organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Racemic (1,4-dioxan-2-yl)di­phenyl­methanol

aDepartment of Chemistry, University of Louisville, Louisville, KY 40292, USA
*Correspondence e-mail: msmashuta.xray@louisville.edu

(Received 11 February 2011; accepted 5 March 2011; online 11 March 2011)

The title compound, C17H18O3, prepared by microwave irradiation of benzophenone and dioxane, crystallizes in a racemic mixture that forms one-dimensional chains via strong hydrogen bonding of the hy­droxy group to the adjacent symmetry-generated 1,4-dioxan-2-yl group; the O—H⋯O distance is 1.99 (3) Å and the O—H⋯O angle is 160 (2)°.

Comment

The formation of C—C bonds is an important synthetic step in organic synthesis, and there are several well known methods that efficiently promote this bond-formation process. One frequently used method involves the coupling of carbon radicals generated during photolysis (Ohkura et al., 2004[Ohkura, K., Ishihara, T., Nakata, Y. & Seki, K.-i. (2004). Heterocycles, 62, 213-216.]; Derk et al., 2008[Derk, A. R., Funke, H. H. & Falconer, J. L. (2008). Ind. Eng. Chem. Res. 47, 6568-6572.]), radiolysis (Burr & Strong, 1959[Burr, J. G. & Strong, J. D. (1959). J. Phys. Chem. 63, 873-876.]), oxidation reactions (Beccalli et al., 2007[Beccalli, E. M., Broggini, G., Martinelli, M. & Sottocornola, S. (2007). Chem. Rev. 107, 5318-5365.]; Yu et al., 2009[Yu, W., Du, Y. & Zhao, K. (2009). Org. Lett. 11, 2417-2420.]) and organometallic catalysed reactions (Hartwig, 2008[Hartwig, J. F. (2008). Nature (London), 455, 314-322.]). The known title compound, (I)[link], was synthesized using microwave irradiation to promote C—C bond coupling between dioxane and benzophenone, and was isolated as a racemic mixture upon crystallization. (I)[link] has been prepared previously by UV irradiation of benzophenone in dioxane, and characterized by 1H and 13C NMR and mass spectrometry (Bakar Bin Baba et al., 1985[Bakar Bin Baba, A., Gold, V. & Hibbert, F. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 1039-1043.]; Droste et al., 1969[Droste, W., Scharf, H. D. & Korte, F. (1969). Justus Liebigs Ann. Chem. 724, 71-80.]). However, to date, no crystal structure of (I)[link] has been reported.

[Scheme 1]

The C—C bond coupling between the 2-position C atom of dioxane and the carbonyl C atom of benzophenone results in the formation of a stereocenter at atom C2. Compound (I)[link] crystallizes with one mol­ecule in the asymmetric unit in the noncentrosymmetric space group Cc, which was confirmed using the program PLATON (routines ADDSYM and NEWSYM; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Two enanti­omeric forms are present and the structure of the S form is shown in Fig. 1[link]. The Hooft analysis parameters P2(true) = 1.000, P3(true) = 1.000, P3(false) = 0.000 and Hooft y = 0.14 (7) obtained from PLATON were used to assign the absolute configuration (Hooft et al., 2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]).

The C—C and C—O bond distances and associated bond angles around atoms C1 [average = 109.04 (17)°] and C2 [average = 109.48 (14)°] are consistent with sp3 hybridization (Table 1[link]). The C—C and C—O distances, and respective angles, for the phenyl and dioxanyl groups are normal. The phenyl rings adopt a twisted arrangement, minimizing ring-to-ring and H⋯H atom inter­actions, while the dioxanyl group adopts a distorted-chair conformation.

Compound (I)[link] displays inter­molecular O—H⋯O′ hydrogen bonding between dioxanyl and hy­droxy groups (Desiraju, 1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. 34, 2311-2327.]). A view of the inter­linked one-dimensional hydrogen-bonded chain of mol­ecules of (I)[link], projected along the crystallographic c axis, is shown in Fig. 2[link], illustrating the strong hydrogen-bonding inter­action, with dimensions as listed in Table 2[link].

[Figure 1]
Figure 1
A view of the S enantio­mer of (I)[link], showing 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
A packing diagram for (I)[link], showing the inter­molecular hydrogen-bonding inter­actions between atoms H30A and O2i of adjacent S and R enantio­mers. [Symmetry code: (i) x, −y + 1, z − [{1\over 2}].]

Experimental

The synthesis of (I)[link] and 1,1,2,2-tetra­phenyl­ethane-1,2-diol from dioxane and benzophenone has been described in the literature (Droste et al., 1969[Droste, W., Scharf, H. D. & Korte, F. (1969). Justus Liebigs Ann. Chem. 724, 71-80.]). Irradition of a dioxane solution containing benzophenone for 20 h with a mercury arc lamp (340 nm) and a nickel sulfate aqueous filter produces (I)[link] and 1,1,2,2-tetra­phenyl­ethane-1,2-diol as the major products. We have prepared (I)[link] by an alternative method using microwave irradiation by the following procedure. Benzophenone (0.55 mmol) was placed in a 125 ml Erlenmeyer flask containing Zn dust (1.02 mmol), ammonium formate (3.96 mmol) and dioxane (5 ml). The reacta­nts were irradiated in a domestic microwave oven (70% power, 1.05 kW) with a heat sink for three periods of 5 min, yielding an amber-colored solution. Excess dioxane was added, the Zn dust was removed by filtration and the filtrate was concentrated by rotoevaporation. Removal of the solvent yielded an amber-colored oil and white crystals. The white solid was the major product. It was easily removed by filtration with a cold methanol wash and was determined to be 1,1,2,2-tetra­phenyl­ethane-1,2-diol (m.p. 443–444 K). The amber-colored oil was determined to be a mixture of (I)[link] and several unknown by-products. It was purified by chromatography using a 5:2:1 solution of ethyl acetate–toluene–methanol on silica gel. Com­pound (I)[link] was crystallized by slow diffusion of toluene, yielding colorless crystals [m.p. 387 K; literature value 388 K (Bakar Bin Baba et al., 1985[Bakar Bin Baba, A., Gold, V. & Hibbert, F. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 1039-1043.])]. The 1H NMR (CDCl3) spectrum corresponds to that reported in the literature. MALDI–TOF MS: [M + H]+ 271 m/z.

Crystal data
  • C17H18O3

  • Mr = 270.31

  • Monoclinic, C c

  • a = 12.9108 (8) Å

  • b = 10.5408 (5) Å

  • c = 10.3022 (7) Å

  • β = 94.016 (6)°

  • V = 1398.59 (14) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 100 K

  • 0.37 × 0.11 × 0.04 mm

Data collection
  • Oxford GEMINI CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Version 1.171.34.36. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.915, Tmax = 0.988

  • 4014 measured reflections

  • 2064 independent reflections

  • 1805 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.070

  • S = 1.04

  • 2064 reflections

  • 251 parameters

  • All H-atom parameters refined

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]), with 723 Friedel pairs

  • Flack parameter: −0.2 (2)

Table 1
Selected geometric parameters (Å, °)

C1—O3 1.418 (2)
C1—C12 1.530 (3)
C1—C6 1.539 (3)
C1—C2 1.546 (3)
C2—O1 1.417 (2)
C2—C3 1.500 (3)
O3—C1—C12 106.56 (16)
O3—C1—C6 111.66 (17)
C12—C1—C6 107.32 (16)
O3—C1—C2 108.80 (17)
C12—C1—C2 111.38 (18)
C6—C1—C2 111.05 (16)
O1—C2—C3 110.31 (17)
O1—C2—C1 107.07 (17)
C3—C2—C1 114.93 (18)
O1—C2—H2 106.8 (12)
C3—C2—H2 107.4 (12)
C1—C2—H2 110.1 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H30A⋯O2i 0.86 (3) 1.99 (3) 2.813 (2) 160 (2)
Symmetry code: (i) [x, -y+1, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Version 1.171.33.34d. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Version 1.171.34.36. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Version 1.171.34.36. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The formation of C—C bonds is an important synthetic step in organic synthesis, and there are several well known methods that efficiently promote this bond-formation process. One frequently used method involves the coupling of carbon radicals generated during photolysis (Ohkura et al., 2004; Derk et al., 2008), radiolysis (Burr & Strong, 1959), oxidation reactions (Beccalli et al., 2007; Yu et al., 2009) and organometallic catalysed reactions (Hartwig, 2008). The known title compound, (I), was synthesized using microwave irradiation to promote C—C bond coupling between dioxane and benzophenone, and isolated as a racemic mixture upon crystallization. The synthesis of (I) has been reported previously (Bakar Bin Baba et al., 1985; Droste et al., 1969) by UV irradiation of benzophenone in dioxane, and characterized by 1H and 13C NMR and mass spectrometry. However, to date, no crystal structure of (I) has been reported.

The C—C bond coupling between the 2-position C atom of dioxane and the carbonyl C atom of benzophenone results in the formation of a stereocenter at atom C2. Compound (I) crystallizes with one molecule in the asymmetric unit in the noncentrosymmetric space group Cc, which was confirmed using the program PLATON (routines ADDSYM and NEWSYM; Spek, 2009). Two enantiomeric forms are present and the structure of the S form is shown in Fig. 1. The Hooft analysis parameters P2(true) = 1.000, P3(true) = 1.000, P3(false) = 0.000 and Hooft y = 0.139 (069) obtained from PLATON were used to assign the absolute structure (Hooft et al., 2008).

The C—C and C—O bond distances and associated bond angles around atoms C1 [average = 109.04 (17)°] and C2 [average = 109.48 (14)°] are consistent with sp3 hybridization. The C—C and C—O distances, and respective angles, for the phenyl and dioxanyl groups are normal. The phenyl rings adopt a twisted arrangement, minimizing ring-to-ring and H···H atom interactions, while the dioxanyl group adopts a distorted-chair conformation.

Compound (I) displays intermolecular O—H···O' hydrogen bonding between dioxanyl and hydroxy groups (Desiraju, 1995). A view of the interlinked one-dimensional hydrogen-bonded chain of molecules of (I), projected along the crystallographic c axis, is shown in Fig. 2, illustrating the strong hydrogen-bonding interaction. The O3···O2i distance is 2.812 (2) Å and the O3—H30A···O2i angle is 160 (2)° between symmetry-related molecules [symmetry code: (i) x, -y + 1, z - 1/2].

Related literature top

For related literature, see: Bakar Bin Baba, Gold & Hibbert (1985); Beccalli et al. (2007); Burr & Strong (1959); Derk et al. (2008); Desiraju (1995); Droste et al. (1969); Hartwig (2008); Hooft et al. (2008); Ohkura et al. (2004); Spek (2009); Yu et al. (2009).

Experimental top

The synthesis of (I) and 1,1,2,2-tetraphenylethane-1,2-diol from dioxane and benzophenone has been described in the literature (Droste et al., 1969). Irradition of a dioxane solution containing benzophenone for 20 h with a mercury arc lamp (340 nm) and a nickel sulfate aqueous filter produces (I) and 1,1,2,2-tetraphenylethane-1,2-diol as the major products. We have prepared (I) by an alternate method using microwave irradiation by the following procedure. Benzophenone (0.55 mmol) was placed in a 125 ml Erlenmeyer flask containing Zn dust (1.02 mmol), ammonium formate (3.96 mmol) and dioxane (5 ml). The reactants were irradiated in a domestic microwave oven (70% power, 1.05 kW) with a heat sink for three periods of 5 min, yielding an amber-colored solution. Excess dioxane was added, the Zn dust was removed by filtration and the filtrate was concentrated by rotoevaporation. Removal of the solvent yielded an amber-colored oil and white crystals. The white solid was the major product. It was easily removed by filtration with a cold methanol wash and was determined to be 1,1,2,2-tetraphenylethane-1,2-diol (m.p. 443–444 K). The remaining amber-colored oil was determined to be a mixture of (I) and several unknown by-products. The oil was purified by chromatography using a 5:2:1 solution of ethyl acetate–toluene–methanol on silica gel. Compound (I) was crystallized by slow diffusion of toluene, yielding colorless crystals [m.p. 387 K (literature value? 388 K)]. The 1H NMR (CDCl3) spectrum corresponds to that reported in the literature. MALDI–TOF MS: [M+H]+ 271 m/z.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the S enantiomer of (I), showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing diagram for (I), showing the intermolecular hydrogen-bonding interactions between atoms H30A and O2i of adjacent S and R enantiomers. [Symmetry code: (i) x, -y + 1, z - 1/2.]
(1,4-Dioxan-2-yl)diphenylmethanol top
Crystal data top
C17H18O3F(000) = 576
Mr = 270.31Dx = 1.289 Mg m3
Monoclinic, CcMelting point: 387 K
Hall symbol: C -2ycCu Kα radiation, λ = 1.5418 Å
a = 12.9108 (8) ÅCell parameters from 2419 reflections
b = 10.5408 (5) Åθ = 4.3–72.5°
c = 10.3022 (7) ŵ = 0.70 mm1
β = 94.016 (6)°T = 100 K
V = 1398.59 (14) Å3Needle, colourless
Z = 40.37 × 0.11 × 0.04 mm
Data collection top
Oxford GEMINI CCD area-detector
diffractometer
2064 independent reflections
Radiation source: Enhance (Cu) X-ray Source1805 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 10.2836 pixels mm-1θmax = 72.6°, θmin = 5.4°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1212
Tmin = 0.915, Tmax = 0.988l = 912
4014 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030All H-atom parameters refined
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0319P)2 + 0.393P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2064 reflectionsΔρmax = 0.18 e Å3
251 parametersΔρmin = 0.14 e Å3
0 restraintsAbsolute structure: Hooft et al. (2008), with 723 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.2 (2)
Crystal data top
C17H18O3V = 1398.59 (14) Å3
Mr = 270.31Z = 4
Monoclinic, CcCu Kα radiation
a = 12.9108 (8) ŵ = 0.70 mm1
b = 10.5408 (5) ÅT = 100 K
c = 10.3022 (7) Å0.37 × 0.11 × 0.04 mm
β = 94.016 (6)°
Data collection top
Oxford GEMINI CCD area-detector
diffractometer
2064 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1805 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.988Rint = 0.015
4014 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030All H-atom parameters refined
wR(F2) = 0.070Δρmax = 0.18 e Å3
S = 1.04Δρmin = 0.14 e Å3
2064 reflectionsAbsolute structure: Hooft et al. (2008), with 723 Friedel pairs
251 parametersAbsolute structure parameter: 0.2 (2)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.23251 (16)0.34864 (19)0.5551 (2)0.0331 (5)
C20.19656 (17)0.4739 (2)0.6158 (2)0.0352 (5)
C30.10390 (18)0.4619 (2)0.6951 (3)0.0411 (6)
C40.05609 (19)0.6716 (2)0.6418 (2)0.0458 (6)
C50.14556 (19)0.6817 (2)0.5585 (2)0.0425 (6)
C60.32704 (16)0.37083 (18)0.47492 (19)0.0330 (5)
C70.3398 (2)0.2943 (2)0.3677 (2)0.0470 (6)
C80.4247 (2)0.3069 (3)0.2967 (3)0.0606 (8)
C90.4989 (2)0.3948 (3)0.3284 (3)0.0620 (8)
H90.563 (3)0.412 (3)0.294 (3)0.074*
C100.4885 (2)0.4736 (3)0.4339 (3)0.0558 (7)
C110.40233 (18)0.4602 (2)0.5077 (2)0.0412 (5)
C120.26435 (16)0.25065 (19)0.6600 (2)0.0344 (5)
C130.24572 (19)0.1232 (2)0.6353 (3)0.0437 (6)
C160.3528 (2)0.1919 (3)0.8644 (3)0.0533 (7)
O10.17561 (11)0.56064 (12)0.51221 (14)0.0385 (4)
O20.07728 (12)0.58393 (16)0.74518 (16)0.0511 (4)
O30.14795 (12)0.29540 (15)0.47828 (17)0.0456 (4)
C170.31819 (19)0.2836 (2)0.7755 (2)0.0452 (6)
C140.2808 (2)0.0320 (2)0.7246 (3)0.0571 (8)
C150.3340 (2)0.0663 (2)0.8392 (3)0.0551 (7)
H150.364 (2)0.010 (3)0.899 (3)0.066*
H20.2586 (17)0.514 (2)0.678 (2)0.036 (6)*
H3A0.1217 (18)0.412 (2)0.772 (2)0.048 (7)*
H3B0.0436 (19)0.431 (2)0.645 (3)0.053 (8)*
H4A0.003 (2)0.643 (2)0.592 (3)0.055 (7)*
H4B0.0393 (18)0.758 (3)0.684 (2)0.052 (7)*
H5A0.212 (2)0.721 (2)0.615 (3)0.063 (8)*
H5B0.1348 (18)0.741 (2)0.484 (3)0.051 (7)*
H70.291 (2)0.221 (3)0.348 (3)0.066 (8)*
H80.433 (3)0.251 (4)0.222 (4)0.094 (11)*
H100.529 (2)0.535 (2)0.460 (2)0.044 (7)*
H110.3979 (19)0.509 (2)0.584 (3)0.054 (7)*
H130.213 (2)0.103 (3)0.561 (3)0.057 (9)*
H140.265 (2)0.055 (3)0.709 (3)0.078 (10)*
H160.390 (2)0.216 (3)0.936 (3)0.057 (8)*
H170.329 (2)0.364 (2)0.796 (2)0.052 (7)*
H30A0.1324 (19)0.348 (2)0.417 (3)0.049 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0370 (11)0.0264 (10)0.0342 (12)0.0021 (8)0.0102 (9)0.0010 (9)
C20.0382 (11)0.0285 (10)0.0384 (13)0.0062 (9)0.0011 (10)0.0038 (9)
C30.0401 (13)0.0417 (13)0.0407 (14)0.0001 (10)0.0040 (11)0.0033 (11)
C40.0455 (14)0.0489 (14)0.0419 (15)0.0204 (11)0.0051 (11)0.0012 (12)
C50.0565 (15)0.0319 (11)0.0382 (14)0.0156 (10)0.0024 (12)0.0016 (10)
C60.0442 (12)0.0268 (9)0.0271 (11)0.0107 (8)0.0050 (9)0.0036 (8)
C70.0675 (16)0.0359 (11)0.0372 (14)0.0151 (11)0.0002 (12)0.0029 (11)
C80.082 (2)0.0605 (16)0.0396 (16)0.0302 (16)0.0051 (15)0.0000 (14)
C90.0584 (16)0.086 (2)0.0437 (17)0.0376 (16)0.0174 (13)0.0275 (16)
C100.0425 (14)0.0622 (17)0.0620 (19)0.0020 (12)0.0024 (13)0.0162 (15)
C110.0415 (12)0.0431 (12)0.0386 (14)0.0038 (10)0.0006 (11)0.0019 (12)
C120.0388 (11)0.0291 (10)0.0353 (12)0.0026 (8)0.0019 (9)0.0028 (9)
C130.0500 (13)0.0301 (10)0.0498 (16)0.0049 (10)0.0057 (12)0.0062 (11)
C160.0667 (16)0.0538 (14)0.0378 (15)0.0118 (13)0.0083 (13)0.0016 (12)
O10.0506 (9)0.0300 (7)0.0342 (8)0.0103 (6)0.0014 (7)0.0033 (7)
O20.0542 (10)0.0538 (10)0.0453 (10)0.0203 (8)0.0036 (8)0.0019 (8)
O30.0512 (9)0.0343 (8)0.0482 (10)0.0073 (7)0.0185 (8)0.0039 (8)
C170.0591 (15)0.0334 (11)0.0413 (14)0.0077 (10)0.0094 (11)0.0014 (11)
C140.0677 (16)0.0326 (12)0.070 (2)0.0022 (11)0.0039 (15)0.0161 (12)
C150.0660 (17)0.0466 (14)0.0523 (17)0.0117 (12)0.0027 (13)0.0214 (13)
Geometric parameters (Å, º) top
C1—O31.418 (2)C7—H71.01 (3)
C1—C121.530 (3)C8—C91.356 (5)
C1—C61.539 (3)C8—H80.98 (4)
C1—C21.546 (3)C9—C101.381 (4)
C2—O11.417 (2)C9—H90.94 (3)
C2—C31.500 (3)C10—C111.398 (4)
C2—H21.07 (2)C10—H100.86 (2)
C3—O21.437 (3)C11—H110.94 (3)
C3—H3A0.96 (3)C12—C171.380 (3)
C3—H3B0.96 (3)C12—C131.386 (3)
C4—O21.422 (3)C13—C141.385 (4)
C4—C51.490 (3)C13—H130.87 (3)
C4—H4A0.94 (3)C16—C151.368 (4)
C4—H4B1.04 (3)C16—C171.385 (3)
C5—O11.426 (2)C16—H160.89 (3)
C5—H5A1.08 (3)O3—H30A0.85 (3)
C5—H5B0.99 (3)C17—H170.88 (2)
C6—C111.379 (3)C14—C151.372 (4)
C6—C71.388 (3)C14—H140.96 (3)
C7—C81.366 (4)C15—H150.92 (3)
O3—C1—C12106.56 (16)C6—C7—H7119.9 (16)
O3—C1—C6111.66 (17)C9—C8—C7121.2 (3)
C12—C1—C6107.32 (16)C9—C8—H8119 (2)
O3—C1—C2108.80 (17)C7—C8—H8120 (2)
C12—C1—C2111.38 (18)C8—C9—C10119.7 (3)
C6—C1—C2111.05 (16)C8—C9—H9131.9 (18)
O1—C2—C3110.31 (17)C10—C9—H9108.3 (19)
O1—C2—C1107.07 (17)C9—C10—C11119.4 (3)
C3—C2—C1114.93 (18)C9—C10—H10127.4 (18)
O1—C2—H2106.8 (12)C11—C10—H10113.1 (18)
C3—C2—H2107.4 (12)C6—C11—C10120.7 (2)
C1—C2—H2110.1 (11)C6—C11—H11119.6 (15)
O2—C3—C2109.88 (18)C10—C11—H11119.6 (16)
O2—C3—H3A104.1 (14)C17—C12—C13118.2 (2)
C2—C3—H3A109.8 (14)C17—C12—C1122.22 (18)
O2—C3—H3B107.1 (15)C13—C12—C1119.4 (2)
C2—C3—H3B112.3 (16)C14—C13—C12120.5 (2)
H3A—C3—H3B113 (2)C14—C13—H13122.2 (18)
O2—C4—C5111.21 (18)C12—C13—H13117.3 (18)
O2—C4—H4A107.9 (16)C15—C16—C17120.3 (3)
C5—C4—H4A109.8 (16)C15—C16—H16121.1 (18)
O2—C4—H4B106.8 (14)C17—C16—H16118.5 (19)
C5—C4—H4B111.9 (14)C2—O1—C5111.58 (16)
H4A—C4—H4B109 (2)C4—O2—C3110.54 (19)
O1—C5—C4111.60 (19)C1—O3—H30A106.5 (16)
O1—C5—H5A107.4 (14)C12—C17—C16121.0 (2)
C4—C5—H5A109.7 (15)C12—C17—H17121.0 (17)
O1—C5—H5B109.4 (15)C16—C17—H17118.0 (17)
C4—C5—H5B114.8 (14)C15—C14—C13120.6 (2)
H5A—C5—H5B103.5 (19)C15—C14—H14119.3 (18)
C11—C6—C7118.1 (2)C13—C14—H14120.0 (18)
C11—C6—C1122.98 (19)C16—C15—C14119.4 (3)
C7—C6—C1118.8 (2)C16—C15—H15116.0 (17)
C8—C7—C6120.9 (3)C14—C15—H15124.4 (17)
C8—C7—H7118.8 (15)
O3—C1—C2—O166.7 (2)C1—C6—C11—C10177.8 (2)
C12—C1—C2—O1176.16 (16)C9—C10—C11—C61.1 (4)
C6—C1—C2—O156.6 (2)O3—C1—C12—C17157.7 (2)
O3—C1—C2—C356.2 (2)C6—C1—C12—C1782.6 (2)
C12—C1—C2—C361.0 (2)C2—C1—C12—C1739.2 (3)
C6—C1—C2—C3179.50 (18)O3—C1—C12—C1327.2 (3)
O1—C2—C3—O258.3 (2)C6—C1—C12—C1392.5 (2)
C1—C2—C3—O2179.48 (18)C2—C1—C12—C13145.7 (2)
O2—C4—C5—O154.2 (3)C17—C12—C13—C140.2 (4)
O3—C1—C6—C11155.27 (19)C1—C12—C13—C14175.1 (2)
C12—C1—C6—C1188.3 (2)C3—C2—O1—C556.6 (2)
C2—C1—C6—C1133.6 (3)C1—C2—O1—C5177.70 (17)
O3—C1—C6—C727.5 (2)C4—C5—O1—C254.6 (2)
C12—C1—C6—C789.0 (2)C5—C4—O2—C356.3 (3)
C2—C1—C6—C7149.1 (2)C2—C3—O2—C458.3 (2)
C11—C6—C7—C80.1 (3)C13—C12—C17—C160.0 (4)
C1—C6—C7—C8177.3 (2)C1—C12—C17—C16175.1 (2)
C6—C7—C8—C90.2 (4)C15—C16—C17—C120.0 (4)
C7—C8—C9—C100.3 (4)C12—C13—C14—C150.3 (4)
C8—C9—C10—C111.0 (4)C17—C16—C15—C140.2 (4)
C7—C6—C11—C100.5 (3)C13—C14—C15—C160.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H30A···O2i0.86 (3)1.99 (3)2.813 (2)160 (2)
Symmetry code: (i) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC17H18O3
Mr270.31
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)12.9108 (8), 10.5408 (5), 10.3022 (7)
β (°) 94.016 (6)
V3)1398.59 (14)
Z4
Radiation typeCu Kα
µ (mm1)0.70
Crystal size (mm)0.37 × 0.11 × 0.04
Data collection
DiffractometerOxford GEMINI CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.915, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
4014, 2064, 1805
Rint0.015
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.070, 1.04
No. of reflections2064
No. of parameters251
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.18, 0.14
Absolute structureHooft et al. (2008), with 723 Friedel pairs
Absolute structure parameter0.2 (2)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
C1—O31.418 (2)C1—C21.546 (3)
C1—C121.530 (3)C2—O11.417 (2)
C1—C61.539 (3)C2—C31.500 (3)
O3—C1—C12106.56 (16)O1—C2—C3110.31 (17)
O3—C1—C6111.66 (17)O1—C2—C1107.07 (17)
C12—C1—C6107.32 (16)C3—C2—C1114.93 (18)
O3—C1—C2108.80 (17)O1—C2—H2106.8 (12)
C12—C1—C2111.38 (18)C3—C2—H2107.4 (12)
C6—C1—C2111.05 (16)C1—C2—H2110.1 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H30A···O2i0.86 (3)1.99 (3)2.813 (2)160 (2)
Symmetry code: (i) x, y+1, z1/2.
 

Acknowledgements

MSM thanks the Department of Energy (grant No. DEFG02-08CH11538), and the Kentucky Research Challenge Trust Fund for upgrade of our X-ray facilities. RMB thanks the Kentucky Science and Engineering Foundation (grant No. KSEF-275-RDE-003) for financial support of this research.

References

First citationBakar Bin Baba, A., Gold, V. & Hibbert, F. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 1039–1043.
First citationBeccalli, E. M., Broggini, G., Martinelli, M. & Sottocornola, S. (2007). Chem. Rev. 107, 5318–5365.  Web of Science CrossRef PubMed CAS
First citationBurr, J. G. & Strong, J. D. (1959). J. Phys. Chem. 63, 873–876.  CrossRef CAS
First citationDerk, A. R., Funke, H. H. & Falconer, J. L. (2008). Ind. Eng. Chem. Res. 47, 6568–6572.  CrossRef CAS
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. 34, 2311–2327.  CrossRef CAS Web of Science
First citationDroste, W., Scharf, H. D. & Korte, F. (1969). Justus Liebigs Ann. Chem. 724, 71–80.  CrossRef CAS
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationHartwig, J. F. (2008). Nature (London), 455, 314–322.  Web of Science CrossRef PubMed CAS
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals
First citationOhkura, K., Ishihara, T., Nakata, Y. & Seki, K.-i. (2004). Heterocycles, 62, 213–216.  CAS
First citationOxford Diffraction (2009). CrysAlis PRO. Version 1.171.33.34d. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
First citationOxford Diffraction (2010). CrysAlis PRO. Version 1.171.34.36. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationYu, W., Du, Y. & Zhao, K. (2009). Org. Lett. 11, 2417–2420.  Web of Science CrossRef PubMed CAS

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds