[Journal logo]

Volume 68 
Part 9 
Pages m265-m268  
September 2012  

Received 19 June 2012
Accepted 2 August 2012
Online 18 August 2012

A novel one-dimensional CoII coordination polymer: catena-poly[[hexa­aqua­cobalt(II)] [[diaqua­bis­(sulfato-[kappa]O)cobalt(II)]-[mu]-4,4'-bipyridine-[kappa]2N:N'] [[triaqua­(sulfato-[kappa]O)cobalt(II)]-[mu]-4,4'-bipyridine-[kappa]2N:N']]

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
Correspondence e-mail: zklong76@163.com

The title compound, {[Co(H2O)6][Co(SO4)(C10H8N2)(H2O)3][Co(SO4)2(C10H8N2)(H2O)2]}n, contains three crystallographically unique CoII centres, all of which are in six-coordinated environments. One CoII centre is coordinated by two bridging 4,4'-bipyridine (4,4'-bipy) ligands, one sulfate ion and three aqua ligands. The second CoII centre is surrounded by two N atoms of two 4,4'-bipy ligands and four O atoms, i.e. two O atoms from two monodentate sulfate ions and two from water mol­ecules. The third CoII centre forms part of a hexaaquacobalt(II) ion. In the crystal structure, there are two different one-dimensional chains, one being anionic and the other neutral, and adjacent chains are arranged in a cross-like fashion around the mid-point of the 4,4'-bipy ligands. The structure features O-H...O hydrogen-bonding inter­actions between sulfate anions and water mol­ecules, resulting in a three-dimensional supra­molecular network.

1. Comment

The self-assembly of coordination polymers and the crystal engineering of metal-organic coordination frameworks have recently attracted great inter­est, owing to the inter­esting mol­ecular topologies and potential application of these polymers as functional materials (Batten & Robson, 1998[Batten, S. R. & Robson, R. (1998). Chem. Commun. pp. 1067-1068.]; Yan & Huang, 2010[Yan, Y. & Huang, J.-B. (2010). Coord. Chem. Rev. 254, 1072-1080.]; Eddaoudi et al., 2001[Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]; Dietzel et al., 2005[Dietzel, P. D. C., Morita, Y., Blom, R. & Fjellvag, H. (2005). Angew. Chem. Int. Ed. 44, 1483-1492.]; Chen et al., 2010[Chen, B.-L., Xiang, S.-C. & Qian, G.-D. (2010). Acc. Chem. Res. 43, 1115-1124.]; Zhang et al., 2010[Zhang, L.-P., Ma, J.-F., Yang, J., Pang, Y.-Y. & Ma, J.-C. (2010). Inorg. Chem. 49, 1535-1550.].). 4,4'-Bipyridine (4,4'-bipy) has been widely used as a bridging ligand to construct inter­esting one-, two- and three-dimensional coordination polymer structures, owing to its rod-like rigidity and length (Lu et al., 1998[Lu, J., Yu, C., Niu, T. Y., Paliwala, T., Crisci, G., Somosa, F. & Jacobson, A. J. (1998). Inorg. Chem. 37, 4637-4640.]; Lah & Leban, 2006[Lah, N. & Leban, I. (2006). Inorg. Chem. Commun. 9, 42-45.]; Lian et al., 2007[Lian, Z.-X., Cai, J. & Chen, C.-H. (2007). Polyhedron, 26, 2647-2654.]; Bo et al., 2008[Bo, Q.-B., Sun, Z.-X. & Forsling, W. (2008). CrystEngComm, 10, 232-238.]; Li et al., 2009[Li, Y., Lu, J. & Cao, R. (2009). Inorg. Chem. Commun. 12, 181-183.]; Zhong et al., 2011[Zhong, K.-L., Chen, L. & Chen, L. (2011). Acta Cryst. C67, m62-m64.]). Some inter­esting coordination polymers assembled with 4,4'-bipy have been reported, showing various structural motifs, such as [Co(SO4)(4,4'-bipy)(H2O)3]·2C2H6O2 (Lu et al., 2006[Lu, W.-J., Zhu, Y.-M. & Zhong, K.-L. (2006). Acta Cryst. C62, m448-m450.]), [Co2(OH)2(4,4'-bipy)8(H2O)2](NO3)2·2(4,4'-bipy)·10H2O (Luachan et al., 2007[Luachan, S., Pakawatchai, C. & Rujiwatra, A. (2007). J. Inorg. Organomet. Polym. Mater. 30, 561-568.]), [Co2(4,4'-bipy)2(SO4)2(H2O)6]·4H2O (Prior et al., 2011[Prior, T.-J., Yotnoi, B. & Rujiwatra, A. (2011). Polyhedron, 30, 259-268.]), [Co(SO4)(4,4'-bipy)(H2O)3]·2H2O and [CoCl2(DMSO)2(4,4'-bipy)] (DMSO is dimethyl sulfoxide; Lu et al., 1998[Lu, J., Yu, C., Niu, T. Y., Paliwala, T., Crisci, G., Somosa, F. & Jacobson, A. J. (1998). Inorg. Chem. 37, 4637-4640.]). In the present work, we describe the synthesis and structure of a novel complex with 4,4'-bipy coordinated to CoII metal centres, namely {[Co(H2O)6][Co(SO4)(4,4'-bipy)(H2O)3][Co(SO4)2(4,4'-bipy)(H2O)2]}n, (I)[link], which displays a three-dimensional supra­molecular network with two kinds of one-dimensional chains and was obtained via a solvothermal reaction.

[Scheme 1]

Part of the structure of (I)[link] is shown in Fig. 1[link]. There are three crystallographically independent CoII centres, namely Co1, Co2 and Co3. Atom Co1 is coordinated by atoms N3 and N4 from bridging 4,4'-bipy ligands occupying the axial positions, atom O4 from a monodentate sulfate ion and by water atoms O3W, O4W and O5W occupying the equatorial sites (Fig. 1[link] and Table 1[link]). Atoms Co1, O4, O3W, O4W and O5W are almost coplanar, the mean deviation from the plane being 0.060 Å. The cis bond angles around each Co1 centre are in the range 85.64 (15)-93.02 (16)° (Fig. 1[link] and Table 1[link]). The Co2 coordination environment is very similar to that of Co1, with Co2 being octa­hedrally trans-coordinated in monodentate modes by sulfate anions and water mol­ecules [Co2-O distances = 2.102 (4)-2.182 (4) Å]. Atoms N1 and N2 from two symmetry-related 4,4'-bipy ligands occupy the axial positions. The cis bond angles around each Co2 centre lie in the range 87.17 (16)-93.63 (17)° (Table 1[link] and Fig. 1[link]). The Co3 centre is surrounded by six aqua ligands, in an octa­hedral geometry, with Co-O distances of 2.056 (4)-2.152 (4) Å and cis O-Co-O angles of 83.39 (15)-97.01 (16)°.

The 4,4'-bipy as bridging ligand links the same CoII centres resulting in two types of one-dimensional linear chain, namely neutral [Co(SO4)(4,4'-bipy)(H2O)3]n chains (bipy-Co1-bipy, chain A) and anionic [Co(SO4)2(4,4'-bipy)(H2O)2]n chains (bipy-Co2-bipy, chain B). Charge balance is provided by [Co(H2O)6]2+ cations. The presence of pseudosymmetry in the structure suggests the higher-symmetry space group P[\overline{1}], but attempts to refine the structure in this space group resulted in an unsatisfactory model because of the asymmetry in the coordination environment of the Co2 metal centre. The separation of neighbouring CoII centres in chain A [11.462 (2) Å] is a little longer than that observed in chain B [11.246 (2) Å]. This can be attributed to the coplanarity of the pyridine rings of the bridging 4,4'-bipy ligand in the A chain [dihedral angle between the pyridine rings = 0.9 (2)°], while the pyridine rings of the bridging 4,4'-bipy ligand coordinated to the Co2 atom are slightly puckered in the B chain [corresponding dihedral angle = 8.1 (2)°]. Chains A and B are each arranged in a cross-like fashion, inter­secting at the mid-points of the 4,4'-bipy ligands, resulting in rhombic channels (10.504 × 12.208 Å) along the a axis. The [Co(H2O)6]2+ complex cations guest in the structure channels (Fig. 2[link]). Numerous classical O-H...O hydrogen-bonding inter­actions (Fig. 3[link] and Table 2[link]) involving the coordinated water mol­ecules and the sulfate ligands result in a three-dimensional supra­molecular network.

[Figure 1]
Figure 1
The coordination environment of the metal atoms in the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2]
Figure 2
The array of neutral polymeric chains (blue in the electronic version of the paper) and anionic polymeric chains (green) in (I)[link], viewed along the a axis. H atoms have been omitted for clarity.
[Figure 3]
Figure 3
The hydrogen-bond inter­actions (dashed lines) between adjacent chains and complex cations in (I)[link]. H atoms of the 4,4'-bipy ligands have been omitted for clarity. [Symmetry code: (vi) x, y, z - 1.]

2. Experimental

4,4'-Bipyridine (0.1 mmol), CoSO4·7H2O (0.1 mmol), propane-1,2-diol (1 ml) and water (4 ml) were mixed and placed in a thick Pyrex tube, which was sealed and heated to 413 K for 96 h. The tube was allowed to cool slowly to ambient temperature, whereupon red block-shaped crystals of (I)[link] were obtained. Analysis found: C 22.63, H 3.12, N 5.36%; calculated for C20H38Co3N4O23S3: C 24.62, H 3.90, N 5.74%.

2.1.1. Crystal data
  • [Co(H2O)6][Co(SO4)(C10H8N2)(H2O)3][Co(SO4)2(C10H8N2)(H2O)2]

  • Mr = 975.51

  • Triclinic, P 1

  • a = 7.2860 (15) Å

  • b = 11.246 (2) Å

  • c = 11.462 (2) Å

  • [alpha] = 72.21 (3)°

  • [beta] = 73.57 (3)°

  • [gamma] = 83.50 (3)°

  • V = 857.4 (3) Å3

  • Z = 1

  • Mo K[alpha] radiation

  • [mu] = 1.72 mm-1

  • T = 223 K

  • 0.33 × 0.14 × 0.11 mm

2.1.2. Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.601, Tmax = 0.834

  • 8553 measured reflections

  • 6430 independent reflections

  • 5533 reflections with I > 2[sigma](I)

  • Rint = 0.023

2.1.3. Refinement
  • R[F2 > 2[sigma](F2)] = 0.026

  • wR(F2) = 0.080

  • S = 1.24

  • 6430 reflections

  • 479 parameters

  • 3 restraints

  • H-atom parameters constrained

  • [Delta][rho]max = 0.83 e Å-3

  • [Delta][rho]min = -0.61 e Å-3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2531 Fridel pairs

  • Flack parameter: 0.402 (14)

Table 1
Selected geometric parameters (Å, °)

Co1-O4 2.040 (4)
Co1-O3W 2.070 (4)
Co1-O4W 2.169 (4)
Co1-O5W 2.108 (4)
Co1-N3 2.166 (4)
Co1-N4 2.177 (4)
Co2-O8 2.159 (3)
Co2-O12 2.182 (3)
Co2-O1W 2.102 (4)
Co2-O2W 2.147 (4)
Co2-N1 2.103 (4)
Co2-N2 2.091 (4)
Co3-O6W 2.120 (4)
Co3-O7W 2.056 (4)
Co3-O8W 2.082 (4)
Co3-O9W 2.054 (4)
Co3-O10W 2.152 (4)
Co3-O11W 2.114 (4)
O3W-Co1-N3 90.67 (16)
O4W-Co1-N3 85.64 (15)
O5W-Co1-N3 90.09 (15)
N3-Co1-N4 178.8 (2)
N3-Co1-O4 93.02 (16)
O1W-Co2-N1 93.63 (17)
O1W-Co2-N2 87.17 (16)
O2W-Co2-N2 90.68 (16)
N1-Co2-N2 178.15 (18)
O9W-Co3-O7W 87.62 (18)
O7W-Co3-O8W 85.07 (16)
O7W-Co3-O11W 89.57 (18)
O9W-Co3-O6W 93.01 (16)
O7W-Co3-O6W 179.25 (19)
O8W-Co3-O6W 94.49 (15)
O11W-Co3-O6W 89.84 (16)
O7W-Co3-O10W 97.01 (16)
O6W-Co3-O10W 83.39 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O1W-H1WA...O10 0.82 1.87 2.674 (5) 168
O1W-H1WB...O5i 0.82 2.50 3.066 (6) 127
O2W-H2WA...O5 0.82 1.85 2.631 (5) 158
O2W-H2WB...O10ii 0.82 2.08 2.783 (6) 144
O3W-H3WA...O7i 0.82 1.96 2.779 (6) 175
O3W-H3WB...O3i 0.82 1.84 2.646 (5) 169
O4W-H4WA...O11iii 0.82 2.07 2.837 (5) 156
O4W-H4WB...O1 0.82 1.88 2.661 (5) 158
O5W-H5WA...O6Wiv 0.82 2.17 2.943 (5) 158
O5W-H5WB...O1i 0.82 1.84 2.652 (5) 168
O6W-H6WA...O6 0.82 1.87 2.684 (5) 169
O6W-H6WB...O11v 0.82 1.90 2.717 (5) 171
O7W-H7WA...O7i 0.82 2.15 2.875 (6) 147
O7W-H7WB...O9vi 0.82 1.88 2.688 (5) 166
O8W-H8WA...O3 0.82 2.09 2.784 (6) 142
O8W-H8WB...O8 0.82 1.92 2.738 (5) 174
O9W-H9WA...O2 0.82 1.88 2.666 (5) 161
O9W-H9WB...O9v 0.82 1.98 2.788 (5) 168
O10W-H10W...O12vi 0.82 1.97 2.783 (5) 175
O10W-HW10...O2Wvi 0.82 2.39 2.900 (5) 122
O11W-H11W...O6i 0.82 1.98 2.786 (6) 168
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) x, y+1, z-1; (iv) x-1, y+1, z; (v) x+1, y, z-1; (vi) x, y, z-1.

The 4,4'-bipy H atoms were positioned geometrically and allowed to ride on their parent atoms, with C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of the water mol­ecules were either located in difference Fourier maps or placed in calculated positions so as to form a reasonable hydrogen-bond network, as far as possible. Initially, their positions were refined with tight restraints on the O-H and H...H distances [0.82 (1) and 1.35 (1) Å, respectively] in order to ensure a reasonable geometry. They were then constrained to ride on their parent O atoms, with Uiso(H) = 1.5Ueq(O). The Flack parameter was refined as a full least-squares parameter, with a refined value of 0.40 (2). The twinning has been applied in the refinement with 2531 Friedel pairs.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.


Supplementary data for this paper are available from the IUCr electronic archives (Reference: WQ3017 ). Services for accessing these data are described at the back of the journal.


References

Batten, S. R. & Robson, R. (1998). Chem. Commun. pp. 1067-1068.
Bo, Q.-B., Sun, Z.-X. & Forsling, W. (2008). CrystEngComm, 10, 232-238.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Chen, B.-L., Xiang, S.-C. & Qian, G.-D. (2010). Acc. Chem. Res. 43, 1115-1124.  [Web of Science] [CrossRef] [ChemPort] [PubMed]
Dietzel, P. D. C., Morita, Y., Blom, R. & Fjellvag, H. (2005). Angew. Chem. Int. Ed. 44, 1483-1492.  [CSD] [CrossRef]
Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.  [Web of Science] [CrossRef] [PubMed] [ChemPort]
Flack, H. D. (1983). Acta Cryst. A39, 876-881.  [CrossRef] [IUCr Journals]
Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.
Lah, N. & Leban, I. (2006). Inorg. Chem. Commun. 9, 42-45.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Li, Y., Lu, J. & Cao, R. (2009). Inorg. Chem. Commun. 12, 181-183.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Lian, Z.-X., Cai, J. & Chen, C.-H. (2007). Polyhedron, 26, 2647-2654.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Lu, J., Yu, C., Niu, T. Y., Paliwala, T., Crisci, G., Somosa, F. & Jacobson, A. J. (1998). Inorg. Chem. 37, 4637-4640.  [Web of Science] [CSD] [CrossRef] [PubMed] [ChemPort]
Lu, W.-J., Zhu, Y.-M. & Zhong, K.-L. (2006). Acta Cryst. C62, m448-m450.  [CSD] [CrossRef] [IUCr Journals]
Luachan, S., Pakawatchai, C. & Rujiwatra, A. (2007). J. Inorg. Organomet. Polym. Mater. 30, 561-568.  [CSD] [CrossRef]
Prior, T.-J., Yotnoi, B. & Rujiwatra, A. (2011). Polyhedron, 30, 259-268.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Yan, Y. & Huang, J.-B. (2010). Coord. Chem. Rev. 254, 1072-1080.  [CrossRef] [ChemPort]
Zhang, L.-P., Ma, J.-F., Yang, J., Pang, Y.-Y. & Ma, J.-C. (2010). Inorg. Chem. 49, 1535-1550.  [Web of Science] [CSD] [CrossRef] [ChemPort] [PubMed]
Zhong, K.-L., Chen, L. & Chen, L. (2011). Acta Cryst. C67, m62-m64.  [CSD] [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2012). C68, m265-m268   [ doi:10.1107/S0108270112034385 ]