organic compounds

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

6-(4-Fluorophenyl)-8-phenyl-2,3dihydro-4*H*-imidazo[5,1-*b*][1,3]thiazin-4-one: an unusual [6-5] fused-ring system

John F. Gallagher,^a* Marie-Delphine H. Le Bas,^b Claire M. Coleman^b and Donal F. O'Shea^b*

^aSchool of Chemical Sciences, Dublin City University, Dublin 9, Ireland, and ^bCentre for Synthesis and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Dublin 4, Ireland Correspondence e-mail: john.gallagher@dcu.ie, donal.f.oshea@ucd.ie

Received 1 December 2006 Accepted 16 January 2007 Online 10 February 2007

The title compound, $C_{18}H_{13}FN_2OS$, is the first structural example of a [6–5] fused ring incorporating the 2,3-dihydro-4*H*-imidazo[5,1-*b*][1,3]thiazin-4-one molecular scaffold. The six-membered 2,3-dihydro-1,3-thiazin-4-one ring adopts an envelope conformation, with the S– CH_2 C atom displaced by 0.761 (2) Å from the five-atom plane (all within 0.05 Å of the mean plane). The imidazole ring is planar. The phenyl ring is twisted from coplanarity with the imidazole ring by 23.84 (5)° and the 4-fluorophenyl ring is twisted by 53.36 (6)°, due to a close C(aryl)– $H\cdots O=C$ contact with the thiazin-4-one carbonyl O atom. The primary intermolecular interaction involves a CH_2 group with the F atom [$C\cdots F = 3.256$ (2) Å and $C-H\cdots F = 137°$].

Comment

Heterocyclic compounds have been a traditional focal point for the development of new anticancer agents, with combinatorial (high-throughput) approaches to new ring systems being of current interest. In our research to develop new routes to diversely substituted drug-like heterocyclic scaffolds, classes of [5–5] [imidazo[5,1-*b*]thiazol-3-ones, (II)] and [6–5] [imidazo[5,1-*b*]thiazin-4-ones, (I)] fused-ring systems have been targeted (Le Bas *et al.*, 2005; Le Bas & O'Shea, 2005; O'Shea *et al.*, 2006). The [5–5] imidazo[2,1-*b*]thiazoles have shown promise as anticancer therapeutics (Andreani *et al.*, 2000). However, the isomeric imidazo[5,1-*b*]thiazole systems have only recently been investigated and a crystal structure reported [(II*a*); Le Bas *et al.*, 2005]. We report here the first structural example of a [6–5] imidazo[5,1*b*]thiazin-4-one fused-ring system, *viz.* the title compound, (I*a*).

The molecular structure of (Ia) is depicted in Fig. 1, with the atomic numbering scheme, and selected bond lengths and angles are given in Table 1. Geometric data can be compared individually with different fused-ring systems. However, given

that the [6-5] fused-ring in (Ia) is thus far unique, our focus is on comparisons with both the key ring systems, *i.e.* the

imidazole ring, and the [5-5] fused-ring relatives, (II). In (Ia), geometric data for the diarylimidazole ring differ from the average values for imidazoles (Orpen et al., 1994). The C1=C3 and C2=N2 bond lengths of 1.365 (2) (longer) and 1.3023 (19) Å (shorter) differ, though not significantly, from the expected values of 1.36 and 1.313 Å. However, the three C-N bond lengths for C1/C2-N1 and C3-N2 are ca 0.03 Å longer [1.4065 (18)/1.3986 (18) and 1.3943 (19) Å, respectively] than the corresponding average values in imidazoles (1.370/1.349 and 1.376 Å, respectively) (Orpen et al., 1994), reflecting the effect of the extra ring attached at C1-N1. The imidazole ring is planar, with all five atoms within 0.002 (1) Å of the C₃N₂ mean plane. The phenyl ring is twisted from coplanarity with the imidazole ring by $23.84(5)^\circ$, while the 4-fluorophenyl ring is twisted by $53.36(6)^{\circ}$ away from the central ring due to a close contact with the thiazin-4-one carbonyl atom O1 and an intermolecular interaction with a neighbouring π -arene, C22-H22···C24ⁱ [symmetry code: (i) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$; Table 2].

Reactivity studies reveal distinct differences between the [5-5] imidazo[5,1-b]thiazol-3-ones, (II), and [6-5] imidazo[5,1-b]thiazin-4-ones, (Ia)–(Ic). Firstly, ring opening by nucleo-philic attack at the C13=O1 amide carbonyl group occurs relatively quickly (under mild conditions) for the [5-5] fused rings, (II), but only under more testing conditions for the [6-5]

Figure 1

A view of (Ia), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

derivatives, (I). Secondly, H/D exchange occurs at the methylene H atoms in (II) at 323 K under facile conditions, but not for (I) under similar conditions (Le Bas *et al.*, 2005). In order to rationalize these reactivity differences, the sixmembered thiazin-4-one ring in (Ia) is compared with the fivemembered thiazol-3-one ring in (II). The mode of amide bond reactivity of (Ia) is comparable with that observed for the hydrolysis and acyl transfer reactions of *N*-acetylimidazoles. This is attributed to the N-atom lone pair being part of the aromatic sextet, resulting in ineffective amide stabilization (Oakenfull & Jencks, 1971; Oakenfull *et al.*, 1971). This is further substantiated by the IR carbonyl stretch peak being observed at 1743 cm⁻¹ for (Ia), which is considerably higher than expected for a typical amide (1630–1670 cm⁻¹; Williams & Fleming, 1989) or six-membered lactam (1660–1690 cm⁻¹).

The main difference is the nature of the thiazol-3-one and thiazin-4-one rings, with ring strain evident in the former. In

Figure 2 An edge-on view of the [6–5] fused-ring system in (I*a*), highlighting the envelope conformation.

Figure 3

A packing diagram (with unit cell) of the hydrogen-bonding and contact geometry in the zigzag chain along (010) in (Ia). Only two H atoms, H11A and H22, involved in these interactions and contacts have been included for clarity. [Symmetry codes: (i) 1 - x, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x, 1 + y, z; (iii) 1 - x, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.]

(II) (Le Bas et al., 2005), analysis of two related systems, viz. (IIa)/(IIb), at the bridgehead atom N1 shows that all three C-N bonds range from 1.391 (2) to 1.409 (2) Å in (IIa) and from 1.388 (3) to 1.407 (3) Å in (IIb), whereas in (Ia) a range of 1.3986 (18)-1.4243 (19) Å reveals a distinct difference, with C13-N1 longer by 0.02 Å. In (Ia), the C1-N1-C2 angle is 105.7 (1)°, and C1–N1–C13 and C2–N1–C13 are similar [126.40 (12) and 126.84 (12) $^{\circ}$, respectively], in contrast with the corresponding angles in (IIa)/(IIb) [106 and 115/138°, respectively], as C2–N1–C13 opens up by 11° in (IIa)/(IIb) compared with the value in (Ia). The N1-C13=O1 angles differ by 6° , with a value of 120.32 (14)° in (Ia) versus 126.0 (2)/126.7 (2)° in (IIa)/(IIb). Pyramidalization at atom N1 is negligible in both (Ia) and (IIa)/(IIb), as all three angles sum to 360°. Reactivity could be attributed to the more open and accessible N1-C13 bond, and greater ring strain facilitates increased susceptibility to nucleophilic ring opening in (IIa)/ (IIb). The H/D exchange at the CH_2 group in (II) can be explained by the formation of a $10-\pi$ aromatic enol intermediate which facilitates the exchange mechanism, and this is not possible for (I) (see scheme below).

An edge-on view of the [6–5] fused ring in (I*a*) down the S1–C12 axis is depicted in Fig. 2, showing the four-atom plane [S1/C1/C13/C12, atoms all within 0.005 (1) Å of the mean plane]. The envelope conformation of the C₄NS ring has atom C11 at the flap position displaced by 0.738 (2) Å from the fouratom plane in the same direction as atom N1, which is displaced by 0.095 (2) Å and oriented in the same direction. This envelope description is adequate, however, albeit with a small distortion towards a screw-boat; ring puckering parameters (Cremer & Pople, 1975) are Q = 0.560 (2) Å, $\theta = 120.5$ (2)° and $\varphi = 122.85$ (18)°.

The primary intermolecular interaction involves a methylene CH₂ group with a symmetry-related F atom, with C11...F1ⁱ = 3.256 (2) Å and C11-H11...F1ⁱ = 137° [symmetry code: (i) $1 - x, y + \frac{1}{2}, -z + \frac{1}{2}$] (Fig. 3), in tandem with a C22...C24ⁱ contact (Table 2), generating a zigzag chain along the (010) direction. Given the paucity of structural data for this and related rings, we are now developing synthetic routes to new [5–5] and [5–6] fused rings with a view to comparing structural data with reactivity in order to gain a more complete insight into the chemical reactivity of these systems.

Experimental

Brief details of the synthesis of (Ia) have been reported previously (Le Bas *et al.*, 2005). The compound was recrystallized from ethanol

organic compounds

as a pale-yellow solid in 72% yield (m.p. 495–497 K). IR (KBr disc, v, cm⁻¹): 1743, 1623; ¹H NMR (CDCl₃): δ 7.87 (d, J = 7.0 Hz, 2H), 7.60–7.64 (m, 2H), 7.41–7.44 (m, 2H), 7.31–7.34 (m, 1H), 7.05–7.10 (m, 2H), 3.27–3.15 (m, 4H); ¹⁹F NMR (CDCl₃): δ –111; ¹³C NMR (CDCl₃): δ 166.4, 163.6 (d, J_{CF} = 250.0 Hz), 149.8, 138.4, 132.6, 131.6 (d, J_{CF} = 8.6 Hz), 128.8, 128.7, 127.9, 127.1, 119.8, 115.2 (d, J_{CF} = 22.4 Hz), 37.3, 26.0. ES⁺–MS: m/z 325 (M + H)⁺; HRMS found: 323.0641 (M – H)⁻; C₁₈H₁₂FN₂OS requires: 323.0654. Analysis calculated for C₁₈H₁₃-FN₂OS: C 66.65, H 4.04, N 8.64, S 9.89%; found: C 66.42, H 4.01, N 8.54, S 10.07%.

Z = 4

 $D_x = 1.444 \text{ Mg m}^{-3}$

 $0.45 \times 0.45 \times 0.35$ mm

4 standard reflections

every 296 reflections

intensity decay: 1%

Mo $K\alpha$ radiation

 $\mu = 0.23 \text{ mm}^{-3}$

T = 294 (1) K Block, colourless

 $\begin{aligned} R_{\rm int} &= 0.017\\ \theta_{\rm max} &= 26.1^\circ \end{aligned}$

Crystal data

C ₁₈ H ₁₃ FN ₂ OS
$M_r = 324.36$
Monoclinic, $P2_1/c$
a = 11.5195 (13) Å
b = 8.6516 (7) Å
c = 15.9173 (11) Å
$\beta = 109.865 \ (5)^{\circ}$
V = 1492.0 (2) Å ³

Data collection

Bruker P4 diffractometer ω scans 4084 measured reflections 2938 independent reflections 2501 reflections with $I > 2\sigma(I)$

Refinement

 $\begin{array}{ll} \mbox{Refinement on } F^2 & w = 1/[\sigma^2(F_o^2) + (0.0448P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.035 & where \ P = (F_o^2 + 2F_c^2)/3 \\ S = 1.04 & (\Delta/\sigma)_{\rm max} = 0.001 \\ 2938 \ \mbox{reflections} & \Delta\rho_{\rm max} = 0.29 \ \mbox{e} \ {\rm \AA}^{-3} \\ 208 \ \mbox{parameters} & \Delta\rho_{\rm min} = -0.16 \ \mbox{e} \ {\rm \AA}^{-3} \\ \mbox{H-atom parameters constrained} \end{array}$

Table 1

Selected geometric parameters (Å, °).

1.7392 (15)	N1-C13	1.4243 (19)
1.7986 (17)	O1-C13	1.1976 (19)
1.512 (2)	C1-C3	1.365 (2)
1.498 (2)	N2-C2	1.3023 (19)
1.4065 (18)	N2-C3	1.3943 (19)
1.3986 (18)		
122.92 (11)	C1-S1-C11	98.08 (7)
130.76 (12)	S1-C11-C12	111.10 (13)
106.30 (12)	C11-C12-C13	115.87 (14)
105.70 (11)	O1-C13-N1	120.32 (14)
126.40 (12)	O1-C13-C12	123.08 (15)
126.84 (12)	N1-C13-C12	116.59 (13)
20.39 (14)	C1-N1-C13-C12	-10.0(2)
-52.19 (13)	S1-C1-N1-C13	9.9 (2)
61.22 (18)	N2-C2-C21-C26	-53.1(2)
-27.8 (2)	N2-C3-C31-C32	-22.5 (2)
	1.7392 (15) 1.7986 (17) 1.512 (2) 1.498 (2) 1.4065 (18) 1.3986 (18) 122.92 (11) 130.76 (12) 106.30 (12) 105.70 (11) 126.40 (12) 126.84 (12) 20.39 (14) -52.19 (13) 61.22 (18) -27.8 (2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 2 Hydrogen-bond ge

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$	
$C11-H11A\cdots F1^{i}$	0.97	2.48	3.256 (2)	137	
$C22-H22 \cdot \cdot \cdot C24^{i}$	0.93	2.85	3.753 (2)	164	
C32-H32···N2	0.93	2.58	2.896 (2)	100	
C36-H36···S1	0.93	2.67	3.3078 (18)	126	

Symmetry code: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$.

In (Ia), all H atoms bound to carbon were treated as riding atoms, using *SHELXL97* (Sheldrick, 1997) defaults for C–H bond lengths (range 0.93–0.97 Å), and with $U_{iso}(H) = 1.5U_{eq}(C)$ for methylene H atoms or $1.2U_{eq}(C)$ for aromatic H atoms.

Data collection: *XSCANS* (Siemens, 1994); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997) and *SORTX* (McArdle, 1995); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97* and *PREP8* (Ferguson, 1998).

JFG thanks Dublin City University for the purchase in 1998 of the Siemens P4 diffractometer and computer system. The synthetic research was funded by Enterprise Ireland and PRTLI-3 (Programme for Research in Third-Level Institutions) administered by the Higher Education Authority, Ireland.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: HJ3028). Services for accessing these data are described at the back of the journal.

References

Andreani, A., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Recanatini, M. & Garaliene, V. (2000). Bioorg. Med. Chem. 8, 2359–2366.

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Ferguson, G. (1998). PREP8. University of Guelph, Canada.
- Le Bas, M.-D. H., McKinley, N. F., Hogan, A.-M. L. & O'Shea, D. F. (2005). J. Combin. Chem. 7, 503–506.
- Le Bas, M.-D. H. & O'Shea, D. F. (2005). J. Combin. Chem. 7, 974-951.
- McArdle, P. (1995). J. Appl. Cryst. 28, 65.
- Oakenfull, D. G. & Jencks, W. P. (1971). J. Am. Chem. Soc. 93, 178-188.
- Oakenfull, D. G., Salvesen, K. & Jencks, W. P. (1971). J. Am. Chem. Soc. 93, 188–194.
- Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1994). *Structure Correlation*, Vol. 2, Appendix A, edited by H.-B. Bürgi & J. D. Dunitz. Weinheim: VCH.
- O'Shea, D. F., Le Bas, M.-D. H. & Mueller-Bunz, H. (2006). Unpublished results. University College Dublin, Ireland.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Williams, D. H. & Fleming, I. (1989). Spectroscopic Methods in Organic Chemistry, 4th ed. London: McGraw-Hill.