[Journal logo]

Volume 70 
Part 2 
Pages 178-181  
February 2014  

Received 4 December 2013
Accepted 24 December 2013
Online 11 January 2014

A two-dimensional bilayered CdII coordination polymer with a three-dimensional supra­molecular architecture incorporating 1,2-bis­(pyridin-4-yl)ethene and 2,2'-(diazene­diyl)di­benzoic acid

aCollege of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, Henan, People's Republic of China
Correspondence e-mail: liuleileimail@163.com

In poly[[[mu]2-1,2-bis­(pyridin-4-yl)ethene-[kappa]2N:N'][[mu]2-2,2'-(di­az­ene­diyl)dibenzoato-[kappa]3O,O':O'']cadmium(II)], [Cd(C14H8N2O4)(C12H10N2)]n, the asymmetric unit contains one CdII cat­ion, one 2,2'-(diazene­diyl)dibenzoate anion (denoted L2-) and one 1,2-bis­(pyridin-4-yl)ethene ligand (denoted bpe). Each CdII centre is six-coordinated by four O atoms of bridging/chelating carboxyl­ate groups from three L2- ligands and by two N atoms from two bpe ligands, forming a distorted octa­hedron. The CdII cations are bridged by L2- and bpe ligands to give a two-dimensional (4,4) layer. The layers are inter­linked through bridging carboxyl­ate O atoms from L2- ligands, generating a two-dimensional bilayered structure with a 3641362 topology. The bilayered structures are further extended to form a three-dimensional supra­molecular architecture via a combination of hydrogen-bonding and aromatic stacking inter­actions.

1. Introduction

The synthesis and design of novel coordination polymers currently attract considerable attention, due to their intriguing structural diversity and their potential applications as functional materials (Kong et al., 2013[Kong, X., Deng, H., Yan, F., Kim, J., Swisher, J. A., Smit, B., Yaghi, O. M. & Reimer, J. A. (2013). Science, 341, 882-885.]; Schoedel et al., 2013[Schoedel, A., Boyette, W., Wojtas, L., Eddaoudi, M. & Zaworotko, M. J. (2013). J. Am. Chem. Soc. 135, 14016-14019.]; Tan et al., 2012[Tan, Y.-X., He, Y.-P. & Zhang, J. (2012). Chem. Mater. 24, 4711-4716.]; Liao et al., 2012[Liao, P.-Q., Zhou, D.-D., Zhu, A.-X., Jiang, L., Lin, R.-B., Zhang, J.-P. & Chen, X.-M. (2012). J. Am. Chem. Soc. 134, 17380-17383.]; Horcajada et al., 2008[Horcajada, P., Serre, C., Maurin, G., Ramsahye, N. A., Balas, F., Vallet-Regí, M., Sebban, M., Taulelle, F. & Férey, G. (2008). J. Am. Chem. Soc. 130, 6774-6780.]). Generally, the organization of such materials is dependent on many factors, such as the metal ion, the nature of the organic ligands, the pH value, solvent, temperature and counter-ion, and the number of coordination sites provided by the organic ligands (Lee et al., 2010[Lee, T. K. M., Zhu, N.-Y. & Yam, V. W. W. (2010). J. Am. Chem. Soc. 132, 17646-17648.]; Han et al., 2010[Han, Y.-F., Li, X.-Y., Li, L.-Q., Ma, C.-L., Shen, Z., Song, Y. & You, X.-Z. (2010). Inorg. Chem. 49, 10781-10787.]; Horike et al., 2009[Horike, S., Shimomura, S. & Kitagawa, S. (2009). Nat. Chem. 1, 695-704.]; Liu et al., 2012[Liu, Y.-Y., Li, H.-J., Han, Y., Lv, X.-F., Hou, H.-W. & Fan, Y.-T. (2012). Cryst. Growth Des. 12, 3505-3513.]). The most important of these factors is the choice of ligand. Ligands containing different functional groups, including pyridine, triazole and carb­oxy­lic acid, are frequently chosen to regulate the structural assembly, thus affording various coordination systems from discrete to infinite one-, two- and three-dimensional polymeric frameworks.

To date, flexible azo­benzene-di­carb­oxy­lic acid ligands have been employed as bridging ligands for the construction of functional metal-organic frameworks (MOFs) (Cairns et al., 2008[Cairns, A. J., Perman, J. A., Wojtas, L., Kravtsov, V. C., Alkordi, M. H., Eddaoudi, M. & Zaworotko, M. J. (2008). J. Am. Chem. Soc. 130, 1560-1561.]; Lee et al., 2008[Lee, Y. G., Moon, H. R., Cheon, Y. E. & Suh, M. P. (2008). Angew. Chem. Int. Ed. 47, 7741-7745.]; Bhattacharya et al., 2011[Bhattacharya, S., Sanyal, U. & Natarajan, S. (2011). Cryst. Growth Des. 11, 735-747.]; Yang et al., 2011[Yang, J., Ma, J.-F., Batten, S. R., Ng, S. W. & Liu, Y.-Y. (2011). CrystEngComm, 13, 5296-5298.]; Liu et al., 2011[Liu, L.-L., Ren, Z.-G., Zhu, L.-W., Wang, H.-F., Yan, W.-Y. & Lang, J.-P. (2011). Cryst. Growth Des. 11, 3479-3488.]; Liu & Zhao, 2013[Liu, L.-L. & Zhao, F. (2013). Acta Cryst. C69, 29-32.]). For example, Yaghi and co-workers reacted 4,4'-(diazene­diyl)di­benzoic acid (H2L1) with Tb(NO3)3·5H2O and obtained an inter­pene­trating network of {Tb2(L1)3[(CH3)2SO]4·16[(CH3)2SO]}n with a large free volume (Reineke et al., 2000[Reineke, T. M., Eddaoudi, M., Moler, D., O'Keeffe, M. & Yaghi, O. M. (2000). J. Am. Chem. Soc. 122, 4843-4844.]). Recently, our group has synthesized a series of two- and three-dimensional CdII coordination polymers based on 3,3'-(diazene­diyl)di­benzoic acid by regulating the reaction solvent and temperature (Liu et al., 2013[Liu, L.-L., Liu, L. & Wang, J.-J. (2013). Inorg. Chim. Acta, 397, 75-82.]). However, to the best of our knowledge, studies of the coordination chemistry of 2,2'-(diazene­diyl)di­benzoic acid (H2L) have attracted little attention. Furthermore, it is known that a mixed-ligand system consisting of two types ligand provides more variability in the construction of different topologies (Du et al., 2013[Du, M., Li, C.-P., Liu, C.-S. & Fang, S.-M. (2013). Coord. Chem. Rev. 257, 1282-1305.]). One of the most fruitful choices has been the combination of various carb­oxy­lic acids and neutral pyridine-containing auxiliary ligands, where the carb­oxy­lic acid ligands balance the positive charge of the metal centre and develop secondary building units, while the auxiliary ligands increase the dimensionality or supply additional structural versatility. Taking this into account, we reacted Cd(OAc)2·2H2O with H2L and 1,2-bis­(pyridin-4-yl)ethene (bpe) and produced the title compound, [CdL(bpe)]n, (I)[link].

[Scheme 1]
[Figure 1]
Figure 1
The coordination environment of the Cd atom in (I)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The dashed line represents the weak inter­action between atoms Cd1 and O4ii. [Symmetry codes: (i) x, y, z - 1; (ii) x + 1, y, z; (iii) -x + 1, -y + 1, -z + 1.]
[Figure 2]
Figure 2
A view of the one-dimensional coordination chain of (I)[link], linked via bridging L2- ligands.
[Figure 3]
Figure 3
A view of the two-dimensional (4,4) layer of (I)[link], extending along the ac plane. All H atoms have been omitted for clarity.
[Figure 4]
Figure 4
A view of the two-dimensional bilayered structure of (I)[link], extending along the ac plane. All H atoms have been omitted for clarity.
[Figure 5]
Figure 5
A view of the topological structure of (I)[link]. Turquoise balls represent 7-connected nodes and purple lines represent L2- and bpe linkers.
[Figure 6]
Figure 6
A view of the three-dimensional supra­molecular structure of (I)[link], formed via hydrogen-bonding and aromatic stacking inter­actions. Adjacent layers are shown in different colours. Red dashed lines represent hydrogen bonds and blue dashed lines indicate aromatic stacking inter­actions. All H atoms except those related to hydrogen-bonding inter­actions have been omitted for clarity.

2. Experimental

2.1. Synthesis and crystallization

H2L was prepared according to the literature method of Reid & Pritchett (1953[Reid, E. B. & Pritchett, E. G. (1953). J. Org. Chem. 18, 715-719.]). All other chemicals and reagents were obtained from commercial sources (Alfa Aesar) and used as received. A mixture of Cd(OAc)2·2H2O (13 mg, 0.05 mmol), H2L (7 mg, 0.025 mmol), bpe (5 mg, 0.025 mmol), 0.010 M NaOH (0.3 ml) and H2O (4 ml) was sealed in a 10 ml Pyrex glass tube, heated at 393 K for 4 d and then cooled to room temperature at a rate of 5 K h-1. Pink blocks of (I)[link] were collected and washed thoroughly with H2O and dried in air (yield 7 mg, 50%, based on H2L). IR (KBr disc, [nu], cm-1): 3386 (m), 3300 (m), 3059 (w), 2932 (w), 1607 (s), 1592 (s), 1381 (s), 1254 (w), 1135 (w), 1098 (m), 1014 (w), 965 (m), 826 (m), 778 (m), 770 (m), 661 (m), 586 (m), 479 (w), 416 (w).

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All H atoms were placed in geometrically idealized positions, with C-H = 0.93 Å for phenyl and pyridine H atoms, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

3. Results and discussion

The title polymer, (I)[link], crystallizes in the monoclinic space group P21/n and its asymmetric unit contains one [CdL(bpe)] unit. As shown in Fig. 1[link], each CdII cation is in a six-coordinate environment formed by four carboxyl­ate O atoms from three L2- ligands and two N atoms from two bpe ligands to form a distorted octa­hedron. There is one additional weak inter­action [2.731 (2) Å] between atoms Cd1 and O4ii (see Fig. 1[link] for symmetry code); see Table 2[link] for further bond lengths and angles.

In the structure of (I)[link], each L2- ligand serves as a bridging ligand, linking adjacent CdII centres to generate a one-dimensional [CdL]n chain extending along the a axis (Fig. 2[link]), with a Cd...Cd separation of 11.417 (2) Å. Each chain is connected to adjacent chains via bpe ligands to form a two-dimensional (4,4) layer (extending along the ac plane), with parallelogram-shaped meshes [11.417 (2) × 13.953 (3) Å between Cd atoms at the corners] (Fig. 3[link]). The two-dimensional layers are further inter­linked via bridging carboxyl­ate O atoms from L2- ligands, resulting in a two-dimensional bilayered structure lying parallel to the ac plane (Fig. 4[link]). Topologically (Wells, 1997[Wells, A. F. (1997). In Three-dimensional Nets and Polyhedra. New York: Wiley Interscience.]), if the CdII centres are considered as nodes and the L2- and bpe ligands are considered as linkers, the bilayer structure of (I)[link] can be specified by a Schläfli symbol of 3641362 (Fig. 5[link]).

Atom O4 of the carboxyl­ate group acts as an acceptor and inter­acts with the H atom of benzene atom C11 in an adjacent network, forming an inter­molecular hydrogen bond (C11-H11...O4iv; see Table 3[link] for symmetry code). These hydrogen-bonding inter­actions join the two-dimensional bilayer structures in the bc plane to generate a three-dimensional hydrogen-bonded motif (Fig. 6[link]). The structure is also stabilized by [pi]-[pi] stacking inter­actions between the pyridine (atoms N3/C15-C19) and benzene (atoms C2-C7) rings, with a centroid-to-centroid distance of 3.7021 (16) Å. The dihedral angle defined by the planes of the stacked rings is 17.11 (12)° and the slippage angles are 27.08 and 10.66° (Guo et al., 2013) (Fig. 6[link]).

As reported previously (Chen et al., 2007[Chen, B.-L., Ma, S.-Q., Hurtado, E. J., Lobkovsky, E. B. & Zhou, H.-C. (2007). Inorg. Chem. 46, 8490-8492.]), a ZnII coordination polymer assembled from 4,4'-(diazene­diyl)di­benzoic acid (H2L1) and bpe has been investigated, viz. {[Zn(L1)(bpe)0.5]·2.5DMF·0.5H2O}n, (II), and shows a three-dimensional coordination framework. In (I)[link], the L2- ligands adopt both bridging and chelating coordination modes and link the CdII centres in the [100] direction, producing a one-dimensional chain. These chains are further bridged by bpe ligands, resulting in a two-dimensional layer. In (II), the Zn2 units are bridged by L12- ligands (bridging coordination mode) in two directions to form a two-dimensional (4,4) network which are further pillared by bpe to form a three-dimensional triply inter­penetrated structure. Such differences indicate that ligand geometry and the choice of metal greatly affect the resulting motifs of coordination polymers.

In summary, the reaction of Cd(OAc)2·2H2O with 2,2'-(diazene­diyl)di­benzoic acid and 1,2-bis­(pyridin-4-yl)ethene in H2O affords the title complex under hydro­thermal conditions. The compound displays a rare two-dimensional bilayered structure with a 3641362 topology. The three-dimensional supra­molecular architecture is produced via hydrogen-bonding and aromatic stacking inter­actions.

Table 1
Experimental details

Crystal data
Chemical formula [Cd(C14H8N2O4)(C12H10N2)]
Mr 562.84
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 11.417 (2), 15.127 (3), 13.953 (3)
[beta] (°) 113.56 (3)
V3) 2208.8 (9)
Z 4
Radiation type Mo K[alpha]
[mu] (mm-1) 1.03
Crystal size (mm) 0.20 × 0.15 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD area-detector diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.830, 0.857
No. of measured, independent and observed [I > 2[sigma](I)] reflections 29346, 5546, 4476
Rint 0.032
(sin [theta]/[lambda])max-1) 0.669
 
Refinement
R[F2 > 2[sigma](F2)], wR(F2), S 0.027, 0.065, 1.03
No. of reflections 5531
No. of parameters 316
H-atom treatment H-atom parameters constrained
[Delta][rho]max, [Delta][rho]min (e Å-3) 0.39, -0.54
Computer programs: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2003[Bruker (2003). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Table 2
Selected geometric parameters (Å, °)

Cd1-N3 2.2966 (17) Cd1-O1 2.3848 (18)
Cd1-N4i 2.3130 (17) Cd1-O3iii 2.4158 (18)
Cd1-O3ii 2.3621 (17) Cd1-O2 2.4469 (18)
       
N3-Cd1-N4i 173.96 (7) O3ii-Cd1-O3iii 73.14 (6)
N3-Cd1-O3ii 95.83 (7) O1-Cd1-O3iii 95.56 (6)
N4i-Cd1-O3ii 87.54 (7) N3-Cd1-O2 95.26 (7)
N3-Cd1-O1 88.27 (7) N4i-Cd1-O2 85.68 (7)
N4i-Cd1-O1 87.44 (7) O3ii-Cd1-O2 136.17 (6)
O3ii-Cd1-O1 167.82 (6) O1-Cd1-O2 54.36 (6)
N3-Cd1-O3iii 88.54 (6) O3iii-Cd1-O2 149.40 (6)
N4i-Cd1-O3iii 87.65 (6)    
Symmetry codes: (i) x, y, z-1; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+1.

Table 3
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
C11-H11...O4iv 0.93 2.51 3.355 (3) 151
Symmetry code: (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Supporting information for this paper is available from the IUCr electronic archives (Reference: FN3160 ).


Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. U1304210) and by the Natural Science Projects of the Department of Education of Henan Province (grant No. 13 A150013).

References

Bhattacharya, S., Sanyal, U. & Natarajan, S. (2011). Cryst. Growth Des. 11, 735-747.  [CSD] [CrossRef] [ChemPort]
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2003). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Cairns, A. J., Perman, J. A., Wojtas, L., Kravtsov, V. C., Alkordi, M. H., Eddaoudi, M. & Zaworotko, M. J. (2008). J. Am. Chem. Soc. 130, 1560-1561.  [Web of Science] [CSD] [CrossRef] [PubMed] [ChemPort]
Chen, B.-L., Ma, S.-Q., Hurtado, E. J., Lobkovsky, E. B. & Zhou, H.-C. (2007). Inorg. Chem. 46, 8490-8492.  [Web of Science] [CSD] [CrossRef] [PubMed] [ChemPort]
Du, M., Li, C.-P., Liu, C.-S. & Fang, S.-M. (2013). Coord. Chem. Rev. 257, 1282-1305.  [Web of Science] [CrossRef] [ChemPort]
Han, Y.-F., Li, X.-Y., Li, L.-Q., Ma, C.-L., Shen, Z., Song, Y. & You, X.-Z. (2010). Inorg. Chem. 49, 10781-10787.  [Web of Science] [CSD] [CrossRef] [ChemPort] [PubMed]
Horcajada, P., Serre, C., Maurin, G., Ramsahye, N. A., Balas, F., Vallet-Regí, M., Sebban, M., Taulelle, F. & Férey, G. (2008). J. Am. Chem. Soc. 130, 6774-6780.  [Web of Science] [CSD] [CrossRef] [PubMed] [ChemPort]
Horike, S., Shimomura, S. & Kitagawa, S. (2009). Nat. Chem. 1, 695-704.  [CrossRef] [ChemPort] [PubMed]
Kong, X., Deng, H., Yan, F., Kim, J., Swisher, J. A., Smit, B., Yaghi, O. M. & Reimer, J. A. (2013). Science, 341, 882-885.  [Web of Science] [CrossRef] [ChemPort] [PubMed]
Lee, Y. G., Moon, H. R., Cheon, Y. E. & Suh, M. P. (2008). Angew. Chem. Int. Ed. 47, 7741-7745.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Lee, T. K. M., Zhu, N.-Y. & Yam, V. W. W. (2010). J. Am. Chem. Soc. 132, 17646-17648.  [Web of Science] [CSD] [CrossRef] [ChemPort] [PubMed]
Liao, P.-Q., Zhou, D.-D., Zhu, A.-X., Jiang, L., Lin, R.-B., Zhang, J.-P. & Chen, X.-M. (2012). J. Am. Chem. Soc. 134, 17380-17383.  [Web of Science] [CSD] [CrossRef] [ChemPort] [PubMed]
Liu, Y.-Y., Li, H.-J., Han, Y., Lv, X.-F., Hou, H.-W. & Fan, Y.-T. (2012). Cryst. Growth Des. 12, 3505-3513.  [CSD] [CrossRef] [ChemPort]
Liu, L.-L., Liu, L. & Wang, J.-J. (2013). Inorg. Chim. Acta, 397, 75-82.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Liu, L.-L., Ren, Z.-G., Zhu, L.-W., Wang, H.-F., Yan, W.-Y. & Lang, J.-P. (2011). Cryst. Growth Des. 11, 3479-3488.  [CSD] [CrossRef]
Liu, L.-L. & Zhao, F. (2013). Acta Cryst. C69, 29-32.  [CSD] [CrossRef] [ChemPort] [IUCr Journals]
Reid, E. B. & Pritchett, E. G. (1953). J. Org. Chem. 18, 715-719.  [CrossRef] [ChemPort]
Reineke, T. M., Eddaoudi, M., Moler, D., O'Keeffe, M. & Yaghi, O. M. (2000). J. Am. Chem. Soc. 122, 4843-4844.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Schoedel, A., Boyette, W., Wojtas, L., Eddaoudi, M. & Zaworotko, M. J. (2013). J. Am. Chem. Soc. 135, 14016-14019.  [CSD] [CrossRef] [ChemPort] [PubMed]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Tan, Y.-X., He, Y.-P. & Zhang, J. (2012). Chem. Mater. 24, 4711-4716.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Wells, A. F. (1997). In Three-dimensional Nets and Polyhedra. New York: Wiley Interscience.
Yang, J., Ma, J.-F., Batten, S. R., Ng, S. W. & Liu, Y.-Y. (2011). CrystEngComm, 13, 5296-5298.  [Web of Science] [CSD] [CrossRef] [ChemPort]


Acta Cryst (2014). C70, 178-181   [ doi:10.1107/S2053229613034591 ]