[Journal logo]

Volume 68 
Part 4 
Pages o164-o169  
April 2012  

Received 11 December 2011
Accepted 26 February 2012
Online 14 March 2012

ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here

Two new XP(O)[NHC(CH3)3]2 phosphoramidates, with X = (CH3)2N and [(CH3)3CNH]2P(O)(O)

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran,bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic, and cInstitut Européen des Membranes, Université de Montpellier II, 34095 Montpellier, France
Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

In N,N'-di-tert-butyl-N'',N''-dimethylphosphoric triamide, C10H26N3OP, (I), and N,N',N'',N'''-tetra-tert-butoxybis(phosphonic diamide), C16H40N4O3P2, (II), the extended structures are mediated by P(O)...(H-N)2 interactions. The asymmetric unit of (I) consists of six independent molecules which aggregate through P(O)...(H-N)2 hydrogen bonds, giving R21(6) loops and forming two independent chains parallel to the a axis. Of the 12 independent tert-butyl groups, five are disordered over two different positions with occupancies ranging from [1 \over 6] to [5 \over 6]. In the structure of (II), the asymmetric unit contains one molecule. P(O)...(H-N)2 hydrogen bonds give S(6) and R22(8) rings, and the molecules form extended chains parallel to the c axis. The structures of (I) and (II), along with similar structures having (N)P(O)(NH)2 and (NH)2P(O)(O)P(O)(NH)2 skeletons extracted from the Cambridge Structural Database, are used to compare hydrogen-bond patterns in these families of phosphoramidates. The strengths of P(O)[...H-N]x (x = 1, 2 or 3) hydrogen bonds are also analysed, using these compounds and previously reported structures with (N)2P(O)(NH) and P(O)(NH)3 fragments.

Comment

The strengths of PO...H-N hydrogen bonds were investigated recently in compounds having C(O)NHP(O)[NH]2 and C(O)NHP(O)[N]2 skeletons (Pourayoubi, Tarahhomi et al., 2011[Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265-o272.]). In another recent report by our group, the double hydrogen-bond acceptor capability of the P(O) unit in phosphoramidates, and the formation of the PO...[H-N][H-N] grouping, were discussed (Pourayoubi et al., 2012[Pourayoubi, M., Necas, M. & Negari, M. (2012). Acta Cryst. C68, o51-o56.]).

We report here a study of the hydrogen-bond patterns in new compounds having (N)P(O)(NH)2 and (NH)2P(O)(O)P(O)(NH)2 fragments (with n H-atom acceptors and 2n H-atom donor centres, with n = 1 and 2), with a double hydrogen-bond acceptor capability at the P(O) group. The observed hydrogen-bond patterns are compared with those of analogous structures. Moreover, for comparison, the strengths of the PO...[H-N]x (x = 1, 2 or 3) hydrogen bonds are analysed for the new structures, for previously reported analogous compounds and also for compounds with (N)2P(O)(NH) and P(O)(NH)3 skeletons.

[Scheme 1]

A search of the Cambridge Structural Database (CSD, Version 5.32, May 2011 update; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]; CSD refcodes will be given in capitals followed by the primary reference) shows that the N atom of the P(O)N group in phosphoramidate compounds does not usually act as a hydrogen-bond acceptor because of its weak Lewis base character.

In compounds having an (N)P(O)(NH)2 skeleton (six structures), three different linear arrangements were observed: (i) formed through PO...H-N hydrogen bonds, with one N-H unit not involved in hydrogen bonding (Fig. 1[link]a) (NUVROL; Bourne et al., 1998[Bourne, S. A., Mbianda, X. Y., Modro, T. A., Nassimbeni, L. R. & Wan, H. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 83-88.]); (ii) with molecules linked by an R21(6) ring (Fig. 1[link]b) (MIFYIJ; Gholivand et al., 2002[Gholivand, K., Tadjarodi, A. & Ng, S. W. (2002). Acta Cryst. E58, o200-o201.]); (iii) formed via an R22(8) ring (Fig. 1[link]c) (IKASAP; Sabbaghi et al., 2011[Sabbaghi, F., Pourayoubi, M., Karimi Ahmadabad, F., Azarkamanzad, Z. & Ebrahimi Valmoozi, A. A. (2011). Acta Cryst. E67, o502.]) [see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) for nomenclature of hydrogen-bond motifs]. In the two latter cases, with PO...(H-N)(H-N) groups, the phosphoryl O atom acts as a double hydrogen-bond acceptor.

In a compound with an (N)P(O)(NH)2 skeleton, but with one additional hydrogen-bond acceptor present (nitrogen) in the substituent (pyridine) linked to the amide N atom (HIVLII; Gholivand et al., 2008[Gholivand, K., Della Védova, C. O., Erben, M. F., Mahzouni, H. R., Shariatinia, Z. & Amiri, S. (2008). J. Mol. Struct. 874, 178-186.]), the PO...H-N hydrogen bond also mediates a linear arrangement, although an intramolecular N-H...N hydrogen bond is also found in the structure.

The molecular structure of (I)[link], with an (N)P(O)(NH)2 skeleton, is shown in Fig. 2[link]. The asymmetric unit of (I)[link] is composed of six independent molecules. The P atom exhibits a distorted tetrahedral environment which is reflected in its bond lengths and angles (Table 1[link]), as has been noted for other phosphoramide derivatives (Pourayoubi, Tarahhomi et al., 2011[Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265-o272.]). The P=O and P-N bond lengths are comparable with those in similar compounds (IKASAP; Sabbaghi et al., 2011[Sabbaghi, F., Pourayoubi, M., Karimi Ahmadabad, F., Azarkamanzad, Z. & Ebrahimi Valmoozi, A. A. (2011). Acta Cryst. E67, o502.]). In the (CH3)2NP(O) unit, the O-P-N-C torsion angles, which reflect the orientations of the methyl groups with respect to the phosphoryl group, are in the ranges -177.7 (4) to -168.1 (3)° and -9.5 (4) to 4.9 (4)°. Two independent one-dimensional chains are present in the extended structure, each chain containing three independent molecules. In each chain, adjacent molecules are linked via PO...[H-N]2 groups (Table 2[link]), building R21(6) rings in a linear arrangement parallel to [100] (Fig. 3[link]). In each of the independent molecules, the phosphoryl O atom acts as a double hydrogen-bond acceptor.

The hydrogen-bond pattern of a previously published structure, [CH3NH]P(O)[N2C4H6O2] (DIYMED; Hutton et al., 1986[Hutton, A. T., Modro, T. A., Niven, M. L. & Scaillet, S. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 17-24.]), is very similar to that of (I)[link]. The asymmetric unit contains four independent molecules which form two one-dimensional chains, each composed of two independent molecules.

Among the six independent molecules in the asymmetric unit of (I)[link], five tert-butyl groups (of a total of 12) were found to be disordered. The relative site occupancies were refined to values in the range 0.16-0.84. Disorder in the tert-butyl groups was observed in some similar structures reported previously, even at low temperature (Chivers et al., 2003[Chivers, T., Krahn, M., Schatte, G. & Parvez, M. (2003). Inorg. Chem. 42, 3994-4005.]; Gholivand, Pourayoubi et al., 2005[Gholivand, K., Pourayoubi, M., Shariatinia, Z. & Molani, S. (2005). Z. Kristallogr. New Cryst. Struct. 220, 387-389.]; Gholivand et al., 2009[Gholivand, K., Mostaanzadeh, H., Koval, T., Dusek, M., Erben, M. F. & Della Védova, C. O. (2009). Acta Cryst. B65, 502-508.]).

There are two previous examples of compounds having an (N)2P(O)(NH2) skeleton [BIXFOE (Kattuboina & Li, 2008[Kattuboina, A. & Li, G. (2008). Tetrahedron Lett. 49, 1573-1577.]) and GOMDOB (Hempel et al., 1999[Hempel, A., Camerman, N., Mastropaolo, D. & Camerman, A. (1999). Acta Cryst. C55, 1173-1175.])], with hydrogen bonding mediating the formation of a one-dimensional chain for BIXFOE and a one-dimensional ladder with alternating R22(8) and R42(8) rings for GOMDOB. In the latter, the phosphoryl O atom acts as a double hydrogen-bond acceptor (Fig. 4[link]).

The molecular structure of (II)[link] is shown in Fig. 5[link]. As in (I)[link], the P atoms exhibit a distorted tetrahedral environment, with bond angles at P1 in the range 100.28 (8)-116.84 (7)°. The P=O and P-N bond lengths in (II)[link] are as expected (Table 3[link]). The two [(CH3)3CNH]2P(O) units are bridged via an O atom [P-O-P = 126.85 (8)°]. The P1-O1 and P2-O1 bond lengths [mean value 1.619 (2) Å] are standard for the P-O-P moiety (Pourayoubi et al., 2010[Pourayoubi, M., Ghadimi, S. & Ebrahimi Valmoozi, A. A. (2010). Acta Cryst. E66, o450.]). The bridging O atom of the P-O-P fragment does not take part in hydrogen bonding. The R22(8) hydrogen-bond motif of this compound, which contains an (NH)2P(=O)OP(=O)(NH)2 skeleton, is similar to that found for some compounds with an (N)P(=O)(NH)2 core. Only one neutral molecular structure with this skeleton has been reported so far: {P(O)[NHC6H4(2-CH3)]2}2O [OXPOTU (Cameron et al., 1978[Cameron, T. S., Cordes, R. E. & Jackman, F. A. (1978). Z. Naturforsch. Teil B, 33, 728-730.]) and OXPOTU01 (Pourayoubi, Padelková et al., 2011[Pourayoubi, M., Padelková, Z., Rostami Chaijan, M. & Ruzicka, A. (2011). Acta Cryst. E67, o450-o451.])]. In the structure of (II)[link], each of the phosphoryl O atoms acts as a double hydrogen-bond acceptor, but in this case it participates in one intra- and one intermolecular N-H...O hydrogen bond (Table 4[link]), building S(6) and R22(8) rings which are further linked into an extended chain parallel to the c axis (Fig. 6[link]). This hydrogen-bond pattern has also been observed in {P(O)[NHC6H4(2-CH3)]2}2O (OXPOTU and OXPOTU01). Compounds containing an (NH)2P(=O)OP(=O)(NH)2 group, when crystallized as salts, show a diversity of hydrogen-bond patterns, as in the case of the hydrated salt C48H100N14O3P62+·2Cl-·0.5HCl·3.5H2O (GAHGAZ; Ledger et al., 2010[Ledger, J., Boomishankar, R. & Steiner, A. (2010). Inorg. Chem. 49, 3896-3904.]), which has a complicated hydrogen-bond pattern, because H2O and Cl- are also involved.

In order to gauge the strengths of the hydrogen bonds in this family of compounds, we have examined 59 previously reported neutral molecular structures (one unavailable CIF was excluded) with the skeletons discussed in this work, and also compounds containing (N)2P(O)(NH) and P(O)(NH)3 skeletons for comparison. A scatter plot of N-H...X angles versus N...X distances (X = O, N) for 104 N-H...O and N-H...N hydrogen bonds in these compounds is shown in Fig. 7[link]. Contacts with D-H...A angles smaller than 110° and D...A distances greater than 3.3 Å were not included in Fig. 7[link]. Cocrystals and solvates were also excluded.

Double hydrogen-bond acceptor capability is also found in the structures of compounds having a P(O)(NH)3 skeleton {for example, in P(O)[NHC6H4(4-OCH3)]3 (WAWNIS; Li et al., 2005[Li, C., Dyer, D. J., Rath, N. P. & Robinson, P. D. (2005). Acta Cryst. C61, o654-o656.]) and P(O)[NHCH2C6H5]3 (TOKXIB; Gholivand et al., 2006[Gholivand, K., Mostaanzadeh, H., Shariatinia, Z. & Oroujzadeh, N. (2006). Main Group Chem. 5, 95-109.])}. A four-centred P(O)...[H-N]3 unit {for example, in P(O)[NHCH3]3 (KABVAL; Chivers et al., 2003[Chivers, T., Krahn, M., Schatte, G. & Parvez, M. (2003). Inorg. Chem. 42, 3994-4005.])} has also been reported.

The data reveal weak hydrogen bonding for P(O)[NHCH3]3 [KABVAL (Chivers et al., 2003[Chivers, T., Krahn, M., Schatte, G. & Parvez, M. (2003). Inorg. Chem. 42, 3994-4005.]); N...O and N-H...O are 2.970 (2) Å/172 (2)°, 2.961 (2) Å/155 (2)° and 3.253 (2) Å/171 (3)°]. For P(O)[NHC(CH3)3]3 (KABVEP; Chivers et al., 2003[Chivers, T., Krahn, M., Schatte, G. & Parvez, M. (2003). Inorg. Chem. 42, 3994-4005.]), three weak N-H...O hydrogen bonds, in a P(O)...[H-N]3 grouping, were found: 3.255 (4) Å/111.1 (2)°, 3.159 (4) Å/123.0 (2)° and 3.294 (4) Å/93.4 (2)°; the last of these, with a low N-H...O angle and marginal character, is not included in Fig. 7[link].

All data to the right of the dashed vertical line in Fig. 7[link] (D...A > 3.1 Å) are from N-H...N and PO...[H-N]x (x = 2 or 3) assemblies. However, these types of hydrogen bonds are also found on the left-hand side of the line.

The maximum population of the distribution is found for hydrogen bonds in the region with D...A = 2.80-3.05 Å and D-H...A = 144-179°.

The shortest N...O distances are found in two hydrogen bonds of [(CH3)2N]P(O)Y, where Y = NHCH(C6H5)CH(C6H5)N(C10H7) (both D...A = 2.75 Å), with different angles (XAVXEY; Alcock et al., 2005[Alcock, N. W., Wills, M. & Smith, A. (2005). Private communication.]). Also, a short distance with a relatively linear angle [2.770 (2) Å and 169.8 (1)°] occurs in the N-H...OP hydrogen bond of P(O)[NHC6H4(4-NO2)][NC5H9(4-CH3)]2 (WALQUW; Gholivand, Shariatinia & Pourayoubi, 2005[Gholivand, K., Shariatinia, Z. & Pourayoubi, M. (2005). Z. Anorg. Allg. Chem. 631, 961-967.]).

Interestingly, a long donor-acceptor distance [3.477 (2) Å] is observed with a nearly linear angle [171 (2)°] for the N-H...O-(CH3) hydrogen bond in P(O)[NHC6H4(4-OCH3)]3 (WAWNIS; Li et al., 2005[Li, C., Dyer, D. J., Rath, N. P. & Robinson, P. D. (2005). Acta Cryst. C61, o654-o656.]), which is not included in Fig. 7[link].

[Figure 1]
Figure 1
Three different types of linear arrangement in compounds having an (N)P(O)(NH)2 skeleton (dashed lines indicate hydrogen bonds): (a) through P(O)...H-N hydrogen bonds, (b) via a PO...(H-N)(H-N) grouping, building R21(6) rings and (c) via a PO...(H-N)(H-N) group, building R22(8) rings.
[Figure 2]
Figure 2
The asymmetric unit of (I)[link], showing six independent molecules and the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The minor disordered components are not shown.
[Figure 3]
Figure 3
The packing in (I)[link], showing two independent one-dimensional aggregates via PO...(H-N)(H-N) hydrogen bonds (dotted lines) building R21(6) rings. Only H atoms involved in hydrogen bonds are shown. The P(O)(N)3 moieties are shown as capped sticks and the chains are extended at the sides indicated as balls. [Symmetry code: (i) x + 1, y, z.]
[Figure 4]
Figure 4
The one-dimensional ladder arrangement containing alternating R22(8) and R42(8) rings in the structure of P(O)[NH2][NC4H8]2 (Hempel et al., 1999[Hempel, A., Camerman, N., Mastropaolo, D. & Camerman, A. (1999). Acta Cryst. C55, 1173-1175.]). Dashed lines indicate hydrogen bonds.
[Figure 5]
Figure 5
The asymmetric unit of (II)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 6]
Figure 6
The packing in (II)[link], with hydrogen bonds shown as dotted lines. Only H atoms involved in hydrogen bonds are shown. The (N)2P(O)OP(O)(N)2 moieties are shown as capped sticks and the structure is extended at the sides indicated as balls. [Symmetry codes: (i) x, -y + [{1\over 2}], z - [{1\over 2}]; (ii) x, -y + [{1\over 2}], z + [{1\over 2}].]
[Figure 7]
Figure 7
A scatter plot of N-H...X angles versus N...X distances (X = O, N) in phosphoramides with a P(O)(NH)m(N)3-m (m = 1, 2 or 3) or (NH)2P(=O)OP(=O)(NH)2 skeleton. [In the electronic version of the paper, the yellow and green squares are data from compounds (I)[link] and (II)[link], respectively. The other squares denote compounds with (N)P(O)(NH)2 (red), (NH)2P(=O)OP(=O)(NH)2 (black), and P(O)(NH)3 and (N)2P(O)(NH) (blue) skeletons.]

Experimental

[(CH3)2N]P(O)Cl2 was prepared according to the literature method of Gholivand et al. (2002[Gholivand, K., Tadjarodi, A. & Ng, S. W. (2002). Acta Cryst. E58, o200-o201.]).

For the preparation of (I)[link], a solution of tert-butylamine (2.7 g, 37.04 mmol) in chloroform (10 ml) was added at 273 K to a solution of [(CH3)2N]P(O)Cl2 (1.5 g, 9.26 mmol) in dry chloroform (15 ml). After stirring for 4 h, the solvent was removed in vacuo, and the product was washed with deionized water and recrystallized from chloroform-methanol (4:1 v/v) at room temperature.

For the preparation of (II)[link], tert-butylamine (3.4 g, 46.8 mmol) was added to a solution of P(O)Cl3 (1.2 g, 7.8 mmol) in dry chloroform (30 ml) at 273 K. After stirring for 4 h, the solvent was evaporated in vacuo and the product was washed with distilled water. Single crystals of (II)[link] were obtained fortuitously from a reaction between (II)[link], Zn(CH3COO)2·2H2O and piperazine in CH3OH under reflux, followed by slow evaporation of the filtered solution at room temperature.

Compound (I)[link]

Crystal data
  • C10H26N3OP

  • Mr = 235.31

  • Monoclinic, P 21

  • a = 12.0615 (4) Å

  • b = 21.2567 (7) Å

  • c = 17.1877 (6) Å

  • [beta] = 90.529 (3)°

  • V = 4406.5 (3) Å3

  • Z = 12

  • Mo K[alpha] radiation

  • [mu] = 0.17 mm-1

  • T = 150 K

  • 0.40 × 0.25 × 0.22 mm

Data collection
  • Agilent Gemini-S diffractometer with Sapphire3 detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.558, Tmax = 1.000

  • 29385 measured reflections

  • 17386 independent reflections

  • 11821 reflections with I > 2[sigma](I)

  • Rint = 0.051

Refinement
  • R[F2 > 2[sigma](F2)] = 0.061

  • wR(F2) = 0.161

  • S = 0.92

  • 17382 reflections

  • 947 parameters

  • 207 restraints

  • H-atom parameters constrained

  • [Delta][rho]max = 0.53 e Å-3

  • [Delta][rho]min = -0.57 e Å-3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 6936 Friedel pairs

  • Flack parameter: 0.00 (8)

Table 1
Selected geometric parameters (Å, °) for (I)[link]

P1-O2 1.481 (3)
P1-N3 1.646 (4)
P1-N6 1.639 (3)
P1-N11 1.629 (3)
P16-O17 1.472 (3)
P16-N18 1.635 (4)
P16-N21 1.641 (3)
P16-N26 1.645 (3)
P31-O32 1.481 (3)
P31-N33 1.636 (3)
P31-N38 1.642 (3)
P31-N43 1.640 (4)
P46-O47 1.474 (3)
P46-N48 1.631 (4)
P46-N53 1.651 (4)
P46-N56 1.645 (3)
P61-O62 1.484 (3)
P61-N63 1.644 (4)
P61-N68 1.624 (3)
P61-N73 1.650 (4)
P76-O77 1.484 (3)
P76-N78 1.652 (4)
P76-N81 1.612 (3)
P76-N86 1.630 (4)
O2-P1-N3 106.67 (17)
O2-P1-N6 115.95 (18)
N3-P1-N6 110.01 (19)
O2-P1-N11 117.89 (18)
N3-P1-N11 106.8 (2)
N6-P1-N11 99.08 (17)
O17-P16-N18 106.97 (18)
O17-P16-N21 117.46 (19)
N18-P16-N21 108.2 (2)
O17-P16-N26 116.42 (19)
N18-P16-N26 107.7 (2)
N21-P16-N26 99.50 (17)
O32-P31-N33 116.98 (17)
O32-P31-N38 117.15 (17)
N33-P31-N38 99.41 (17)
O32-P31-N43 105.90 (18)
N33-P31-N43 108.7 (2)
N38-P31-N43 108.34 (19)
O47-P46-N48 117.44 (17)
O47-P46-N53 106.71 (17)
N48-P46-N53 106.44 (19)
O47-P46-N56 116.76 (18)
N48-P46-N56 99.03 (17)
N53-P46-N56 109.93 (19)
O62-P61-N63 117.21 (18)
O62-P61-N68 118.09 (18)
N63-P61-N68 99.12 (17)
O62-P61-N73 107.09 (19)
N63-P61-N73 107.6 (2)
N68-P61-N73 107.0 (2)
O77-P76-N78 106.81 (17)
O77-P76-N81 116.69 (18)
N78-P76-N81 107.4 (2)
O77-P76-N86 116.79 (18)
N78-P76-N86 108.8 (2)
N81-P76-N86 99.87 (16)
O77-P76-N78-C79 0.2 (5)
O77-P76-N78-C80 -176.8 (4)
O2-P1-N3-C4 -7.1 (5)
O2-P1-N3-C5 -171.3 (5)
O17-P16-N18-C20 4.2 (6)
O17-P16-N18-C19 -176.8 (4)
O32-P31-N43-C45 -175.5 (4)
O32-P31-N43-C44 4.9 (4)
O47-P46-N53-C54 -9.5 (4)
O47-P46-N53-C55 -168.1 (3)
O62-P61-N73-C74 -177.7 (4)
O62-P61-N73-C75 3.9 (5)

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D-H...A D-H H...A D...A D-H...A
N6-H61...O77 0.86 2.10 2.937 (9) 165
N11-H111...O77 0.85 2.08 2.911 (9) 164
N21-H211...O62 0.85 2.21 3.038 (9) 162
N26-H261...O62 0.86 2.11 2.952 (9) 166
N33-H331...O17 0.85 2.10 2.943 (9) 167
N38-H381...O17 0.87 2.22 3.046 (9) 159
N48-H481...O2 0.86 2.16 2.981 (9) 161
N56-H561...O2 0.87 2.10 2.931 (9) 158
N63-H631...O32i 0.86 2.17 2.994 (9) 160
N68-H681...O32i 0.86 2.04 2.884 (9) 168
N81-H811...O47i 0.86 2.09 2.927 (9) 166
N86-H861...O47i 0.85 2.16 2.986 (9) 163
Symmetry code: (i) x+1, y, z.

Compound (II)[link]

Crystal data
  • C16H40N4O3P2

  • Mr = 398.5

  • Monoclinic, P 21 /c

  • a = 11.3715 (4) Å

  • b = 17.7755 (7) Å

  • c = 13.6956 (5) Å

  • [beta] = 119.371 (4)°

  • V = 2412.51 (18) Å3

  • Z = 4

  • Cu K[alpha] radiation

  • [mu] = 1.80 mm-1

  • T = 150 K

  • 0.37 × 0.22 × 0.09 mm

Data collection
  • Gemini Ultra diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.746, Tmax = 1.000

  • 15622 measured reflections

  • 4265 independent reflections

  • 3420 reflections with I > 3[sigma](I)

  • Rint = 0.033

Refinement
  • R[F2 > 2[sigma](F2)] = 0.040

  • wR(F2) = 0.107

  • S = 1.60

  • 4265 reflections

  • 238 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.33 e Å-3

  • [Delta][rho]min = -0.21 e Å-3

Table 3
Selected geometric parameters (Å, °) for (II)[link]

P1-O1 1.6194 (16)
P1-O2 1.4791 (12)
P1-N1 1.6341 (14)
P1-N2 1.609 (2)
P2-O1 1.6191 (17)
P2-O3 1.4806 (12)
P2-N3 1.6351 (13)
P2-N4 1.6075 (18)
P1-O1-P2 126.85 (8)
O1-P1-O2 111.38 (8)
O1-P1-N1 100.28 (8)
O1-P1-N2 106.84 (8)
O2-P1-N1 116.84 (7)
O2-P1-N2 109.89 (8)
N1-P1-N2 110.86 (9)
O1-P2-O3 110.79 (8)
O1-P2-N3 99.81 (8)
O1-P2-N4 107.09 (9)
O3-P2-N3 117.26 (7)
O3-P2-N4 110.13 (8)
N3-P2-N4 110.93 (8)
O2-P1-O1-P2 57.79 (11)
N1-P1-O1-P2 -66.53 (11)
N2-P1-O1-P2 177.81 (10)
O3-P2-O1-P1 59.76 (11)
N3-P2-O1-P1 -64.50 (11)
N4-P2-O1-P1 179.88 (10)

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D-H...A D-H H...A D...A D-H...A
N1-H1N...O3 0.87 (3) 2.29 (3) 3.046 (3) 145 (2)
N2-H2N...O3i 0.87 (1) 1.99 (1) 2.8531 (19) 177 (2)
N3-H3N...O2 0.87 (3) 2.24 (3) 3.007 (3) 147 (2)
N4-H4N...O2ii 0.87 (1) 2.02 (1) 2.883 (2) 175 (2)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

For (I)[link], all H atoms belonging to nondisordered groups were located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry [C-H = 0.93-0.98 Å and N-H = 0.86-0.89 Å, and with Uiso(H) = 1.5Ueq(C) or 1.2Ueq(N)], after which their positions were refined with riding constraints. Geometric similarity restraints were used between the two different tert-butyl groups of each of the five disordered assemblies. Displacement similarity restraints were used for a number of the disordered groups in the tert-butyl assemblies. The occupancies of the disordered groups were initially refined, keeping the total occupancy fixed at 1 for each assembly, until the largest ratio of the final least-squares parameter shift to the final standard uncertainty was below 0.05. Then the occupancies were fixed, accelerating the final convergence. Despite the extensive modelling of the disorder in the tert-butyl assemblies, the final R residuals remain fairly large [R = 0.0961 for all reflections with I > -3[sigma](I) and R = 0.0609 for reflections with I > 2[sigma](I)]. This is most probably due to additional finer unresolved and unmodelled disorder, such as in the hitherto untreated tert-butyl assemblies, or splitting over more than two orientational sites for the five disordered tert-butyl assemblies.

For (II)[link], all H atoms were discernible in difference Fourier maps and could be refined to reasonable geometries. In accord with common practice, H atoms attached to C atoms were kept in ideal positions during the refinement, with C-H = 0.96 Å. The methyl H atoms were allowed to rotate freely about the adjacent C-C bonds. The positions of the N-bound H atoms were restrained to 0.87 (2) Å. All H atoms were refined with Uiso(H) = 1.5Ueq(C) for the methyl groups or 1.2Ueq(N) for -NH- groups.

For both compounds, data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]). Program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]) for (I)[link]; JANA2006 (Petrícek et al., 2006[Petrícek, V., Dusek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]) for (II)[link]. For both compounds, molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). Software used to prepare material for publication: CRYSTALS and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) for (I)[link]; JANA2006 and enCIFer for (II)[link].


Supplementary data for this paper are available from the IUCr electronic archives (Reference: FA3268 ). Services for accessing these data are described at the back of the journal.


Acknowledgements

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged. We acknowledge Institutional Research Plan No. AVOZ10100521 of the Institute of Physics and the project Praemium Academiae of the Academy of Sciences of the Czech Republic.

References

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
Alcock, N. W., Wills, M. & Smith, A. (2005). Private communication.
Allen, F. H. (2002). Acta Cryst. B58, 380-388.  [ISI] [CrossRef] [details]
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.  [ISI] [CrossRef] [ChemPort] [details]
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  [CrossRef] [ChemPort] [ISI]
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  [CrossRef] [details]
Bourne, S. A., Mbianda, X. Y., Modro, T. A., Nassimbeni, L. R. & Wan, H. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 83-88.
Cameron, T. S., Cordes, R. E. & Jackman, F. A. (1978). Z. Naturforsch. Teil B, 33, 728-730.
Chivers, T., Krahn, M., Schatte, G. & Parvez, M. (2003). Inorg. Chem. 42, 3994-4005.  [ISI] [CSD] [CrossRef] [PubMed] [ChemPort]
Flack, H. D. (1983). Acta Cryst. A39, 876-881.  [CrossRef] [details]
Gholivand, K., Della Védova, C. O., Erben, M. F., Mahzouni, H. R., Shariatinia, Z. & Amiri, S. (2008). J. Mol. Struct. 874, 178-186.  [ISI] [CSD] [CrossRef] [ChemPort]
Gholivand, K., Mostaanzadeh, H., Koval, T., Dusek, M., Erben, M. F. & Della Védova, C. O. (2009). Acta Cryst. B65, 502-508.  [ISI] [CSD] [CrossRef] [details]
Gholivand, K., Mostaanzadeh, H., Shariatinia, Z. & Oroujzadeh, N. (2006). Main Group Chem. 5, 95-109.  [ISI] [CSD] [CrossRef] [ChemPort]
Gholivand, K., Pourayoubi, M., Shariatinia, Z. & Molani, S. (2005). Z. Kristallogr. New Cryst. Struct. 220, 387-389.  [ChemPort]
Gholivand, K., Shariatinia, Z. & Pourayoubi, M. (2005). Z. Anorg. Allg. Chem. 631, 961-967.  [CSD] [CrossRef] [ChemPort]
Gholivand, K., Tadjarodi, A. & Ng, S. W. (2002). Acta Cryst. E58, o200-o201.  [CSD] [CrossRef] [details]
Hempel, A., Camerman, N., Mastropaolo, D. & Camerman, A. (1999). Acta Cryst. C55, 1173-1175.  [CrossRef] [details]
Hutton, A. T., Modro, T. A., Niven, M. L. & Scaillet, S. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 17-24.
Kattuboina, A. & Li, G. (2008). Tetrahedron Lett. 49, 1573-1577.  [ISI] [CSD] [CrossRef] [ChemPort]
Ledger, J., Boomishankar, R. & Steiner, A. (2010). Inorg. Chem. 49, 3896-3904.  [ISI] [CSD] [CrossRef] [ChemPort] [PubMed]
Li, C., Dyer, D. J., Rath, N. P. & Robinson, P. D. (2005). Acta Cryst. C61, o654-o656.  [CSD] [CrossRef] [details]
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.  [ISI] [CrossRef] [ChemPort] [details]
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.  [ISI] [CrossRef] [ChemPort] [details]
Petrícek, V., Dusek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.
Pourayoubi, M., Ghadimi, S. & Ebrahimi Valmoozi, A. A. (2010). Acta Cryst. E66, o450.  [CSD] [CrossRef] [details]
Pourayoubi, M., Necas, M. & Negari, M. (2012). Acta Cryst. C68, o51-o56.  [CSD] [CrossRef] [details]
Pourayoubi, M., Padelková, Z., Rostami Chaijan, M. & Ruzicka, A. (2011). Acta Cryst. E67, o450-o451.  [CSD] [CrossRef] [details]
Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265-o272.  [CSD] [CrossRef] [details]
Sabbaghi, F., Pourayoubi, M., Karimi Ahmadabad, F., Azarkamanzad, Z. & Ebrahimi Valmoozi, A. A. (2011). Acta Cryst. E67, o502.  [CSD] [CrossRef] [details]


Acta Cryst (2012). C68, o164-o169   [ doi:10.1107/S0108270112008566 ]