[Journal logo]

Volume 67 
Part 12 
Pages m378-m383  
December 2011  

Received 29 July 2011
Accepted 8 November 2011
Online 16 November 2011

New organic-inorganic frameworks incorporating iso- and heteropolymolybdate units and a 3,3',5,5'-tetramethyl-4,4'-bi-1H-pyrazole-2,2'-diium multiple hydrogen-bond donor

aInorganic Chemistry Department, National Taras Shevchenko University of Kyiv, Volodimirska Street 64, Kyiv 01033, Ukraine, and bInstitute of Inorganic Chemistry, Leipzig University, Johannisallee 29, D-04103 Leipzig, Germany
Correspondence e-mail: dk@univ.kiev.ua

Poly[bis(3,3',5,5'-tetramethyl-4,4'-bi-1H-pyrazole-2,2'-diium) [gamma]-octamolybdate(VI) dihydrate], {(C10H16N4)2[Mo8O26]·2H2O}n, (I), and bis(3,3',5,5'-tetramethyl-4,4'-bi-1H-pyrazole-2,2'-diium) [alpha]-dodecamolybdo(VI)silicate tetrahydrate, (C10H16N4)2[SiMo12O40]·4H2O, (II), display intense hydrogen bonding between the cationic pyrazolium species and the metal oxide anions. In (I), the asymmetric unit contains half a centrosymmetric [gamma]-type [Mo8O26]4- anion, which produces a one-dimensional polymeric chain by corner-sharing, one cation and one water molecule. Three-centre bonding with 3,3',5,5'-tetramethyl-4,4'-bi-1H-pyrazole-2,2'-diium, denoted [H2Me4bpz]2+ [N...O = 2.770 (4)-3.146 (4) Å], generates two-dimensional layers that are further linked by hydrogen bonds involving water molecules [O...O = 2.902 (4) and 3.010 (4) Å]. In (II), each of the four independent [H2Me4bpz]2+ cations lies across a twofold axis. They link layers of [SiMo12O40]4- anions into a three-dimensional framework, and the preferred sites for pyrazolium/anion hydrogen bonding are the terminal oxide atoms [N...O = 2.866 (6)-2.999 (6) Å], while anion/aqua interactions occur preferentially via [mu]2-O sites [O...O = 2.910 (6)-3.151 (6) Å].

Comment

Pyrazole species attract general interest as versatile multipurpose tectons for the development of solid-state architecture (Halcrow, 2009[Halcrow, M. A. (2009). Dalton Trans. pp. 2059-2073.]). In this respect, bifunctional 3,3',5,5'-tetramethyl-4,4'-bipyrazole (Me4bpz) offers special potential as a symmetric neutral or anionic linker for discrete polynuclear complexes (Yu et al., 2005[Yu, S.-Y., Huang, H.-P., Li, S.-H., Jiao, Q., Li, Y.-Z., Wu, B., Sei, Y., Yamaguchi, K., Pan, Y.-J. & Ma, H.-W. (2005). Inorg. Chem. 44, 9471-9488.]), open metal-organic polymers for adsorption applications (Zhang & Kitagawa, 2008[Zhang, J.-P. & Kitagawa, S. (2008). J. Am. Chem. Soc. 130, 907-917.]; Rusanov et al., 2003[Rusanov, E. B., Ponomarova, V. V., Komarchuk, V. V., Stoeckli-Evans, H., Fernandez-Ibanez, E., Stoeckli, F., Sieler, J. & Domasevitch, K. V. (2003). Angew. Chem. Int. Ed. 42, 2499-2501.]), acentric hydrogen-bonded frameworks (Boldog et al., 2001[Boldog, I., Rusanov, E. B., Chernega, A. N., Sieler, J. & Domasevitch, K. V. (2001). Angew. Chem. Int. Ed. 40, 3435-3440.]) and binary cocrystals (Boldog et al., 2004[Boldog, I., Rusanov, E. B., Sieler, J. & Domasevitch, K. V. (2004). New J. Chem. 28, 756-759.]). Even wider applications for the development of hydrogen-bonded structures could be anticipated for the 3,3',5,5'-tetramethyl-4,4'-bi-1H-pyrazole-2,2'-diium dication, [H2Me4bpz]2+. The cation may be viewed as a symmetric donor of four hydrogen bonds, while a particular benefit of the tecton structure arises from the spatial proximity of two NH groups supported by each of the pyrazolium rings. The latter favours multiple and multicentre interactions with the anionic substrate, which could be especially relevant for polynuclear and polymeric oxo- and halometallate anions, providing a number of closely separated hydrogen-bond acceptor sites. Therefore, bipyrazolium tectons may be applied as very specific cationic templates for metal-oxide materials, such as layered molybdenum(VI) and vanadium(V) oxides and low-dimensional isopolymolybdates(VI) (Hubbard et al., 2008[Hubbard, D. J., Johnston, A. R., Casalongue, H. S., Narducci Sarjeant, A. & Norquist, A. J. (2008). Inorg. Chem. 47, 8518-8525.]; Hagrman et al., 1999[Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638-2684.]). In this context, we have prepared two new salts, poly[bis(3,3',5,5'-tetramethyl-4,4'-bi-1H-pyrazole-2,2'-diium) [gamma]-octamolybdate(VI) dihydrate], (I), and bis(3,3',5,5'-tetramethyl-4,4'-bi-1H-pyrazole-2,2'-diium) [alpha]-dodecamolybdo(VI)silicate tetrahydrate, (II)[link], based on the [H2Me4bpz]2+ cation and iso- and heteropolymolybdate anionic species, and report their structures here. Only a few previous works have considered the special supramolecular significance of hydrogen-bonded pyrazolium cations (Boldog et al., 2009[Boldog, I., Daran, J.-C., Chernega, A. N., Rusanov, E. B., Krautscheid, H. & Domasevitch, K. V. (2009). Cryst. Growth Des. 9, 2895-2905.]; Singh et al., 2011[Singh, U. P., Kashyap, S., Singh, H. J. & Butcher, R. J. (2011). CrystEngComm, 13, 4110-4120.]).

[Scheme 1]

The structure of (I)[link] consists of one-dimensional polymolybdate anions running along the crystallographic a direction, [H2Me4bpz]2+ dications and solvent water molecules. The inorganic polyanion is built up of repeating centrosymmetric [Mo8O26]4- units sharing two pairs of opposite vertices and the corresponding oxide bridge is actually linear: Mo4-O12-Mo2ii = 174.18 (14)° [symmetry code: (ii) -x, -y + 1, -z + 1] (Fig. 1[link]). The molecular shape and functionality of the [H2Me4bpz]2+ template is important for the structure of the infinite metal-oxide anion. The present connection mode is characteristic of polymeric octamolybdates crystallized as salts of the organic bases 4-aminopyridine (Nelson et al., 2006[Nelson, J. R., Narducci Sarjeant, A. & Norquist, A. J. (2006). Acta Cryst. E62, m1731-m1733.]), N,N-dimethylethylenediamine (Thorn et al., 2005[Thorn, K. J., Narducci Sarjeant, A. & Norquist, A. J. (2005). Acta Cryst. E61, m1665-m1667.]) and 1,4-diazabicyclo[2.2.2]octane (Fang et al., 2004[Fang, R.-Q., Zhang, X.-M., Wu, H.-S. & Ng, S. W. (2004). Acta Cryst. E60, m359-m361.]), while the long cationic templates hexane-1,6-diamine (Xu et al., 1996[Xu, Y., An, L.-H. & Koh, L.-L. (1996). Chem. Mater. 8, 814-818.]) and 1,1'-[(biphenyl-4,4'-diyl)dimethylene]diimidazole (Liu et al., 2010[Liu, H., Su, L., Wang, L. & Li, W. (2010). Acta Cryst. E66, m443-m444.]) produce an isomeric one-dimensional polyoctamolybdate array. The [Mo8O26]4- units themselves adopt the [gamma]-isomeric form of octamolybdate (Hagrman et al., 1999[Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638-2684.]), with the typical octahedral environment of each metal ion involving three types of Mo-O bonds (2+2+2 coordination), viz. short molybdenyl bonds with terminal oxide ligands [1.693 (2)-1.717 (2) Å], Mo-[mu]2-O [1.901 (2)-1.977 (2) Å] and longer Mo-O bonds [2.173 (2)-2.438 (2) Å], with four [mu]3-oxide and two [mu]4-oxide ligands.

Interaction of the bipyrazolium dications and one-dimensional oxoanions occurs by means of extensive N-H...O hydrogen bonding, utilizing most of the terminal O atoms (O1, O6, O8 and O13), as well as the [mu]-oxide O2 and O10 centres (Table 1[link]). This is responsible for the connection of the components into hydrogen-bonded layers parallel to the ac plane (Fig. 2[link]). Within these layers, successive oxide chains are situated at a distance of 12.9231 (13) Å (parameter c of the unit cell). Each pyrazolium ring is involved in bonding with two adjacent [Mo8O26]4- units along the chain. The high number of closely situated O-atom acceptor sites effects bifurcation of the hydrogen-bond interactions. This is a salient feature of such a system and it could be considered as a design tool. In this way, pyrazole ring A (N1/N2/C2-C4; Fig. 1b[link]) adopts four hydrogen bonds with three acceptor atoms (N-H...O = 112-152°), which is important for the densest accommodation of the cation on the metal oxide matrix (Fig. 2[link]). The bonding mode of ring B (N3/N4/C7-C9; Fig. 1b[link]) is slightly different, with one three-centre bond of the N3-H donor and one directional N4-H4...O10(-x + 1, -y + 1, -z + 2) interaction with a single acceptor site, which provides the shortest N...O contact [2.724 (4) Å]. Other N...O separations [2.770 (4)-3.146 (4) Å] (Table 1[link]) are also typical for N-H...O hydrogen bonds. However, they are slightly longer than the parameters derived from a statistical evaluation of pyrazolium salts (2.62-2.94 Å, distribution median = 2.74 Å; Boldog et al., 2009[Boldog, I., Daran, J.-C., Chernega, A. N., Rusanov, E. B., Krautscheid, H. & Domasevitch, K. V. (2009). Cryst. Growth Des. 9, 2895-2905.]) due to bifurcation of the bonds. The present three-centre hydrogen bonding may be especially relevant for pyrazolium salts involving a high number of convenient acceptors, as provided by polyoxometallate species. This situation may also be related to the hydrogen-bonding patterns of 4,4'-bipyrazolium fluorometallate salts based on [TaF6]-, [Zr2F12]4- and [BeF3-]n anions (Boldog et al., 2009[Boldog, I., Daran, J.-C., Chernega, A. N., Rusanov, E. B., Krautscheid, H. & Domasevitch, K. V. (2009). Cryst. Growth Des. 9, 2895-2905.]). Hydrogen bonds with water molecules extends this structure in the third dimension, with the formation of centrosymmetric anion-aqua fragments MoO6-(HOH)2-O6Mo involving two terminal and two [mu]2-O-atom acceptors (Fig. 2[link]b). The O...O separations in the latter cases are slightly shorter, viz. 2.902 (4) versus 3.010 (4) Å for O...O(terminal) (Table 1[link]).

The asymmetric unit of (II)[link] includes an [SiMo12O40]4- anion, four half [H2Me4bpz]2+ dications and four water molecules (Fig. 3[link]). The complete organic molecules are generated by crystallographic twofold symmetry. The [SiMo12O40]4- anions adopt the most common [alpha]-form, with the typical distorted octahedral coordination of 12 Mo atoms, which involve short bonds with terminal oxide ligands [Mo-O = 1.684 (4)-1.711 (4) Å] and elongated bonds with a [mu]4-O atom in a trans position [Mo-O = 2.315 (3)-2.385 (5) Å]. Four equatorial Mo-O bonds with [mu]2-O ligands are in the range 1.824 (3)-2.043 (4) Å.

The anions, water molecules and 3,5-dimethylpyrazolium halves of the [H2Me4bpz]2+ tectons form clearly distinguishable hydrogen-bonded layers parallel to the bc plane (interlayer separation = 0.5a = 11.27 Å) (Fig. 4[link]). This array is dominated by the packing of the very bulky anions and thus the pyrazolium and water hydrogen-bond donors appear intercalated in the voids of these layers. Hydrogen bonding between the [H2Me4bpz]2+ and [SiMo12O40]4- counterparts is itself weaker and less characteristic than in the case of (I)[link]. Firstly, for all four independent cations, only half of the NH donors interact directly with the metal oxide matrix, while the other interactions are expanded by inclusion of a water molecule: NH...OH...OMo (Fig. 4[link]). This parallels the binding mode of [H2Me4bpz]2+ and the much smaller low nucleophilic anion S2O62- (Boldog et al., 2009[Boldog, I., Daran, J.-C., Chernega, A. N., Rusanov, E. B., Krautscheid, H. & Domasevitch, K. V. (2009). Cryst. Growth Des. 9, 2895-2905.]). Secondly, the present N-H...O(Mo) hydrogen bonds [2.866 (6)-3.285 (6) Å] are appreciably longer than the N-H...OH2 hydrogen bonds [2.693 (6)-2.864 (7) Å] (Table 3[link]) and also longer than the N-H...O(Mo) hydrogen bonds in the case of (I)[link]. This reflects the weakness of the hydrogen bonding and such an observation may be related to only a very weak hydrogen-bond interaction in the (PyH)4[SiMo12O40]·0.5H2O salt [N...O = 3.05 (1)-3.29 (1) Å; PyH is pyridinium] (Dang & Jin, 2007[Dang, D.-B. & Jin, Y.-N. (2007). Acta Cryst. E63, m881-m883.]).

Similar to (I)[link], the preferred anion sites for establishing hydrogen bonds with the pyrazolium cation are the terminal oxide ligands (Fig. 3[link]). For (II)[link], weak interactions with [mu]2-O atoms [N...O = 3.041 (6) and 3.285 (6) Å] exist only as longer branches of three-centre bonds (Table 3[link]). The present discrimination of the acceptor sites is likely predetermined by the relative negative charge located at the O atoms. Thus, the bond-valence sum calculations for (I)[link] and (II)[link] (Tables 2[link] and 4[link]) suggest that the terminal oxide ligands are the most under-bonded and highly nucleophilic (Tytko et al., 1999[Tytko, K. H., Mehmke, J. & Fischer, S. (1999). Struct. Bond. 93, 129-321.]). The same situation is reflected in the N-H...O hydrogen bonding with the [mu]2-O and [mu]3-O acceptors in (I)[link], which occurs via the most nucleophilic sites O2 and O10 (Table 2[link]). Steric accessibility of the terminal O atoms is the second important factor when considering the bulk volume of the dimethylpyrazolium substrate. It is notable that the hydrogen bonding of small water molecules in (II)[link] occurs preferentially with [mu]2-O atoms (Table 4[link]).

In both structures, the organic tectons exhibit a typical twisted conformation [for (I)[link], the C2-C3-C8-C7 torsion angle is 62.7 (5)°; for (II)[link], the corresponding angles are in the range 64.1 (8)-75.0 (8)°]. The equivalence of the pyrazolium NH sites is best indicated by the angles at the N atoms (Domasevitch, 2008[Domasevitch, K. V. (2008). Acta Cryst. C64, o326-o329.]). They are actually uniform in all cases [108.9 (3) and 109.0 (3)° in (I)[link], and in the range 108.6 (5)-110.7 (5)° in (II)[link]], while a neutral Me4bpz molecule ([alpha]-polymorph) displays a differentiation of these parameters according to the types C-N-N(H) = 104.1 (2)° and C-N(H)-N = 113.0 (2)° (Boldog et al., 2001[Boldog, I., Rusanov, E. B., Chernega, A. N., Sieler, J. & Domasevitch, K. V. (2001). Angew. Chem. Int. Ed. 40, 3435-3440.]).

In brief, the specific hydrogen-bond donor fuctionality of the pyrazolium group is well suited to the formation of multiple interactions with the polyoxometallate matrix, and bifunctional pyrazoles may be viewed as a new type of organic template for the synthesis of molybdate materials.

[Figure 1]
Figure 1
(a) The inorganic anion in the environment of the solvent water molecules and (b) the organic dication in the structure of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. The dashed lines indicate hydrogen bonding. [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y + 1, -z + 1.]
[Figure 2]
Figure 2
(a) The hydrogen-bonded layer in the structure of (I)[link], showing a set of three-centre interactions between the one-dimensional oxometallate chains (in a polyhedral representation) and bipyrazolium connectors. (b) A projection onto the bc plane, showing the mode of connection of the {(H2Me4bpz)2[Mo8O26]}n layers by water molecules. Note the centrosymmetric aqua-molybdate motif. C-bound H atoms have been omitted for clarity. [Symmetry codes: (ii) -x, -y + 1, -z + 1; (iii) -x, -y, -z; (iv) x + 1, y, z + 1; (v) -x + 1, -y + 1, -z + 2.]
[Figure 3]
Figure 3
The structure of (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. N and O atoms are shaded grey and dashed lines indicate hydrogen bonding. [Symmetry codes: (i) -x, y, -z + 1; (ii) -x + 1, y, -z + 3; (iii) -x, y, -z; (iv) -x + 1, y, -z + 2.]
[Figure 4]
Figure 4
(a) The hydrogen-bonded layer in the structure of (II)[link], showing how the pyrazolium and aqua hydrogen-bond donors are situated between the bulky [SiMo12O40]4- anions (depicted in a polyhedral representation). (b) A projection onto the ab plane, showing the [H2Me4bpz]2+ tectons as links between successive hydrogen-bonded layers. N and O atoms are shaded grey and dashed lines indicate hydrogen bonding. C-bound H atoms have been omitted for clarity.

Experimental

The title compounds were synthesized by a hydrothermal technique starting with 3,3',5,5'-tetramethyl-4,4'-bipyrazole (Me4bpz; Boldog et al., 2001[Boldog, I., Rusanov, E. B., Chernega, A. N., Sieler, J. & Domasevitch, K. V. (2001). Angew. Chem. Int. Ed. 40, 3435-3440.]). Compound (I)[link] was obtained in the presence of cadmium(II) ions. For the preparation of (I)[link], Me4bpz (9.5 mg, 0.05 mmol), (NH4)6Mo7O24·4H2O (37.1 mg, 0.03 mmol), CdCl2·2.5H2O (6.0 mg, 0.026 mmol) and water (4 ml) were placed in a Teflon vessel which was in turn placed in a steel bomb and heated at 443 K for 48 h. Cooling of the mixture to room temperature over a period of 72 h yielded colourless prisms of (H2Me4bpz)2[Mo8O26]·2H2O, (I)[link] (yield 32 mg, 80%, based on the pyrazole base). For the preparation of (II)[link], Me4bpz (9.5 mg, 0.05 mmol), H4[SiMo12O40]·13H2O (61.7 mg, 0.03 mmol) and water (5 ml) were sealed in a Pyrex tube, heated at 423 K for 24 h and then cooled to room temperature over a period of 48 h. Large yellow crystals of (II)[link] were obtained in a yield of 38 mg (65%).

Compound (I)[link]

Crystal data
  • (C10H16N4)2[Mo8O26]·2H2O

  • Mr = 1604.09

  • Triclinic, [P \overline 1]

  • a = 8.0821 (8) Å

  • b = 11.2521 (11) Å

  • c = 12.9231 (13) Å

  • [alpha] = 106.242 (8)°

  • [beta] = 106.063 (9)°

  • [gamma] = 106.102 (8)°

  • V = 1000.9 (2) Å3

  • Z = 1

  • Mo K[alpha] radiation

  • [mu] = 2.53 mm-1

  • T = 173 K

  • 0.14 × 0.12 × 0.08 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: numerical [X-RED (Stoe & Cie, 2001[Stoe & Cie (2001). X-RED. Version 1.22. Stoe & Cie GmbH, Darmstadt, Germany.]) and X-SHAPE (Stoe & Cie, 1999[Stoe & Cie (1999). X-SHAPE. Revision 1.06. Stoe & Cie GmbH, Darmstadt, Germany.])] Tmin = 0.718, Tmax = 0.823

  • 9228 measured reflections

  • 4505 independent reflections

  • 3837 reflections with I > 2[sigma](I)

  • Rint = 0.032

Refinement
  • R[F2 > 2[sigma](F2)] = 0.024

  • wR(F2) = 0.060

  • S = 0.98

  • 4505 reflections

  • 293 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.74 e Å-3

  • [Delta][rho]min = -0.74 e Å-3

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D-H...A D-H H...A D...A D-H...A
O14-H1W...O3iii 0.85 2.16 3.010 (4) 173
O14-H2W...O4 0.85 2.06 2.902 (4) 173
N1-H1...O2 0.88 1.96 2.770 (4) 152
N1-H1...O1 0.88 2.44 2.882 (4) 112
N2-H2...O13ii 0.88 2.18 2.940 (4) 144
N2-H2...O1 0.88 2.33 2.830 (4) 116
N3-H3...O6iv 0.88 2.13 2.838 (4) 137
N3-H3...O8v 0.88 2.48 3.146 (4) 133
N4-H4...O10v 0.88 1.95 2.724 (4) 147
Symmetry codes: (ii) -x, -y+1, -z+1; (iii) -x, -y, -z; (iv) x+1, y, z+1; (v) -x+1, -y+1, -z+2.

Table 2
Bond-valence sums for [Mo8O26]4- and hydrogen-bond functionality of the oxide ligands in (I)[link]

The valence sums are calculated with the formula Si = exp[(R0 - Ri)/B], where Si is the bond valence of bond i, R0 is a constant dependant on the bonded elements [R0(Mo-O) = 1.907], Ri is the bond length of bond i and B = 0.370. [Sigma]Si is the bond-valence sum for the O atom and V is the predicted valence for a site. The bond-valence sums for the Mo atoms are [Sigma]Si = 5.871-5.940.

O atom Type Mo-O distance(s) (Å) [Sigma]Si V - [Sigma]Si Hydrogen-bond acceptor function
O1 Terminal 1.717 (2) 1.671 -0.329 N-H...O
O3 Terminal 1.709 (2) 1.708 -0.292 O-H...O
O6 Terminal 1.704 (2) 1.731 -0.269 N-H...O
O8 Terminal 1.693 (2) 1.783 -0.217 N-H...O
O11 Terminal 1.702 (2) 1.740 -0.260 None
O13 Terminal 1.701 (2) 1.745 -0.255 N-H...O
           
O2 [mu]2 1.917 (2), 1.977 (2) 1.801 -0.199 N-H...O
O4 [mu]2 1.901 (2), 1.960 (2) 1.883 -0.117 O-H...O
O9 [mu]2 1.755 (2), 2.276 (2) 1.877 -0.123 None
O12 [mu]2 1.767 (2), 2.137 (2) 1.997 -0.003 None
           
O7 [mu]3 1.920 (2)-2.173 (2) 2.028 0.028 None
O10 [mu]3 1.914 (2)-2.317 (2) 1.733 -0.267 N-H...O
           
O5 [mu]4 1.930 (2)-2.438 (2) 1.952 -0.048  

Compound (II)[link]

Crystal data
  • (C10H16N4)2[SiMo12O40]·4H2O

  • Mr = 2275.97

  • Monoclinic, C 2

  • a = 22.5418 (14) Å

  • b = 20.4965 (10) Å

  • c = 12.5203 (8) Å

  • [beta] = 110.270 (8)°

  • V = 5426.5 (6) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 2.81 mm-1

  • T = 173 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: numerical [X-RED (Stoe & Cie, 2001[Stoe & Cie (2001). X-RED. Version 1.22. Stoe & Cie GmbH, Darmstadt, Germany.]) and X-SHAPE (Stoe & Cie, 1999[Stoe & Cie (1999). X-SHAPE. Revision 1.06. Stoe & Cie GmbH, Darmstadt, Germany.])] Tmin = 0.662, Tmax = 0.766

  • 23905 measured reflections

  • 12670 independent reflections

  • 11002 reflections with I > 2[sigma](I)

  • Rint = 0.028

Refinement
  • R[F2 > 2[sigma](F2)] = 0.027

  • wR(F2) = 0.056

  • S = 0.91

  • 12670 reflections

  • 775 parameters

  • 1 restraint

  • H-atom parameters constrained

  • [Delta][rho]max = 1.59 e Å-3

  • [Delta][rho]min = -1.45 e Å-3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 5860 Friedel pairs

  • Flack parameter: 0.29 (2)

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

D-H...A D-H H...A D...A D-H...A
O1W-H1W...O32i 0.85 2.15 2.974 (5) 164
O1W-H2W...O8ii 0.85 2.02 2.814 (6) 156
O2W-H3W...O26iii 0.85 2.21 3.048 (6) 171
O2W-H4W...O4Wiv 0.85 2.31 3.012 (6) 139
O3W-H5W...O12v 0.85 1.98 2.802 (6) 163
O3W-H6W...O20iii 0.85 2.33 2.991 (5) 134
O3W-H6W...O25iii 0.85 2.43 3.151 (6) 143
O4W-H7W...O36i 0.85 2.12 2.910 (6) 154
O4W-H7W...O28i 0.85 2.58 3.206 (6) 131
O4W-H8W...O22vi 0.85 2.59 3.076 (7) 117
O4W-H8W...O2Wvii 0.85 2.64 3.012 (6) 108
N1-H1...O8 0.88 2.17 2.999 (6) 156
N2-H2...O4W 0.88 2.03 2.864 (7) 157
N3-H3...O1 0.88 2.23 2.966 (6) 141
N3-H3...O18 0.88 2.50 3.285 (6) 148
N4-H4...O1W 0.88 1.82 2.693 (6) 172
N5-H5...O3W 0.88 2.15 2.776 (6) 128
N5-H5...O19iii 0.88 2.55 3.041 (6) 116
N6-H6...O4 0.88 2.07 2.866 (6) 150
N7-H7...O2W 0.88 1.93 2.789 (7) 165
N8-H8...O12 0.88 2.10 2.896 (6) 150
N8-H8...O1viii 0.88 2.58 3.107 (6) 120
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+2]; (ii) x, y, z+1; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1]; (iv) x, y+1, z; (v) x, y, z-1; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+1]; (vii) x, y-1, z; (viii) [-x+{\script{1\over 2}}], [y+{\script{1\over 2}}, -z+2].

Table 4
Bond-valence sums for [SiMo12O40]4- anions and hydrogen-bond functionality of the oxide ligands in (II)[link]

The details are as given in Table 2[link]. The bond-valence sums for the Mo atoms are [Sigma]Si = 5.877-5.970.

O-atom type Mo-O bond range (Å) [Sigma]Si range V - [Sigma]Si mean No. of O atoms O-H...O N-H...O
Terminal 1.677 (4)-1.711 (4) 1.698-1.862 -0.211 12 2 5
[mu]2 1.824 (4)-2.043 (4) 1.771-2.019 -0.083 24 7 2
[mu]4 2.311 (3)-2.385 (3) 1.905-1.943 -0.076 4    

All methyl H atoms were added geometrically, while N- and O-bound H atoms were located from difference maps and then geometrically optimized and refined as riding on their parent atom. O-H distances were constrained to 0.85 Å, N-H distances to 0.88 Å and C-H distances to 0.98 Å, with Uiso(H) = 1.5Ueq(C,N,O).

For both compounds, data collection: IPDS Software (Stoe & Cie, 2000[Stoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: IPDS Software; data reduction: IPDS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Release 2.1e. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).


Supplementary data for this paper are available from the IUCr electronic archives (Reference: KU3054 ). Services for accessing these data are described at the back of the journal.


Acknowledgements

The authors acknowledge support from the Deutsche Forschungsgemeinschaft (grant No. UKR 17/1/06) and from the State Fund for Fundamental Research of Ukraine (DFFD) (grant No. 09DF037-03).

References

Boldog, I., Daran, J.-C., Chernega, A. N., Rusanov, E. B., Krautscheid, H. & Domasevitch, K. V. (2009). Cryst. Growth Des. 9, 2895-2905.  [CSD] [CrossRef] [ChemPort]
Boldog, I., Rusanov, E. B., Chernega, A. N., Sieler, J. & Domasevitch, K. V. (2001). Angew. Chem. Int. Ed. 40, 3435-3440.  [ISI] [CrossRef] [ChemPort]
Boldog, I., Rusanov, E. B., Sieler, J. & Domasevitch, K. V. (2004). New J. Chem. 28, 756-759.  [ISI] [CSD] [CrossRef] [ChemPort]
Brandenburg, K. (1999). DIAMOND. Release 2.1e. Crystal Impact GbR, Bonn, Germany.
Dang, D.-B. & Jin, Y.-N. (2007). Acta Cryst. E63, m881-m883.  [CSD] [CrossRef] [details]
Domasevitch, K. V. (2008). Acta Cryst. C64, o326-o329.  [CSD] [CrossRef] [details]
Fang, R.-Q., Zhang, X.-M., Wu, H.-S. & Ng, S. W. (2004). Acta Cryst. E60, m359-m361.  [CrossRef] [details]
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.  [CrossRef] [ChemPort] [details]
Flack, H. D. (1983). Acta Cryst. A39, 876-881.  [CrossRef] [details]
Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638-2684.  [CrossRef]
Halcrow, M. A. (2009). Dalton Trans. pp. 2059-2073.  [CrossRef]
Hubbard, D. J., Johnston, A. R., Casalongue, H. S., Narducci Sarjeant, A. & Norquist, A. J. (2008). Inorg. Chem. 47, 8518-8525.  [ISI] [CSD] [CrossRef] [PubMed] [ChemPort]
Liu, H., Su, L., Wang, L. & Li, W. (2010). Acta Cryst. E66, m443-m444.  [CrossRef] [details]
Nelson, J. R., Narducci Sarjeant, A. & Norquist, A. J. (2006). Acta Cryst. E62, m1731-m1733.  [CSD] [CrossRef] [details]
Rusanov, E. B., Ponomarova, V. V., Komarchuk, V. V., Stoeckli-Evans, H., Fernandez-Ibanez, E., Stoeckli, F., Sieler, J. & Domasevitch, K. V. (2003). Angew. Chem. Int. Ed. 42, 2499-2501.  [ISI] [CSD] [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Singh, U. P., Kashyap, S., Singh, H. J. & Butcher, R. J. (2011). CrystEngComm, 13, 4110-4120.  [ISI] [CSD] [CrossRef] [ChemPort]
Stoe & Cie (1999). X-SHAPE. Revision 1.06. Stoe & Cie GmbH, Darmstadt, Germany.
Stoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.
Stoe & Cie (2001). X-RED. Version 1.22. Stoe & Cie GmbH, Darmstadt, Germany.
Thorn, K. J., Narducci Sarjeant, A. & Norquist, A. J. (2005). Acta Cryst. E61, m1665-m1667.  [CSD] [CrossRef] [details]
Tytko, K. H., Mehmke, J. & Fischer, S. (1999). Struct. Bond. 93, 129-321.  [CrossRef] [ChemPort]
Xu, Y., An, L.-H. & Koh, L.-L. (1996). Chem. Mater. 8, 814-818.  [CrossRef] [ChemPort] [ISI]
Yu, S.-Y., Huang, H.-P., Li, S.-H., Jiao, Q., Li, Y.-Z., Wu, B., Sei, Y., Yamaguchi, K., Pan, Y.-J. & Ma, H.-W. (2005). Inorg. Chem. 44, 9471-9488.  [ISI] [CSD] [CrossRef] [PubMed] [ChemPort]
Zhang, J.-P. & Kitagawa, S. (2008). J. Am. Chem. Soc. 130, 907-917.  [ISI] [CSD] [CrossRef] [PubMed] [ChemPort]


Acta Cryst (2011). C67, m378-m383   [ doi:10.1107/S0108270111047159 ]