metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Sodium tris­­(acetato-κ2O,O′)dioxidoamericate(VI) and guanidinium tris­(cyclo­propane­carboxyl­ato-κ2O,O′)dioxidoamericate(VI)

aA.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospekt, 119991 Moscow, Russian Federation
*Correspondence e-mail: mickgrig@mail.ru

(Received 22 February 2011; accepted 5 May 2011; online 19 May 2011)

The title compounds, Na[{AmO2}(C2H3O2)3], (I), and (CH6N3)[{AmO2}(C4H5O2)3], (II), contain complex anions in which AmO22+ cations are surrounded by three bidentate-chelating carboxyl­ate groups. The atoms of the AmO2 group and the Na atoms in (I) are situated on threefold axes. All the atoms in (II) occupy general positions. Both compounds are isomorphous with earlier studied analogous compounds of previous members of the actinide (An) series.

Comment

Linear dioxidocations AnO2+ and AnO22+ are typical of actinides (An) in oxidation states V and VI. Most of the crystal structures reported for compounds containing such cations involve UVI and NpV. The data for Pu compounds are more scarce. AmVI compounds are usually believed to be isomorphous with corresponding compounds of U, Np and Pu. Nevertheless, there are several examples of PuVI compounds that are not isomorphous with their U and Np analogues. PuVI orthophthalate {PuO2[(OOC)2C6H4]H2O}·H2O (Grigoriev et al., 2004[Grigoriev, M. S., Antipin, M. Yu., Krot, N. N. & Bessonov, A. A. (2004). Radiochim. Acta, 92, 405-409.]) is not isomorphous with {UO2[(OOC)2C6H4]H2O}·H2O (Charushnikova et al., 2004[Charushnikova, I. A., Krot, N. N. & Starikova, Z. A. (2004). Radiochemistry, 46, 556-559.]). In this case, the change in the coordination mode of the phthalate anion (seven-membered metallocycle in the U compound and four-membered metallocycle in the Pu compound) can be explained by a decrease in the ionic radius on going from U to Pu, viz. the actinide contraction (Edelstein et al., 2006[Edelstein, N. M., Fuger, J., Katz, J. J. & Morss, L. R. (2006). The Chemistry of the Actinide and Transactinide Elements, Vol. 3, edited by L. R. Morss, N. M. Edelstein & J. Fuger, p. 1798. Dordrecht: Springer.]). [(PuO2)2SiO4(H2O)2] crystallizes in a tetra­gonal space group whereas its U and Np analogues crystallize in an ortho­rhom­bic one (Grigor'ev et al., 2003[Grigor'ev, M. S., Bessonov, A. A., Makarenkov, V. I. & Fedoseev, A. M. (2003). Radiochemistry, 45, 257-260.]; Bessonov et al., 2003[Bessonov, A. A., Grigoriev, M. S., Ioussov, A. B., Budantseva, N. A. & Fedosseev, A. M. (2003). Radiochim. Acta, 91, 339-344.]). In the case of [PuO2(IO3)2]·H2O and [UO2(IO3)2(H2O)], even the composition of the coordination polyhedron is different (Bean et al., 2001[Bean, A. C., Peper, S. M. & Albrecht-Schmitt, T. E. (2001). Chem. Mater. 13, 1266-1272.]; Runde et al., 2003[Runde, W., Bean, A. C., Albrecht-Schmitt, T. E. & Scott, B. L. (2003). Chem. Commun. pp. 478-479.]).

Until recently, full X-ray crystallographic data for AmVI compounds have not been available. We present here two crystal structure determinations for AmVI tricarboxyl­ate com­plexes, viz. sodium tris­(acetato-κ2O,O′)dioxidoameri­cate(VI), Na[AmO2(OOCCH3)3], (I)[link], and guanidinium tris(cyclo­pro­pane­carboxyl­ato-κ2O,O′)di­oxido­americate(VI), [C(NH2)3][AmO2(OOCC3H5)3], (II)[link].

[Scheme 1]

Several structure determinations for Na[AnO2(OOCCH3)3] compounds have been reported (Zachariasen & Plettinger, 1959[Zachariasen, W. H. & Plettinger, H. A. (1959). Acta Cryst. 12, 526-530.]; Alcock et al., 1982[Alcock, N. W., Roberts, M. M. & Brown, D. (1982). J. Chem. Soc. Dalton Trans. pp. 33-35.]; Templeton et al., 1985[Templeton, D. H., Zalkin, A., Ruben, H. & Templeton, L. K. (1985). Acta Cryst. C41, 1439-1441.]; Navaza et al., 1991[Navaza, A., Charpin, P., Vigner, D. & Heger, G. (1991). Acta Cryst. C47, 1842-1845.]; Charushnikova et al., 2007[Charushnikova, I. A., Krot, N. N. & Starikova, Z. A. (2007). Radiochemistry, 49, 565-570.]). For the Am compound, only unit-cell constants have been determined and the isostructurality with other AnVI compounds has been shown (Jones, 1955[Jones, L. H. (1955). J. Chem. Phys. 23, 2105-2107.]). Only a brief description is available for the crystal structure of [C(NH2)3][NpO2(OOCC3H5)3] (Andreev et al., 2006[Andreev, G. B., Budantseva, N. A., Fedosseev, A. M. & Antipin, M. Yu. (2006). Fifth Russian Conference on Radiochemistry, Dubna, October 23-27, 2006. Abstracts, pp. 73-74.]).

Both title compounds contain complex anions in which AmO22+ cations are surrounded by three bidentate-chelating carboxyl­ate anions (Figs. 1[link] and 2[link]). The atoms of the AmO2 group and Na atoms in (I)[link] occupy special positions 4a in the space group P213 on threefold axes. All the atoms in (II)[link] occupy general positions. The coordination polyhedra of the Am atoms in both compounds are distorted hexa­gonal bipyramids with the two O atoms of the AmO2 groups in apical positions and six O atoms from three carboxylate groups in equatorial positions. The main distortion of the polyhedra is the difference between O—Am—O angles for O atoms of the same carboxylate group and for O atoms of two different carboxylate groups, these values being about 53 and 67°, respectively (Tables 1[link] and 2[link]). The AmO2 groups, ideally linear in (I)[link] and almost linear in (II)[link], are almost symmetric with close average Am—O distances of 1.738 (9) and 1.745 (4) Å, respectively. The average Am—O distances in the equatorial planes of the AmO2 groups are 2.460 (5) and 2.461 (4) Å for (I)[link] and (II)[link], respectively.

The coordination polyhedron of the Na atom in (I)[link] can be described as a strongly distorted octa­hedron, formed by carboxylate O atoms, with three Na—O distances of 2.358 (5) Å and three distances of 2.384 (6) Å.

The guanidinium cations in (II)[link] act as proton donors in several hydrogen bonds (Fig. 3[link] and Table 3[link]) with O atoms of the carboxylate groups of the organic anions. Each cation is connected to three complex anions forming layers parallel to the (010) plane.

Both compounds are isomorphous with earlier studied analogous compounds of previous members of the actinide series. The average An—O distances in Na[AnO2(OOCCH3)3] compounds are (in AnO2 groups and in their equatorial planes, respectively) 1.758 and 2.464 Å for U (Templeton et al., 1985[Templeton, D. H., Zalkin, A., Ruben, H. & Templeton, L. K. (1985). Acta Cryst. C41, 1439-1441.]), 1.776 (7) and 2.456 (12) Å for Np (Alcock et al., 1982[Alcock, N. W., Roberts, M. M. & Brown, D. (1982). J. Chem. Soc. Dalton Trans. pp. 33-35.]), and 1.736 (8) and 2.462 (5) Å for Pu (Charushnikova et al., 2007[Charushnikova, I. A., Krot, N. N. & Starikova, Z. A. (2007). Radiochemistry, 49, 565-570.]). The An—O distances in the equatorial plane of the AnO2 groups are practically the same in all compounds. The An=O distances in the AnO2 groups differ more significantly but without any pronounced trend. In contrast, a general decrease in the An=O distances in the AnO2 groups with increasing atomic number of the An atom was found for (NH4)[AnO2(CO3)3] compounds (An = U, Np, Pu; Charushnikova et al., 2007[Charushnikova, I. A., Krot, N. N. & Starikova, Z. A. (2007). Radiochemistry, 49, 565-570.]).

The Np—O distances in [C(NH2)3][NpO2(OOCC3H5)3] (Andreev et al., 2006[Andreev, G. B., Budantseva, N. A., Fedosseev, A. M. & Antipin, M. Yu. (2006). Fifth Russian Conference on Radiochemistry, Dubna, October 23-27, 2006. Abstracts, pp. 73-74.]) are 1.744 (5) and 1.752 (5) Å in the NpO2 group and range from 2.437 (5) to 2.497 (5) Å in the equatorial plane, close to the values found in (II)[link].

Thus, this study has proved the isomorphism of (I)[link] and (II)[link] with analogous compounds of previous members of the actinide series. The main difference in inter­atomic distances is some shortening of An—O bonds in AnO2 groups in (I)[link] and its analogues in the U–Np–Pu–Am sequence.

[Figure 1]
Figure 1
A view of the components of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size. [Symmetry code: (i) y, z, x.]
[Figure 2]
Figure 2
A view of the components of (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size. Dashed lines indicate the hydrogen-bonding inter­actions.
[Figure 3]
Figure 3
The pattern of hydrogen bonding in (II)[link]. The H atoms of the cyclo­prop­ane­car­boxylate anions have been omitted for clarity.

Experimental

243Am(NO3)3 with a negligible admixture of 241Am was used as the starting material for the syntheses of (I)[link] and (II)[link]. Brown–yellow crystals of (I)[link] were obtained by neutralization of AmVI (5 × 10−3M) in NaHCO3 solu­tion (0.1 M), prepared by ozonation of the initial AmIII suspension in NaHCO3 (0.1 M), and excess of an aqueous CH3COOH solution (1 M). Crystallization commences in such solutions within a few minutes but usually the crystals are rather small.

Light-brown–yellow crystals of (II)[link] were obtained by slow evaporation of a solution containing AmVI (5 × 10−3M) and guanidinium cyclo­propanecarboxyl­ate (0.1 M). This solution was prepared by ozonation for about 15 min of a suspension, obtained by addition of an Am(NO3)3 solution (0.1 ml, 2 × 10−2M) to guanidinium carbonate (0.4 ml, 0.11 M), and with subsequent addition of a freshly prepared water solution (0.05 ml) of cyclo­propanecarb­oxy­lic acid (1 M).

Compound (I)[link]

Crystal data
  • Na[Am(C2H3O2)3O2]

  • Mr = 475.12

  • Cubic, P 21 3

  • a = 10.5967 (2) Å

  • V = 1189.90 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.51 mm−1

  • T = 100 K

  • 0.04 × 0.04 × 0.04 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.640, Tmax = 0.810

  • 15606 measured reflections

  • 1167 independent reflections

  • 1017 reflections with I > 2σ(I)

  • Rint = 0.135

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.056

  • S = 1.03

  • 1167 reflections

  • 50 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.86 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 502 Friedel pairs

  • Flack parameter: −0.02 (4)

Table 1
Selected geometric parameters (Å, °) for (I)[link]

Am1—O1 1.735 (9)
Am1—O2 1.742 (9)
Am1—O3 2.464 (5)
Am1—O4 2.455 (5)
O1—Am1—O2 180.00
O3—Am1—O4 52.74 (16)
O4i—Am1—O3 67.26 (16)
Symmetry code: (i) y, z, x.

Compound (II)[link]

Crystal data
  • (CH6N3)[Am(C4H5O2)3O2]

  • Mr = 590.33

  • Monoclinic, P 21 /n

  • a = 9.5421 (3) Å

  • b = 13.2830 (4) Å

  • c = 14.2737 (4) Å

  • β = 92.927 (2)°

  • V = 1806.80 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.29 mm−1

  • T = 100 K

  • 0.14 × 0.06 × 0.02 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.712, Tmax = 0.924

  • 26314 measured reflections

  • 5218 independent reflections

  • 3801 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.065

  • S = 1.00

  • 5218 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 1.27 e Å−3

  • Δρmin = −1.16 e Å−3

Table 2
Selected geometric parameters (Å, °) for (II)[link]

Am1—O1 1.749 (4)
Am1—O2 1.740 (4)
Am1—O11 2.421 (4)
Am1—O12 2.488 (4)
Am1—O21 2.461 (4)
Am1—O22 2.451 (4)
Am1—O31 2.464 (4)
Am1—O32 2.483 (3)
O1—Am1—O2 178.85 (18)
O11—Am1—O12 53.09 (12)
O21—Am1—O22 52.93 (12)
O31—Am1—O32 52.55 (12)
O11—Am1—O32 66.94 (12)
O22—Am1—O31 66.72 (12)
O21—Am1—O12 68.81 (13)

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O22i 0.88 2.19 2.922 (6) 140
N2—H2A⋯O21 0.88 2.04 2.874 (6) 157
N2—H2B⋯O32ii 0.88 2.04 2.876 (6) 159
N3—H3A⋯O12 0.88 2.03 2.904 (6) 171
N3—H3B⋯O31i 0.88 2.12 2.977 (6) 164
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

The H atoms of the CH3 group in (I)[link] were located in a difference Fourier map and refined as an idealized group with displacement parameters constrained to 1.5Ueq of their parent atom. The orientation of this group was refined. The H atoms in (II)[link] were placed in calculated positions with displacement parameters constrained to 1.2Ueq of their parent atoms.

The largest electron-density peak in the final difference Fourier synthesis for (I)[link] is 0.90 Å from atom Am1 and the deepest hole is 1.72 Å from O4. The largest electron-density peak in the final difference Fourier synthesis for (II)[link] is 0.80 Å from Am1 and the deepest hole is 0.56 Å from H34B.

For both compounds, data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SAINT-Plus. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Linear dioxidocations AnO2+ and AnO22+ are typical of actinides in oxidation states V and VI. The major part of X-ray structural information for compounds containing such cations was obtained for UVI and NpV. The data for Pu compounds are more scarce. AmVI compounds are usually believed to be isomorphous with corresponding compounds of U, Np and Pu.

Nevertheless, there are several examples of PuVI compounds that are not isomorphous with their U and Np analogues. PuVI orthophthalate [PuO2{(OOC)2C6H4}H2O].H2O (Grigoriev et al., 2004) is not isomorphous with [UO2{(OOC)2C6H4}H2O].H2O (Charushnikova et al., 2004). In this case, the change in the coordination mode of the phthalate anion (seven-membered metallocycle in U compound and four-membered cycle in Pu one) can be explained by a decrease in the ionic radius at the transition from U to Pu, or actinide contraction (Edelstein et al., 2006). [(PuO2)2SiO4(H2O)2] crystallizes in a tetragonal space group whereas its U and Np analogues crystallize in an orthorhombic one (Grigor'ev et al., 2003; Bessonov et al., 2003). In the case of [PuO2(IO3)2].H2O and [UO2(IO3)2(H2O)] even the composition of the coordination polyhedron is different (Bean et al., 2001; Runde et al., 2003).

Until recently, full X-ray structural data for AmVI compounds have not been available. Here we present two structural determinations for AmVI tricarboxylate complexes: Na[AmO2(OOCCH3)3], (I), and [C(NH2)3][AmO2(OOCC3H5)3], (II).

There are several structure determinations for Na[AnO2(OOCCH3)3] compounds (Zachariasen & Plettinger, 1959; Alcock et al., 1982; Templeton et al., 1985; Navaza et al., 1991; Charushnikova et al., 2007). For the Am compound, only unit-cell constants have been determined and the isostructurality with other An(VI) compounds has been shown (Jones, 1955). Only a brief description is available for the crystal structure of [C(NH2)3][NpO2(OOCC3H5)3] (Andreev et al., 2006).

Both title compounds contain complex anions in which dioxidocations AmO22+ are surrounded by three bidentate-chelating carboxylate anions (Figs. 1, 2). The atoms of the AmO2 group and Na atoms in (I) occupy special positions 4a on threefold axes. All atoms in (II) occupy general positions. Coordination polyhedra of Am atoms in both componds are distorted hexagonal bipyramids with two O atoms of AmO2 groups in apical positions and six O atoms of three carboxyl groups in equatorial ones. The main distortion of the polyhedra is the difference between O—Am—O angles for O atoms of the same carboxyl group and for O atoms of two different carboxyl groups, these values being about 53 and 67°, respectively (Tables 1, 2). The AmO2 groups, ideally linear in (I) and almost linear in (II), are almost symmetric with close average Am—O distances, 1.738 (9) and 1.745 (4) Å, respectively. The average Am—O distances in the equatorial planes of the AmO2 groups are 2.460 (5) and 2.461 (4) Å for (I) and (II), respectively.

The coordination polyhedron of the Na atom in (I) can be described as a strongly distorted octahedron, formed by carboxyl O atoms, with three Na—O distances of 2.358 (5) Å and three distances of 2.384 (6) Å.

Guanidinium cations in (II) act as proton donors in several hydrogen bonds (Fig. 3, Table 3) with O atoms of carboxyl groups of the organic anions. Each cation is connected with [to?] three complex anions forming layers parallel to the (010) plane.

Both compounds are isomorphous with earlier studied analogous compounds of previous members of the actinide series. The average An—O distances in Na[AnO2(OOCCH3)3] compounds are (in AnO2 groups and in their equatorial planes, respectively) 1.758 and 2.464 Å for U (Templeton et al., 1985), 1.776 (7) and 2.456 (12) Å for Np (Alcock et al., 1982), 1.736 (8) and 2.462 (5) Å for Pu (Charushnikova et al., 2007). There is a general decrease in An—O distances in AnO2 groups (in the U–Np–Pu–Am sequence) and practically no change in distances in equatorial planes of dioxidocations. A similar behavour was found for (NH4)[AnO2(CO3)3] compounds (An = U, Np, Pu) (Charushnikova et al., 2007).

The Np—O distances in [C(NH2)3][NpO2(OOCC3H5)3] (Andreev et al., 2006) are 1.744 (5) and 1.752 (5) Å in the NpO2 group and range from 2.437 (5) to 2.497 (5) Å in the equatorial plane, close to the values found in (II).

Thus, the study has proved the isomorphism of (I) and (II) with analogous compounds of previous members of the actinide series. The main difference in interatomic distances is some shortening of An—O bonds in AnO2 groups in (I) and its analogues in the U–Np–Pu–Am sequence.

Related literature top

For related literature, see: Alcock et al. (1982); Andreev et al. (2006); Bean et al. (2001); Bessonov et al. (2003); Charushnikova et al. (2004, 2007); Edelstein et al. (2006); Grigor'ev, Bessonov, Makarenkov & Fedoseev (2003); Grigoriev et al. (2004); Jones (1955); Navaza et al. (1991); Runde et al. (2003); Templeton et al. (1985); Zachariasen & Plettinger (1959).

Experimental top

243Am(NO3)3 with a negligible admixture of 241Am was used as the starting material for syntheses. Brown–yellow crystals of (I) were obtained by neutralization of 5 x 10-3 M AmVI in 0.1 M NaHCO3 solution, prepared by ozonation of initial AmIII suspension in 0.1 M NaHCO3, with excess of 1 M aqueous CH3COOH solution. Crystallization commences in such solutions in a few minutes but usually the crystals are rather small.

Light brown–yellow crystals of (II) were obtained by slow evaporation of solution containing 5 x 10-3 M of AmVI and 0.1 M of guanidinium cyclopropane carboxylate. This solution was prepared by ozonation for about 15 min of a suspension, obtained by addition of 0.1 ml of 2 x 10-2 M Am(NO3)3 solution to 0.4 ml of 0.11 M guanidinium carbonate and with subsequent addition of 0.05 ml of freshly prepared 1 M water solution of cyclopropane carboxylic acid.

Refinement top

The H atoms of the CH3 group in (I) were located on a difference Fourier maps and refined as an idealized group with displacement parameters constrained to 1.5Uiso of their parent atom. The orientation of this group was refined. The H atoms in (II) were placed in calculated positions with displacement parameters constrained to 1.2Uiso of their parent atoms.

The largest electron-density peak on the final difference Fourier synthesis for (I) is 0.970 e Å-3 (0.90 Å from Am1), the deepest hole is -0.861 e Å-3 (1.72 Å from O4). The largest electron-density peak on the final difference Fourier synthesis for (II) is 1.270 e Å-3 (0.80 Å from Am1), the deepest hole is -1.156 e Å-3 (0.56 Å from H34B).

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size. [Symmetry code: (i) y, z, x.]
[Figure 2] Fig. 2. A view of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size. Dashed lines indicate the hydrogen-bonding interaction.
[Figure 3] Fig. 3. The pattern of hydrogen bonding in (II). H atoms of the anions have been omitted for clarity.
(I) Sodium tris(acetato-κ2O,O')dioxidoamericate(VI) top
Crystal data top
Na[Am(C2H3O2)3O2]Dx = 2.652 Mg m3
Mr = 475.12Mo Kα radiation, λ = 0.71073 Å
Cubic, P213Cell parameters from 1202 reflections
Hall symbol: P 2ac 2ab 3θ = 3.3–23.3°
a = 10.5967 (2) ŵ = 6.51 mm1
V = 1189.90 (4) Å3T = 100 K
Z = 4Fragment, brown-yellow
F(000) = 8600.04 × 0.04 × 0.04 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
1167 independent reflections
Radiation source: fine-focus sealed tube1017 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.135
ω and ϕ scansθmax = 30.0°, θmin = 4.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1413
Tmin = 0.640, Tmax = 0.810k = 1414
15606 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0213P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1167 reflectionsΔρmax = 0.97 e Å3
50 parametersΔρmin = 0.86 e Å3
0 restraintsAbsolute structure: Flack (1983), 502 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (4)
Crystal data top
Na[Am(C2H3O2)3O2]Z = 4
Mr = 475.12Mo Kα radiation
Cubic, P213µ = 6.51 mm1
a = 10.5967 (2) ÅT = 100 K
V = 1189.90 (4) Å30.04 × 0.04 × 0.04 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
1167 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1017 reflections with I > 2σ(I)
Tmin = 0.640, Tmax = 0.810Rint = 0.135
15606 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.056Δρmax = 0.97 e Å3
S = 1.03Δρmin = 0.86 e Å3
1167 reflectionsAbsolute structure: Flack (1983), 502 Friedel pairs
50 parametersAbsolute structure parameter: 0.02 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Am10.81974 (2)0.81974 (2)0.81974 (2)0.01028 (10)
Na10.5769 (3)0.9231 (3)1.0769 (3)0.0126 (10)
O10.9143 (5)0.9143 (5)0.9143 (5)0.019 (2)
O20.7248 (5)0.7248 (5)0.7248 (5)0.019 (2)
O30.7481 (5)1.0049 (4)0.6986 (5)0.0147 (11)
O40.6371 (4)0.9549 (5)0.8651 (4)0.0160 (11)
C10.6545 (6)1.0244 (7)0.7685 (7)0.0141 (16)
C20.5646 (8)1.1291 (8)0.7403 (8)0.026 (2)
H2A0.61191.20690.72420.039*
H2B0.50831.14170.81260.039*
H2C0.51451.10740.66560.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Am10.01028 (10)0.01028 (10)0.01028 (10)0.00018 (11)0.00018 (11)0.00018 (11)
Na10.0126 (10)0.0126 (10)0.0126 (10)0.0003 (11)0.0003 (11)0.0003 (11)
O10.019 (2)0.019 (2)0.019 (2)0.003 (2)0.003 (2)0.003 (2)
O20.019 (2)0.019 (2)0.019 (2)0.002 (2)0.002 (2)0.002 (2)
O30.013 (2)0.014 (2)0.017 (3)0.0049 (19)0.002 (2)0.000 (2)
O40.018 (3)0.015 (3)0.015 (3)0.005 (2)0.003 (2)0.002 (2)
C10.014 (4)0.011 (3)0.016 (3)0.001 (3)0.004 (3)0.003 (3)
C20.020 (4)0.033 (5)0.025 (4)0.012 (4)0.004 (3)0.008 (4)
Geometric parameters (Å, º) top
Am1—O11.735 (9)Na1—O3v2.384 (6)
Am1—O21.742 (9)Na1—O3vi2.384 (6)
Am1—O32.464 (5)Na1—O3ii2.384 (6)
Am1—O42.455 (5)O3—C11.255 (8)
Am1—O4i2.455 (5)O3—Na1vii2.384 (6)
Am1—O4ii2.455 (5)O4—C11.274 (8)
Am1—O3i2.464 (5)C1—C21.492 (9)
Am1—O3ii2.464 (5)C2—H2A0.9800
Na1—O4iii2.358 (5)C2—H2B0.9800
Na1—O4iv2.358 (5)C2—H2C0.9800
Na1—O42.358 (5)
O1—Am1—O2180.00O4iii—Na1—O499.21 (19)
O3—Am1—O452.74 (16)O4iv—Na1—O499.21 (19)
O4i—Am1—O367.26 (16)O4iii—Na1—O3v70.13 (16)
O1—Am1—O4ii90.30 (12)O4iv—Na1—O3v154.76 (17)
O2—Am1—O4ii89.70 (12)O4—Na1—O3v104.99 (17)
O1—Am1—O4i90.30 (12)O4iii—Na1—O3vi104.99 (16)
O2—Am1—O4i89.70 (12)O4iv—Na1—O3vi70.13 (16)
O4ii—Am1—O4i119.997 (2)O4—Na1—O3vi154.75 (17)
O1—Am1—O490.30 (12)O3v—Na1—O3vi90.1 (2)
O2—Am1—O489.70 (12)O4iii—Na1—O3ii154.75 (17)
O4ii—Am1—O4119.997 (2)O4iv—Na1—O3ii104.99 (17)
O4i—Am1—O4119.997 (2)O4—Na1—O3ii70.13 (16)
O1—Am1—O3i91.09 (12)O3v—Na1—O3ii90.1 (2)
O2—Am1—O3i88.91 (12)O3vi—Na1—O3ii90.1 (2)
O4ii—Am1—O3i67.26 (16)C1—O3—Na1vii151.8 (5)
O4i—Am1—O3i52.74 (16)C1—O3—Am193.9 (4)
O4—Am1—O3i172.61 (16)Na1vii—O3—Am1107.28 (19)
O1—Am1—O391.09 (12)C1—O4—Na1152.4 (5)
O2—Am1—O388.91 (12)C1—O4—Am193.8 (4)
O4ii—Am1—O3172.61 (16)Na1—O4—Am1108.4 (2)
O3i—Am1—O3119.964 (8)O3—C1—O4119.5 (6)
O1—Am1—O3ii91.09 (12)O3—C1—C2120.6 (7)
O2—Am1—O3ii88.91 (12)O4—C1—C2119.9 (6)
O4ii—Am1—O3ii52.74 (16)C1—C2—H2A109.5
O4i—Am1—O3ii172.61 (16)C1—C2—H2B109.5
O4—Am1—O3ii67.26 (16)H2A—C2—H2B109.5
O3i—Am1—O3ii119.964 (8)C1—C2—H2C109.5
O3—Am1—O3ii119.964 (8)H2A—C2—H2C109.5
O4iii—Na1—O4iv99.21 (19)H2B—C2—H2C109.5
O1—Am1—O3—C191.1 (4)O4ii—Am1—O4—C1176.8 (3)
O2—Am1—O3—C188.9 (4)O4i—Am1—O4—C12.1 (5)
O4i—Am1—O3—C1179.0 (5)O3—Am1—O4—C11.5 (4)
O4—Am1—O3—C11.5 (4)O3ii—Am1—O4—C1176.3 (4)
O3i—Am1—O3—C1177.0 (3)C1i—Am1—O4—C10.4 (4)
O3ii—Am1—O3—C10.8 (6)C1ii—Am1—O4—C1175.9 (5)
C1i—Am1—O3—C1177.4 (5)Na1vii—O3—C1—O4136.3 (7)
C1ii—Am1—O3—C13.1 (4)Am1—O3—C1—O42.7 (7)
O4iii—Na1—O4—C16.3 (10)Na1vii—O3—C1—C243.0 (14)
O4iv—Na1—O4—C194.6 (9)Am1—O3—C1—C2178.0 (7)
O3v—Na1—O4—C178.1 (10)Na1—O4—C1—O3141.5 (8)
O3vi—Na1—O4—C1157.0 (9)Am1—O4—C1—O32.7 (7)
O3ii—Na1—O4—C1162.6 (10)Na1—O4—C1—C237.8 (14)
O1—Am1—O4—C192.7 (4)Am1—O4—C1—C2178.0 (7)
O2—Am1—O4—C187.3 (4)
Symmetry codes: (i) y, z, x; (ii) z, x, y; (iii) y+3/2, z+2, x+1/2; (iv) z1/2, x+3/2, y+2; (v) x+3/2, y+2, z+1/2; (vi) y1/2, z+3/2, x+2; (vii) x+3/2, y+2, z1/2.
(II) guanidinium tris(cyclopropanecarboxylato-κ2O,O')dioxidoamericate(VI) top
Crystal data top
(CH6N3)[Am(C4H5O2)3O2]F(000) = 1116
Mr = 590.33Dx = 2.170 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3266 reflections
a = 9.5421 (3) Åθ = 2.9–24.8°
b = 13.2830 (4) ŵ = 4.29 mm1
c = 14.2737 (4) ÅT = 100 K
β = 92.927 (2)°Plate, light brown–yellow
V = 1806.80 (9) Å30.14 × 0.06 × 0.02 mm
Z = 4
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
5218 independent reflections
Radiation source: fine-focus sealed tube3801 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
ω and ϕ scansθmax = 30.0°, θmin = 4.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1213
Tmin = 0.712, Tmax = 0.924k = 1818
26314 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0204P)2]
where P = (Fo2 + 2Fc2)/3
5218 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 1.27 e Å3
0 restraintsΔρmin = 1.16 e Å3
Crystal data top
(CH6N3)[Am(C4H5O2)3O2]V = 1806.80 (9) Å3
Mr = 590.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.5421 (3) ŵ = 4.29 mm1
b = 13.2830 (4) ÅT = 100 K
c = 14.2737 (4) Å0.14 × 0.06 × 0.02 mm
β = 92.927 (2)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
5218 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3801 reflections with I > 2σ(I)
Tmin = 0.712, Tmax = 0.924Rint = 0.088
26314 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.00Δρmax = 1.27 e Å3
5218 reflectionsΔρmin = 1.16 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Am10.32846 (2)0.674070 (12)0.458603 (12)0.00981 (5)
O10.2598 (4)0.7756 (3)0.3931 (3)0.0206 (9)
O20.3939 (4)0.5731 (3)0.5251 (3)0.0176 (8)
O110.5585 (4)0.7484 (3)0.4467 (3)0.0230 (9)
O120.4502 (4)0.7899 (3)0.5730 (3)0.0185 (8)
O210.1770 (4)0.7172 (3)0.5872 (3)0.0174 (8)
O220.0937 (4)0.6078 (3)0.4841 (2)0.0143 (8)
O310.2392 (4)0.5609 (3)0.3325 (3)0.0161 (8)
O320.4620 (4)0.6001 (3)0.3305 (2)0.0143 (8)
N10.3197 (5)0.9135 (3)0.8850 (3)0.0194 (10)
H1A0.39340.93920.91600.023*
H1B0.23680.91580.90920.023*
N20.2207 (5)0.8355 (3)0.7548 (3)0.0197 (10)
H2A0.22800.80900.69870.024*
H2B0.13840.83830.77980.024*
N30.4572 (5)0.8667 (3)0.7637 (3)0.0146 (9)
H3A0.46420.84020.70770.018*
H3B0.53230.89030.79460.018*
C10.3338 (6)0.8711 (4)0.8015 (4)0.0141 (11)
C110.5533 (6)0.8004 (4)0.5205 (4)0.0177 (12)
C120.6643 (7)0.8757 (4)0.5448 (4)0.0227 (12)
H12A0.66900.90170.61060.027*
C130.8005 (7)0.8694 (4)0.4970 (4)0.0238 (13)
H13A0.88710.88900.53360.029*
H13B0.81220.81320.45250.029*
C140.7009 (8)0.9497 (4)0.4688 (4)0.0310 (16)
H14A0.65010.94360.40680.037*
H14B0.72491.01940.48810.037*
C210.0830 (6)0.6533 (3)0.5619 (4)0.0134 (11)
C220.0328 (6)0.6278 (4)0.6216 (4)0.0143 (11)
H22A0.09830.57380.59770.017*
C230.0963 (7)0.7101 (4)0.6809 (4)0.0195 (12)
H23A0.05820.77910.67580.023*
H23B0.19820.70660.69060.023*
C240.0044 (6)0.6323 (4)0.7277 (4)0.0165 (11)
H24A0.04950.58090.76630.020*
H24B0.09040.65330.75150.020*
C310.3591 (6)0.5470 (4)0.2996 (3)0.0118 (10)
C320.3763 (6)0.4668 (4)0.2292 (4)0.0162 (11)
H32A0.28810.43170.20660.019*
C330.5054 (8)0.4020 (4)0.2384 (4)0.0301 (16)
H33A0.57580.41790.28970.036*
H33B0.49490.32940.22400.036*
C340.4895 (6)0.4740 (4)0.1592 (4)0.0195 (12)
H34A0.46880.44620.09570.023*
H34B0.54980.53480.16130.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Am10.00979 (9)0.01152 (7)0.00818 (9)0.00111 (9)0.00105 (6)0.00023 (8)
O10.024 (2)0.0205 (19)0.018 (2)0.0043 (17)0.0036 (18)0.0028 (15)
O20.012 (2)0.0222 (19)0.019 (2)0.0038 (16)0.0001 (16)0.0049 (15)
O110.015 (2)0.035 (2)0.020 (2)0.0095 (18)0.0054 (18)0.0116 (17)
O120.017 (2)0.0243 (19)0.015 (2)0.0068 (16)0.0047 (17)0.0068 (15)
O210.015 (2)0.0195 (18)0.019 (2)0.0053 (16)0.0059 (17)0.0058 (15)
O220.011 (2)0.0193 (18)0.0131 (19)0.0003 (15)0.0030 (16)0.0037 (14)
O310.011 (2)0.0218 (18)0.016 (2)0.0002 (15)0.0018 (16)0.0035 (15)
O320.011 (2)0.0182 (18)0.0146 (19)0.0010 (15)0.0046 (16)0.0030 (14)
N10.012 (3)0.031 (3)0.016 (2)0.002 (2)0.001 (2)0.0092 (19)
N20.013 (2)0.031 (3)0.015 (2)0.000 (2)0.0005 (19)0.008 (2)
N30.013 (2)0.019 (2)0.011 (2)0.0008 (18)0.0059 (19)0.0038 (17)
C10.015 (3)0.012 (2)0.015 (3)0.002 (2)0.003 (2)0.0002 (19)
C110.019 (3)0.021 (3)0.013 (3)0.005 (2)0.000 (2)0.003 (2)
C120.021 (3)0.030 (3)0.018 (3)0.010 (3)0.003 (2)0.011 (3)
C130.022 (3)0.033 (3)0.016 (3)0.016 (3)0.002 (3)0.004 (2)
C140.038 (4)0.027 (3)0.027 (4)0.011 (3)0.001 (3)0.004 (3)
C210.013 (3)0.016 (3)0.012 (3)0.0000 (19)0.004 (2)0.0010 (18)
C220.014 (3)0.012 (2)0.017 (3)0.006 (2)0.005 (2)0.004 (2)
C230.018 (3)0.023 (3)0.019 (3)0.000 (2)0.009 (2)0.004 (2)
C240.018 (3)0.021 (2)0.010 (3)0.004 (2)0.005 (2)0.002 (2)
C310.012 (3)0.014 (2)0.010 (3)0.0032 (19)0.005 (2)0.0015 (18)
C320.018 (3)0.018 (2)0.013 (3)0.001 (2)0.004 (2)0.004 (2)
C330.041 (4)0.024 (3)0.026 (4)0.015 (3)0.002 (3)0.005 (2)
C340.018 (3)0.023 (3)0.017 (3)0.005 (2)0.001 (2)0.008 (2)
Geometric parameters (Å, º) top
Am1—O11.749 (4)C12—C141.517 (8)
Am1—O21.740 (4)C12—H12A1.0000
Am1—O112.421 (4)C13—C141.471 (9)
Am1—O122.488 (4)C13—H13A0.9900
Am1—O212.461 (4)C13—H13B0.9900
Am1—O222.451 (4)C14—H14A0.9900
Am1—O312.464 (4)C14—H14B0.9900
Am1—O322.483 (3)C21—C221.469 (7)
O11—C111.263 (6)C22—C241.526 (7)
O12—C111.275 (7)C22—C231.527 (7)
O21—C211.274 (6)C22—H22A1.0000
O22—C211.273 (6)C23—C241.491 (8)
O31—C311.272 (6)C23—H23A0.9900
O32—C311.270 (6)C23—H23B0.9900
N1—C11.331 (6)C24—H24A0.9900
N1—H1A0.8800C24—H24B0.9900
N1—H1B0.8800C31—C321.479 (7)
N2—C11.327 (7)C32—C331.503 (8)
N2—H2A0.8800C32—C341.512 (8)
N2—H2B0.8800C32—H32A1.0000
N3—C11.321 (7)C33—C341.483 (8)
N3—H3A0.8800C33—H33A0.9900
N3—H3B0.8800C33—H33B0.9900
C11—C121.486 (8)C34—H34A0.9900
C12—C131.500 (9)C34—H34B0.9900
O1—Am1—O2178.85 (18)C14—C13—C1261.4 (4)
O2—Am1—O1192.93 (17)C14—C13—H13A117.6
O1—Am1—O1187.97 (17)C12—C13—H13A117.6
O2—Am1—O2286.99 (16)C14—C13—H13B117.6
O1—Am1—O2292.05 (16)C12—C13—H13B117.6
O11—Am1—O22174.70 (12)H13A—C13—H13B114.7
O2—Am1—O2188.88 (16)C13—C14—C1260.3 (4)
O1—Am1—O2190.04 (16)C13—C14—H14A117.7
O11—Am1—O21121.77 (12)C12—C14—H14A117.7
O11—Am1—O1253.09 (12)C13—C14—H14B117.7
O21—Am1—O2252.93 (12)C12—C14—H14B117.7
O31—Am1—O3252.55 (12)H14A—C14—H14B114.9
O11—Am1—O3266.94 (12)O22—C21—O21118.5 (5)
O22—Am1—O3166.72 (12)O22—C21—C22119.5 (5)
O21—Am1—O1268.81 (13)O21—C21—C22121.9 (4)
O2—Am1—O3191.69 (15)C21—C22—C24117.8 (5)
O1—Am1—O3188.51 (15)C21—C22—C23119.2 (4)
O11—Am1—O31118.57 (12)C24—C22—C2358.5 (3)
O21—Am1—O31119.54 (13)C21—C22—H22A116.3
O2—Am1—O3285.04 (15)C24—C22—H22A116.3
O1—Am1—O3295.97 (15)C23—C22—H22A116.3
O22—Am1—O32118.31 (12)C24—C23—C2260.7 (4)
O21—Am1—O32169.72 (11)C24—C23—H23A117.7
O2—Am1—O1288.61 (16)C22—C23—H23A117.7
O1—Am1—O1291.35 (16)C24—C23—H23B117.7
O22—Am1—O12121.62 (12)C22—C23—H23B117.7
O31—Am1—O12171.65 (13)H23A—C23—H23B114.8
O32—Am1—O12119.21 (13)C23—C24—C2260.8 (3)
C11—O11—Am195.2 (3)C23—C24—H24A117.7
C11—O12—Am191.7 (3)C22—C24—H24A117.7
C21—O21—Am193.7 (3)C23—C24—H24B117.7
C21—O22—Am194.2 (3)C22—C24—H24B117.7
C31—O31—Am194.3 (3)H24A—C24—H24B114.8
C31—O32—Am193.4 (3)O32—C31—O31119.0 (4)
C1—N1—H1A120.0O32—C31—C32121.8 (5)
C1—N1—H1B120.0O31—C31—C32119.2 (5)
H1A—N1—H1B120.0C31—C32—C33118.1 (5)
C1—N2—H2A120.0C31—C32—C34120.7 (5)
C1—N2—H2B120.0C33—C32—C3458.9 (4)
H2A—N2—H2B120.0C31—C32—H32A115.7
C1—N3—H3A120.0C33—C32—H32A115.7
C1—N3—H3B120.0C34—C32—H32A115.7
H3A—N3—H3B120.0C34—C33—C3260.8 (4)
N3—C1—N2119.8 (5)C34—C33—H33A117.7
N3—C1—N1121.2 (5)C32—C33—H33A117.7
N2—C1—N1119.0 (5)C34—C33—H33B117.7
O11—C11—O12119.7 (5)C32—C33—H33B117.7
O11—C11—C12120.3 (5)H33A—C33—H33B114.8
O12—C11—C12119.9 (5)C33—C34—C3260.2 (4)
C11—C12—C13118.7 (5)C33—C34—H34A117.7
C11—C12—C14117.2 (5)C32—C34—H34A117.7
C13—C12—C1458.3 (4)C33—C34—H34B117.7
C11—C12—H12A116.6C32—C34—H34B117.7
C13—C12—H12A116.6H34A—C34—H34B114.9
C14—C12—H12A116.6
O2—Am1—O11—C1189.4 (4)O22—Am1—O32—C317.1 (3)
O1—Am1—O11—C1189.9 (4)O21—Am1—O32—C3137.0 (8)
O21—Am1—O11—C111.1 (4)O31—Am1—O32—C315.0 (3)
O31—Am1—O11—C11177.1 (3)O12—Am1—O32—C31176.6 (3)
O32—Am1—O11—C11172.7 (4)Am1—O11—C11—O126.0 (6)
O12—Am1—O11—C113.3 (3)Am1—O11—C11—C12172.1 (5)
O2—Am1—O12—C1198.0 (3)Am1—O12—C11—O115.8 (5)
O1—Am1—O12—C1183.1 (3)Am1—O12—C11—C12172.3 (5)
O11—Am1—O12—C113.3 (3)O11—C11—C12—C1317.0 (9)
O22—Am1—O12—C11176.4 (3)O12—C11—C12—C13165.0 (5)
O21—Am1—O12—C11172.7 (3)O11—C11—C12—C1450.0 (8)
O32—Am1—O12—C1114.5 (4)O12—C11—C12—C14128.1 (6)
O2—Am1—O21—C2182.5 (3)C11—C12—C13—C14106.0 (6)
O1—Am1—O21—C2197.1 (3)C11—C12—C14—C13108.5 (6)
O11—Am1—O21—C21175.3 (3)Am1—O22—C21—O218.0 (5)
O22—Am1—O21—C214.6 (3)Am1—O22—C21—C22169.3 (4)
O31—Am1—O21—C218.8 (3)Am1—O21—C21—O228.0 (5)
O32—Am1—O21—C2128.8 (9)Am1—O21—C21—C22169.3 (4)
O12—Am1—O21—C21171.5 (3)O22—C21—C22—C24145.8 (5)
O2—Am1—O22—C2186.3 (3)O21—C21—C22—C2431.4 (7)
O1—Am1—O22—C2193.1 (3)O22—C21—C22—C23146.7 (5)
O21—Am1—O22—C214.6 (3)O21—C21—C22—C2336.0 (8)
O31—Am1—O22—C21179.4 (3)C21—C22—C23—C24106.4 (6)
O32—Am1—O22—C21169.0 (3)C21—C22—C24—C23108.9 (5)
O12—Am1—O22—C210.2 (3)Am1—O32—C31—O318.8 (5)
O2—Am1—O31—C3177.4 (3)Am1—O32—C31—C32168.6 (4)
O1—Am1—O31—C31103.7 (3)Am1—O31—C31—O328.9 (5)
O11—Am1—O31—C3116.8 (3)Am1—O31—C31—C32168.6 (4)
O22—Am1—O31—C31163.4 (3)O32—C31—C32—C3339.8 (7)
O21—Am1—O31—C31167.1 (3)O31—C31—C32—C33137.7 (5)
O32—Am1—O31—C315.0 (3)O32—C31—C32—C3428.9 (8)
O2—Am1—O32—C3190.9 (3)O31—C31—C32—C34153.6 (5)
O1—Am1—O32—C3188.5 (3)C31—C32—C33—C34110.7 (5)
O11—Am1—O32—C31173.7 (3)C31—C32—C34—C33106.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O22i0.882.192.922 (6)140
N2—H2A···O210.882.042.874 (6)157
N2—H2B···O32ii0.882.042.876 (6)159
N3—H3A···O120.882.032.904 (6)171
N3—H3B···O31i0.882.122.977 (6)164
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x1/2, y+3/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaNa[Am(C2H3O2)3O2](CH6N3)[Am(C4H5O2)3O2]
Mr475.12590.33
Crystal system, space groupCubic, P213Monoclinic, P21/n
Temperature (K)100100
a, b, c (Å)10.5967 (2), 10.5967 (2), 10.5967 (2)9.5421 (3), 13.2830 (4), 14.2737 (4)
α, β, γ (°)90, 90, 9090, 92.927 (2), 90
V3)1189.90 (4)1806.80 (9)
Z44
Radiation typeMo KαMo Kα
µ (mm1)6.514.29
Crystal size (mm)0.04 × 0.04 × 0.040.14 × 0.06 × 0.02
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Bruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Multi-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.640, 0.8100.712, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
15606, 1167, 1017 26314, 5218, 3801
Rint0.1350.088
(sin θ/λ)max1)0.7030.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.056, 1.03 0.034, 0.065, 1.00
No. of reflections11675218
No. of parameters50226
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.861.27, 1.16
Absolute structureFlack (1983), 502 Friedel pairs?
Absolute structure parameter0.02 (4)?

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) for (I) top
Am1—O11.735 (9)Am1—O32.464 (5)
Am1—O21.742 (9)Am1—O42.455 (5)
O1—Am1—O2180.00O4i—Am1—O367.26 (16)
O3—Am1—O452.74 (16)
Symmetry code: (i) y, z, x.
Selected geometric parameters (Å, º) for (II) top
Am1—O11.749 (4)Am1—O212.461 (4)
Am1—O21.740 (4)Am1—O222.451 (4)
Am1—O112.421 (4)Am1—O312.464 (4)
Am1—O122.488 (4)Am1—O322.483 (3)
O1—Am1—O2178.85 (18)O11—Am1—O3266.94 (12)
O11—Am1—O1253.09 (12)O22—Am1—O3166.72 (12)
O21—Am1—O2252.93 (12)O21—Am1—O1268.81 (13)
O31—Am1—O3252.55 (12)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O22i0.882.192.922 (6)140.2
N2—H2A···O210.882.042.874 (6)156.9
N2—H2B···O32ii0.882.042.876 (6)158.8
N3—H3A···O120.882.032.904 (6)170.8
N3—H3B···O31i0.882.122.977 (6)163.8
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x1/2, y+3/2, z+1/2.
 

References

First citationAlcock, N. W., Roberts, M. M. & Brown, D. (1982). J. Chem. Soc. Dalton Trans. pp. 33–35.  CrossRef
First citationAndreev, G. B., Budantseva, N. A., Fedosseev, A. M. & Antipin, M. Yu. (2006). Fifth Russian Conference on Radiochemistry, Dubna, October 23–27, 2006. Abstracts, pp. 73–74.
First citationBean, A. C., Peper, S. M. & Albrecht-Schmitt, T. E. (2001). Chem. Mater. 13, 1266–1272.  Web of Science CrossRef CAS
First citationBessonov, A. A., Grigoriev, M. S., Ioussov, A. B., Budantseva, N. A. & Fedosseev, A. M. (2003). Radiochim. Acta, 91, 339–344.  CrossRef CAS
First citationBruker (1998). SAINT-Plus. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCharushnikova, I. A., Krot, N. N. & Starikova, Z. A. (2004). Radiochemistry, 46, 556–559.  CrossRef CAS
First citationCharushnikova, I. A., Krot, N. N. & Starikova, Z. A. (2007). Radiochemistry, 49, 565–570.  CrossRef CAS
First citationEdelstein, N. M., Fuger, J., Katz, J. J. & Morss, L. R. (2006). The Chemistry of the Actinide and Transactinide Elements, Vol. 3, edited by L. R. Morss, N. M. Edelstein & J. Fuger, p. 1798. Dordrecht: Springer.
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationGrigor'ev, M. S., Bessonov, A. A., Makarenkov, V. I. & Fedoseev, A. M. (2003). Radiochemistry, 45, 257–260.  CAS
First citationGrigoriev, M. S., Antipin, M. Yu., Krot, N. N. & Bessonov, A. A. (2004). Radiochim. Acta, 92, 405–409.  Web of Science CSD CrossRef CAS
First citationJones, L. H. (1955). J. Chem. Phys. 23, 2105–2107.  CrossRef CAS
First citationNavaza, A., Charpin, P., Vigner, D. & Heger, G. (1991). Acta Cryst. C47, 1842–1845.  CSD CrossRef CAS Web of Science IUCr Journals
First citationRunde, W., Bean, A. C., Albrecht-Schmitt, T. E. & Scott, B. L. (2003). Chem. Commun. pp. 478–479.  Web of Science CrossRef
First citationSheldrick, G. M. (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationTempleton, D. H., Zalkin, A., Ruben, H. & Templeton, L. K. (1985). Acta Cryst. C41, 1439–1441.  CSD CrossRef CAS Web of Science IUCr Journals
First citationZachariasen, W. H. & Plettinger, H. A. (1959). Acta Cryst. 12, 526–530.  CSD CrossRef CAS IUCr Journals Web of Science

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds