[Journal logo]

Volume 67 
Part 9 
Pages m315-m317  
September 2011  

Received 13 July 2011
Accepted 22 August 2011
Online 31 August 2011

catena-Poly[[[[mu]-1,3-bis(diphenylphosphanyl)propane-[kappa]2P:P'][O-ethyl (4-methoxyphenyl)phosphonodithioato-[kappa]2S,S']silver(I)] chloroform monosolvate]

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China, and bDepartment of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
Correspondence e-mail: dsun@sdu.edu.cn

Reaction of a mixture of AgOAc, Lawesson's reagent [2,4-bis(4-methoxyphenyl)-1,3-dithiadiphosphetane-2,4-disulfide] and 1,3-bis(diphenylphosphanyl)propane (dppp) under ultrasonic treatment gave the title compound, {[Ag(C9H12O2PS2)(C27H26P2)]·CHCl3}n, a novel one-dimensional chain based on the in situ-generated bipodal ligand [ArP(OEt)S2]- (Ar = 4-methoxyphenyl). The compound consists of bidentate bridging 1,3-bis(diphenylphosphanyl)propane (dppp) and in situ-generated bidentate chelating [ArP(OEt)S2]- ligands. The dppp ligand links the [Ag{ArP(OEt)S2}] subunit to form an achiral one-dimensional infinite chain. These achiral chains are packed into chiral crystals by virtue of van der Waals interactions. No [pi]-[pi] interactions are observed in the crystal structure.

Comment

The design and construction of coordination structures is one of the most attractive areas of crystal engineering, due to their intriguing structural motifs and functional properties (Chen et al., 2010[Chen, B., Xiang, S. & Qian, G. (2010). Acc. Chem. Res. 43, 1115-1124.]; Blake, Brooks et al., 1999[Blake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Deveson, A. M., Fenske, D., Hubberstey, P., Li, W. S. & Schröder, M. (1999). J. Chem. Soc. Dalton Trans. pp. 2103-2110.]; Blake, Champness et al., 1999[Blake, A. J., Champness, N. R., Hubberstey, P., Li, W.-S., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117-138.]; Evans & Lin, 2002[Evans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511-522.]; Kitagawa et al., 2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]; Yaghi et al., 2003[Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705-714.]; Sun et al., 2011[Sun, D., Wang, D.-F., Zhang, N., Liu, F.-J., Hao, H.-J., Huang, R.-B. & Zheng, L.-S. (2011). Dalton Trans. 40, 5677-5679.]). Organophosphorus sulfide reagents like P4S10, Lawesson's reagent [2,4-bis(4-methoxyphenyl)-1,3-dithiadiphosphetane-2,4-disulfide, LR], and modified LRs such as Davy's reagent, Japanese reagent and Belleau's reagent, have been successfully employed as thionation agents for organic substrates to give thiolactones and thiocarbonyls (Scheibye et al., 1981[Scheibye, S., Lawesson, S. O. & Romming, C. (1981). Acta Chem. Scand. Ser. B, 35, 239-246.]; Jesberger et al., 2003[Jesberger, M., Davis, T. P. & Barner, L. (2003). Synthesis, pp. 1929-1958.]; Foreman & Woollins, 2000[Foreman, M. St J. & Woollins, J. D. (2000). J. Chem. Soc. Dalton Trans. pp. 1533-1543.]; Ozturk et al., 2007[Ozturk, T., Ertas, E. & Mert, O. (2007). Chem. Rev. 107, 5210-5278.]). The LR containing a four-membered P2S2 ring with alternating P and S atoms can be in equilibrium with a highly reactive dithiophosphine ylide [ArPS2]- (Ar = 4-methoxyphenyl), which reacts with carbonyl-containing compounds to form P/S-containing anionic ligands. Subsequent assembly of anionic ligands into large CuI or AgI aggregates has been reported as an efficient synthetic route to a broader variety of coordination polymers or clusters (Shi, Ahlrichs et al., 2005[Shi, W., Ahlrichs, R., Anson, C. E., Rothenberger, A., Schrodt, C. & Shafaei-Fallah, M. (2005). Chem. Commun. pp. 5893-5895.]). Recently, we used this versatile precursor to construct an Ag20 cluster based on in situ-generated bipodal [ArP(OEt)S2]- and tripodal [ArPOS2]2- ligands incorporating the auxiliary Ph3P (triphenylphosphane) ligand (Sun et al., 2010[Sun, D., Wei, Z.-H., Yang, C.-F., Zhang, N., Huang, R.-B. & Zheng, L.-S. (2010). Inorg. Chem. Commun. 13, 1191-1194.]). As an extension of our work, we replaced the auxiliary Ph3P ligand by the 1,3-bis(diphenylphosphanyl)propane (dppp) ligand and intended to exploit the influence of an auxiliary P-donor on the structures of the AgOAc-LR system. The title compound, (I)[link], was obtained as an infinite chain.

[Scheme 1]
[Scheme 2]

The asymmetric unit of (I)[link] contains one AgI cation, one dppp ligand, one anionic [ArP(OEt)S2]- ligand and one chloroform solvent molecule. As shown in Fig. 1[link], the AgI cation is in a tetrahedral environment, completed by two P atoms from two dppp ligands and two S atoms from one [ArP(OEt)S2]- ligand, with average Ag-P and Ag-S bond lengths of 2.4500 (11) and 2.6477 (12) Å, respectively. The distortion of the tetrahedron can be indicated by the calculated value of the [tau]4 parameter (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]) to describe the geometry of a four-coordinate metal system, which is 0.80 for Ag1 (for perfect tetrahedral geometry, [tau]4 = 1). The Ag-P and Ag-S bond lengths (Table 1[link]) are comparable with reported values (Shi et al., 2007[Shi, W., Shafaei-Fallah, M., Zhang, L., Anson, C. E., Matern, E. & Rothenberger, A. (2007). Chem. Eur. J. 13, 598-603.]).

In (I)[link], the [ArP(OEt)S2]- anion is a bidentate chelating ligand which coordinates one AgI centre to form the [Ag{ArP(OEt)S2}] subunit. The bidentate bridging dppp ligands link the [Ag{ArP(OEt)S2}] subunits to form an achiral one-dimensional infinite chain along the a axis (Fig. 2[link]). There are no obvious hydrogen-bonding or [pi]-stacking interactions between adjacent chains. Therefore, these achiral chains are packed into chiral crystals by virtue of van der Waals interactions. The chloroform molecules minimize the voids in the crystal structure.

The most fascinating feature of (I)[link] is the in situ-generated anionic [ArP(OEt)S2]- ligand. In spite of the disassociation of LRs into S2-, [ArP(O)S2]2-, [ArS2P-O-PS2Ar]2-, [ArPS3]2- and [ArP(O)(OAc)S]- ligands that has been observed (Shi, Shafaei-Fallah et al., 2005[Shi, W., Shafaei-Fallah, M. C. E., Matern, E. & Rothenberger, A. (2005). Dalton Trans. pp. 3909-3912.]), it is noteworthy that the generation of the bipodal [ArP(OEt)S2]- ligand in the course of the reaction between AgOAc and LR is rarely observed. The formation of the bipodal [ArP(OEt)S2]- anion involves P-S and C-O bond cleavages of LR and acetate, respectively. To the best of our knowledge, the P-O bond is much stronger than the P-S bond, which makes LRs vulnerable to attack by potential nucleophiles, electrophiles and radicals, as demonstrated by Rauchfuss & Zank (1986[Rauchfuss, T. B. & Zank, G. A. (1986). Tetrahedron Lett. 27, 3445-3448.]), whereby the LR underwent reversible cleavage to give ArPS2. radicals. This could be concluded to be one of the important thermodynamic driving forces behind the formation of the P/S ligand.

[Figure 1]
Figure 1
The structure of (I)[link], showing the atom-numbering scheme and the coordination environment around the AgI centre. Displacement ellipsoids are drawn at the 50% probability level. H atoms and the chloroform solvent molecule have been omitted for clarity. [Symmetry code: (i) x + 1, y, z.]
[Figure 2]
Figure 2
A ball-stick perspective view of the one-dimensional chain in (I)[link]. H atoms and chloroform solvent molecules have been omitted for clarity.

Experimental

All reagents and solvents were obtained commercially and used without further purification. A mixture of Lawesson's reagent (202 mg, 0.50 mmol), AgOAc (334 mg, 2.00 mmol) and dppp (412 mg, 1.00 mmol) was dissolved in chloroform (10 ml). The mixture was treated under ultrasonic conditions (323 K, 160 W, 40 kHz, 20 min), during which time the solution changed from colourless to yellow. The mixture was filtered and diffusion of diethyl ether into the reaction mixture produced colourless crystals of (I)[link] after two weeks (yield ca 45%, based on AgOAc). Elemental analysis calculated for C37H39AgCl3O2P3S2: C 50.10, H 4.43%; found: C 49.88, H 4.59%. Selected IR peaks ([nu], cm-1): 3064 (w), 2960 (w), 2936 (w), 1588 (s), 1494 (m), 1481 (m), 1436 (s), 1381 (s), 1244 (w), 1177 (m), 1107 (m), 1030 (s), 933 (m), 747 (m), 695 (s), 625 (s), 545 (m).

Crystal data
  • [Ag(C9H12O2PS2)(C27H26P2)]·CHCl3

  • Mr = 886.93

  • Monoclinic, P 21

  • a = 7.1493 (14) Å

  • b = 16.137 (3) Å

  • c = 17.010 (3) Å

  • [beta] = 92.95 (3)°

  • V = 1959.8 (7) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 0.98 mm-1

  • T = 173 K

  • 0.10 × 0.08 × 0.08 mm

Data collection
  • Oxford Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.908, Tmax = 0.926

  • 26211 measured reflections

  • 7381 independent reflections

  • 6876 reflections with I > 2[sigma](I)

  • Rint = 0.053

Refinement
  • R[F2 > 2[sigma](F2)] = 0.038

  • wR(F2) = 0.074

  • S = 1.01

  • 7381 reflections

  • 433 parameters

  • 1 restraint

  • H-atom parameters constrained

  • [Delta][rho]max = 0.64 e Å-3

  • [Delta][rho]min = -0.78 e Å-3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 3390 Friedel pairs

  • Flack parameter: -0.01 (2)

Table 1
Selected geometric parameters (Å, °)

Ag1-P2i 2.4424 (11)
Ag1-P1 2.4575 (12)
Ag1-S1 2.6343 (12)
Ag1-S2 2.6610 (12)
P2i-Ag1-P1 104.67 (4)
P2i-Ag1-S1 128.23 (4)
P1-Ag1-S1 109.36 (4)
P2i-Ag1-S2 116.14 (4)
P1-Ag1-S2 119.67 (4)
S1-Ag1-S2 78.33 (4)
Symmetry code: (i) x+1, y, z.

All H atoms were generated geometrically and allowed to ride on their parent atoms in the riding-model approximation, with aromatic C-H = 0.95 Å, methine C-H = 1.00 Å, methylene C-H = 0.99 Å and methyl C-H = 0.98 Å, and with Uiso(H) = 1.2Ueq(C) [1.5Ueq(C) for methyl groups].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2008[Brandenburg, K. (2008). DIAMOND. Version 3.1f. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data for this paper are available from the IUCr electronic archives (Reference: SF3156 ). Services for accessing these data are described at the back of the journal.


Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (grant Nos. 21021061 and 21071118) and Shandong University.

References

Blake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Deveson, A. M., Fenske, D., Hubberstey, P., Li, W. S. & Schröder, M. (1999). J. Chem. Soc. Dalton Trans. pp. 2103-2110.  [CSD] [CrossRef]
Blake, A. J., Champness, N. R., Hubberstey, P., Li, W.-S., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117-138.  [ISI] [CrossRef] [ChemPort]
Brandenburg, K. (2008). DIAMOND. Version 3.1f. Crystal Impact GbR, Bonn, Germany.
Chen, B., Xiang, S. & Qian, G. (2010). Acc. Chem. Res. 43, 1115-1124.  [ISI] [CrossRef] [ChemPort] [PubMed]
Evans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511-522.  [ISI] [CrossRef] [PubMed] [ChemPort]
Flack, H. D. (1983). Acta Cryst. A39, 876-881.  [CrossRef] [details]
Foreman, M. St J. & Woollins, J. D. (2000). J. Chem. Soc. Dalton Trans. pp. 1533-1543.
Jesberger, M., Davis, T. P. & Barner, L. (2003). Synthesis, pp. 1929-1958.  [ISI] [CrossRef]
Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.  [ISI] [CrossRef] [ChemPort]
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Ozturk, T., Ertas, E. & Mert, O. (2007). Chem. Rev. 107, 5210-5278.  [ISI] [CrossRef] [PubMed] [ChemPort]
Rauchfuss, T. B. & Zank, G. A. (1986). Tetrahedron Lett. 27, 3445-3448.  [CrossRef] [ChemPort]
Scheibye, S., Lawesson, S. O. & Romming, C. (1981). Acta Chem. Scand. Ser. B, 35, 239-246.  [CrossRef]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Shi, W., Ahlrichs, R., Anson, C. E., Rothenberger, A., Schrodt, C. & Shafaei-Fallah, M. (2005). Chem. Commun. pp. 5893-5895.  [CrossRef]
Shi, W., Shafaei-Fallah, M. C. E., Matern, E. & Rothenberger, A. (2005). Dalton Trans. pp. 3909-3912.  [CrossRef]
Shi, W., Shafaei-Fallah, M., Zhang, L., Anson, C. E., Matern, E. & Rothenberger, A. (2007). Chem. Eur. J. 13, 598-603.  [CSD] [CrossRef] [ChemPort]
Sun, D., Wang, D.-F., Zhang, N., Liu, F.-J., Hao, H.-J., Huang, R.-B. & Zheng, L.-S. (2011). Dalton Trans. 40, 5677-5679.  [CrossRef] [ChemPort]
Sun, D., Wei, Z.-H., Yang, C.-F., Zhang, N., Huang, R.-B. & Zheng, L.-S. (2010). Inorg. Chem. Commun. 13, 1191-1194.  [CrossRef] [ChemPort]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]
Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705-714.  [ISI] [CrossRef] [PubMed] [ChemPort]
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.  [CSD] [CrossRef] [ChemPort]


Acta Cryst (2011). C67, m315-m317   [ doi:10.1107/S010827011103438X ]