2106.75 (19)C1—N1—H1C109 (2)
N1—C1—H1A114.8 (13)C1i—N1—H1C109 (2)
C2—C1—H1A112.9 (14)Cu1—N1—H1C103 (5)
N1—C1—H1B110 (2)C2—N2—Cu1109.86 (16)
C2—C1—H1B112 (2)C2—N2—H2C107 (2)
H1A—C1—H1B101 (2)Cu1—N2—H2C111 (3)
N2—C2—C1106.6 (2)C2—N2—H2D113.7 (16)
N2—C2—H2A120.5 (17)Cu1—N2—H2D111 (2)
C1—C2—H2A113.8 (18)H2C—N2—H2D104 (3)
N2—C2—H2B112 (2)N1—Cu1—N283.76 (7)
C1—C2—H2B107 (3)N2—Cu1—N2i164.26 (13)
H2A—C2—H2B97 (3)N2i—Cu1—N2ii159.98 (10)
C1—N1—C1i117.1 (3)N2—Cu1—N2iii159.98 (10)
C1—N1—Cu1108.27 (14)N1—Cu1—Cl1163.84 (8)
C1i—N1—Cu1108.27 (14)N2—Cu1—Cl197.33 (7)
Cu1—N2—C2—C135.6 (3)C1—N1—Cu1—N221.3 (2)
N2—C2—C1—N153.7 (3)N1—Cu1—N2—C28.8 (2)
C2—C1—N1—Cu146.2 (2)
Symmetry codes: (i) x, y+1/2, z; (ii) x+1/2, y, z; (iii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl2iv0.83 (2)2.48 (5)3.188 (3)144 (7)
N2—H2C···Cl1v0.85 (2)2.69 (3)3.437 (2)147 (4)
N2—H2D···Cl2v0.83 (2)2.68 (2)3.429 (2)151 (1)
Symmetry codes: (iv) x1, y, z; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[CuCl(C4H13N3)]Cl
Mr237.61
Crystal system, space groupOrthorhombic, Pmmn
Temperature (K)133
a, b, c (Å)6.0925 (4), 8.6440 (4), 8.3575 (4)
V3)440.14 (4)
Z2
Radiation typeMo Kα
µ (mm1)3.02
Crystal size (mm)0.25 × 0.25 × 0.05
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995, 1997)
Tmin, Tmax0.519, 0.864
No. of measured, independent and
observed [I > 2σ(I)] reflections
1086, 579, 576
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.03, 0.080, 1.21
No. of reflections579
No. of parameters77
No. of restraints19
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.47, 0.28

Computer programs: KappaCCD Server Software (Nonius, 1997) and COLLECT (Nonius, 1998), HKL SCALEPACK, HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
C1—N11.459 (3)N1—Cu12.014 (3)
C1—C21.523 (4)N2—Cu12.016 (2)
C2—N21.489 (4)Cl1—Cu12.2552 (8)
N1—C1—C2106.75 (19)C2—N2—Cu1109.86 (16)
N2—C2—C1106.6 (2)N1—Cu1—N283.76 (7)
C1—N1—Cu1108.27 (14)
Cu1—N2—C2—C135.6 (3)C1—N1—Cu1—N221.3 (2)
N2—C2—C1—N153.7 (3)N1—Cu1—N2—C28.8 (2)
C2—C1—N1—Cu146.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl2i0.83 (2)2.48 (5)3.188 (3)144 (7)
N2—H2C···Cl1ii0.85 (2)2.69 (3)3.437 (2)147 (4)
N2—H2D···Cl2ii0.83 (2)2.68 (2)3.429 (2)150.8 (14)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1.
Comparative geometric parameters (Å, °) for [CuX2(dien)] complexes top
XCu···XCu···XCu···CuCu···X···Cu
I3.3283.3686.658167.7
Br3.1393.2986.377164.3
Cl2.8313.3416.092161.6
 

Acknowledgements

The authors acknowledge the use of the EPSRC Chemical Database Service at Daresbury (Fletcher et al., 1996[Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.]). We also acknowledge EPSRC support for the purchase of equipment.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBoeyens, J. C. A., Dobson, S. M. & Mboweni, R. C. M. (1991). Acta Cryst. C47, 186–188.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDraper, N. D., Batchelor, R. J. & Lenznoff, D. B. (2004). Cryst. Growth Des. 4, 621–632.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.  CrossRef CAS Web of Science Google Scholar
First citationHodgson, D. J., Towle, D. K. & Hatfield, W. E. (1991). Inorg. Chim. Acta, 179, 275–280.  CSD CrossRef CAS Web of Science Google Scholar
First citationNonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTowle, D. K., Hoffmann, S. K., Hatfield, W. E., Singh, P., Chaudhuri, P. & Wieghardt, K. (1985). Inorg. Chem. 24, 4393–4397.  CSD CrossRef CAS Web of Science Google Scholar
First citationUrtiaga, M. K., Arriortua, M. I., Cortés, R. & Rojo, T. (1996). Acta Cryst. C52, 3007–3009.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationUtz, D., Heinemann, F. W., Hampel, F., Richens, D. T. & Schindler, S. (2003). Inorg. Chem. 42, 1430–1436.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWillett, R. D. (2001). Acta Cryst. E57, m605–m606.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, H.-L., Liu, H.-L., Li, Y.-H. & Yu, K.-B. (2003). Z. Kristallogr. New Cryst. Struct. 218, 41–42.  CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds