

Received 10 August 2023 Accepted 26 October 2023

Edited by R. Diniz, Universidade Federal de Minas Gerais, Brazil

Keywords: tripyridylamine; crystal structure; ruthenium; solvent encapsulation; methylene chloride tetramer; polypyridyl.

CCDC references: 2266277; 2266278

Supporting information: this article has supporting information at journals.iucr.org/c

Acta Cryst. (2023). C79, 491-496

Studies of κ^2 - and κ^3 -tripyridylamine complexes of ruthenium and π -stacking by pyridyls

Jack Faller,* Kevin J. Chase, Jonathan Parr and Brandon Mercado

Department of Chemistry, Yale University, PO Box 208107, New Haven, Connecticut 06520-8107, USA. *Correspondence e-mail: jack.faller@yale.edu

The reaction of tris(pyridin-2-yl)amine with $[CyRuCl_2]_2$ (Cy = p-isopropyltoluene or cymene) in refluxing diglyme led to the formation of cis-[RuCl₂{ κ^2 -(2py)₃N₂·CHCl₃ (1a) after recrystallization from chloroform/pentane, or *cis*-dichloridobis[tris(pyridin-2-yl)amine- $\kappa^2 N N$]ruthenium(II) dichloromethane disolvate, $[RuCl_2(C_{15}H_{12}N_4)_2] \cdot 2CH_2Cl_2$ or $cis - [RuCl_2[\kappa^2 - (2-py)_3N]_2] \cdot 2CH_2Cl_2$ (1b). Treatment of 1a with one equivalent of silver(I) hexafluoridoantimonate in dichloromethane gave $[\operatorname{RuCl}{\kappa^2-(2-py)_3N}]{\kappa^3-(2-py)_3N}][\operatorname{SbF}_6]\cdot\operatorname{CH}_2\operatorname{Cl}_2$ (2a). Crystallization of 2a from chloroform provided chlorido[tris(pyridin-2-yl)amine- $\kappa^2 N, N'$ [tris(pyridin-2-yl)amine- $\kappa^3 N, N', N''$]ruthenium(II) hexafluoridoantimonate chloroform monosolvate, $[RuCl(C_{15}H_{12}N_4)_2]$ [SbF₆]·CHCl₃ or [RuCl- ${\kappa^2-(2-py)_3N}{\kappa^3-(2-py)_3N}$ [SbF₆]·CHCl₃ (**2b**). Complex **2a** reacted with a further equivalent of silver(I) hexafluoridoantimonate to give $[Ru{\kappa^3-(2-py)_3N}_2][SbF_6]_2$ (3). The reaction of $(2-py)_3N$ with $[CyRuCl_2]_2$ in dichloromethane followed by treatment with excess sodium hexafluoridoantimonate gave the known complex $[CyRuCl{\kappa^2-(2-py)_3N}][SbF_6]$ (4). Complex 2 is a rare example of a complex containing both κ^2 - and κ^3 -(2-py)₃N. Intramolecular π -stacking interactions determine the orientation of the free pyridyl in the κ^2 complexes. An interesting encapsulation of methylene chloride hydrogen-bonded tetramers was noted in one case.

1. Introduction

Considerable attention has been directed toward the polypyridyl complexes of ruthenium, especially with respect to their unusual photochemical and electrochemical properties (Rutherford et al., 1994; Reitsma & Keene, 1993; Bessel et al., 1993; Sahni et al., 1993; Strouse et al., 1992; Bignozzi et al., 1992; Kalyanasundaram, 1982; Anderson et al., 1994; Collin et al., 1989; Juris et al., 1988; Balzani et al., 2006; Colasson et al., 2016). Included in these studies are complexes containing the fac-tridentate ligands tris(pyridin-2-yl)X [X = N (amine), P (phosphane), CH (methane) or COH (methanol)], which have the ability to bind metals in either a κ^2 or a κ^3 fashion (Keene et al., 1988a,b,c, 1991; Moritz et al., 1988). In contrast to tris-(pyridin-2-yl)methane that has produced predominantly κ^3 complexes, the presence of the central N atom in tris(pyridin-2-yl)amine, or $(2-py)_3N$, leads to a propensity to produce κ^2 complexes (Mosny et al., 1995; Tang et al., 2015), even though there are reports that it can form tridentate complexes (Szelke et al., 2009; Keene et al., 1988a). Although one might anticipate a relatively strong donor character from the binding of nitrogen, such ligands are also known to stabilize metals in low oxidation states, including cobalt(I) (Reitsma & Keene, 1994; Hafeli & Keene, 1988). Recently, ligands of this type have been used in the preparation of spin-crossover Fe^{II} materials (Cuza et al., 2021). Nevertheless, prior to this work, there

Table 1

Experimental details.

Experiments were carried out at 93 K with Mo $K\alpha$ radiation. Absorption was corrected for by multi-scan methods (*CrysAlis PRO*; Rigaku OD, 2019). H-atom parameters were constrained.

	1b	2b
Crystal data		
Chemical formula	$[RuCl_2(C_{15}H_{12}N_4)_2] \cdot 2CH_2Cl_2$	[RuCl(C ₁₅ H ₁₂ N ₄) ₂][SbF ₆]·CHCl ₃
$M_{ m r}$	838.39	988.21
Crystal system, space group	Triclinic, $P\overline{1}$	Monoclinic, $P2_1/n$
a, b, c (Å)	11.2435 (7), 11.4038 (7), 13.6340 (7)	8.3209 (3), 27.3213 (10), 15.7839 (6)
α, β, γ (°)	74.278 (5), 75.995 (5), 84.642 (5)	90, 99.554 (4), 90
$V(\text{\AA}^3)$	1631.99 (17)	3538.5 (2)
Z	2	4
$\mu \text{ (mm}^{-1})$	1.01	1.56
Crystal size (mm)	$0.37 \times 0.29 \times 0.2$	$0.2 \times 0.04 \times 0.01$
Data collection		
Diffractometer	Rigaku Mercury275R CCD	Dectris Pilatus 3R
T_{\min}, T_{\max}	0.926, 1.000	0.783, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	34353, 9877, 6726	32718, 8658, 6339
R _{int}	0.093	0.067
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.714	0.667
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.061, 0.108, 1.03	0.048, 0.081, 1.08
No. of reflections	9877	8658
No. of parameters	424	460
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.97, -0.76	0.98, -1.31

Computer programs: CrysAlis PRO (Rigaku OD, 2019), SHELXT2014 (Sheldrick, 2015a), olex2.solve (Bourhis et al., 2015), SHELXL2018 (Sheldrick, 2015b), and OLEX2 (Dolomanov et al., 2009).

hasn't been an example of a complex containing both a κ^2 and a κ^3 ligand in the same complex.

In the κ^3 -binding mode, these ligands are six-electron-donor analogues of ligands such as η^6 -benzene derivatives, tripyrazolylborate, and η^5 -cyclopentadienide. Our interest in the complexes of these ligands is based upon their electrondonating abilities as $fac - \kappa^3$ ligands which stabilize complexes with positive charges, such as [W{tris(pyridin-2-yl)methane}- $(CO)(NO)_2$ ²⁺ (Faller & Ma, 1991). This complex has proven to be an effective Lewis acid catalyst in the addition of silvl enol ethers to ketones (Faller & Gundersen, 1993), as there is facile loss of the CO ligand from the 18-electron tungsten complex. The complex $[CpRu(P)_2(C_2H_4)]^+$, where $(P)_2$ is $(PPh_3)_2$ or chiraphos [(2S,3S)-2,3-bis(diphenylphophanyl)butane], was also found to be an effective Lewis acid catalyst, in this case for a hetero Diels-Alder reaction, where the active species is formed by the loss of ethylene to give a 16-electron complex (Faller & Smart, 1989). We wished to extend the $(pyridin-2-yl)_3X$ chemistry to ruthenium, with the express purpose of preparing complexes which might act as Lewis acid catalysts. (2-py)₃N was chosen over the other *fac*-tridentate ligands owing to its ease of preparation using a high-yield variation of a published one-step synthesis from commercially available starting materials (Mosny et al., 1995). We have developed an improved synthesis of ruthenium complexes of (2-py)₃N based on [CyRuCl₂]₂. The relative ease of forming these κ^2 -(2-py)₃N complexes by reaction with [CyRuCl₂]₂ suggested that other polypyridyl complexes might be accessible via this route and an efficient synthesis of cis-di $\label{eq:chloridobis} (2,2'\mbox{-bipyridyl})\mbox{ruthenium(II) (1) was achieved by the direct reaction of <math display="inline">[CyRuCl_2]_2$ with 2,2'-bipyridyl.

2. Experimental

2.1. Synthesis and crystallization

(2-py)₃N was synthesized *via* a procedure similar to that of Mosny & Crabtree (1996). *cis*-[RuCl₂{ κ^2 -(2-py)₃N}₂] (1) was prepared by refluxing [CyRuCl₂]₂ with (2-py)₃N in diglyme and *cis*-[RuCl₂{ κ^2 -(2-py)₃N}₂]·CHCl₃ (1a) was formed by recrystallization of 1 from chloroform/pentane. Crystallization of 1 from methylene chloride provided [RuCl₂{ κ^2 -py₃N}₂]·-2CH₂Cl₂ (1b). Treatment of 1a with AgSbF₆ gave [RuCl{ κ^2 -(2-py)₃N}][SbF₆] (2) as the methylene chloride solvate, 2a.

Crystallization of **2a** from chloroform provided $[RuCl{\kappa^2-py_3N}{\kappa^3-py_3N}][SbF_6] \cdot CHCl_3$, **2b**. Treatment of **2** with AgSbF_6 gave $[Ru{\kappa^3-(2-py)_3N}_2][SbF_6]_2$ (**3**). Full details of the syntheses are available in the supporting information and the structures of **1b** and **2b** are shown in Scheme 1.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1 and selected metrical parameters are given in Table 2. The full atom-numbering schemes for **1b** and **2b** are shown in Figs. 1 and 2, respectively. H atoms were included in the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all H atoms were fixed at 1.2 times the U_{eq} value of the atoms to which they were linked.

3. Results and discussion

The widely-used ruthenium(II) compound $[CyRuCl_2]_2$ (Cy = *p*-isopropyltoluene or cymene) is well known to lose cymene when heated with excess hexamethylbenzene to give $[(\eta^6-C_6Me_6)RuCl_2]_2$ in high yield. A similar result was expected in the reaction of $[CyRuCl_2]_2$ with excess $(2-py)_3N$. However, the

reaction of $[CyRuCl_2]_2$ with $(2-py)_3N$ in refluxing ethylene glycol dimethyl ether (diglyme) followed by recrystallization from chloroform resulted in the isolation of air-stable red cis- $[\operatorname{RuCl}_2{\kappa^2-(2-py)_3N}_2]$ ·CHCl₃, **1a**, in 92% yield. Recrystallization from methylene chloride gave cis-[RuCl₂{ κ^2 -(2-py)₃N]₂]·- $2CH_2Cl_2$, **1b**. Compound **1b** was characterized by ¹H NMR spectroscopy, elemental analysis, and X-ray structure determination. For **1b**, the ¹H NMR spectrum shows 12 chemical shifts for the py₃N protons consistent with two equivalent κ^2 -py₃N ligands. Likewise, the ¹³C NMR spectrum suggests two equivalent κ^2 -py₃N ligands having 15 pyridine resonances. The X-ray structure definitively shows a $\kappa^2 - \kappa^2$ arrangement of the two (2-py)₃N ligands, with *cis* chloride ligands; however, the unbound pyridines are oriented differently in the two ligands. Assuming that there is a relatively low barrier to rotation about the C–N bonds of the unbound pyridyl group, the conformers would interconvert rapidly on the NMR time scale resulting in equivalence of the two py₃N ligands in the

The complete atom-numbering scheme, with displacement ellipsoids drawn at the 50% probability level, for complex **1b**. H atoms are not shown.

NMR spectrum. The complex is chiral and crystallizes as a racemic mixture of enantiomers in a centric space group. The effective planarity about the central N atom in the py_3N ligands is notable, with N4 being 0.004 Å out of the C5/C10/C15 plane and N8 being 0.005 Å out of the C20/C25/C30 plane.

Figure 2

The complete atom-numbering scheme, with displacement ellipsoids drawn at the 50% probability level, for complex **2b**. H atoms are not shown.

Table 2

Selected bond lengths and angles (Å, $^{\circ}$) for **1b** and **2b**.

	1b	2b
Ru1-Cl1	2.4157 (9)	2.4269 (9)
Ru1-Cl2	2.4051 (9)	~ /
Ru1-N1	2.050 (3)	2.057 (3)
Ru1-N2	2.027 (3)	2.065 (3)
Ru1-N3		2.046 (3)
Ru1-N5	2.033 (3)	2.090 (3)
Ru1-N6	2.049 (3)	2.077 (3)
Cl1-Ru1-Cl2	91.45 (3)	
Cl1-Ru1-N1	88.02 (8)	90.16 (9)
Cl1-Ru1-N2	89.57 (9)	88.41 (9)
Cl1-Ru1-N3		173.96 (10)
Cl1-Ru1-N5	91.76 (9)	90.79 (8)
Cl1-Ru1-N6	178.31 (9)	94.47 (8)
N1-Ru1-N2	86.39 (12)	86.14 (12)
N1-Ru1-N3		85.98 (12)
N1-Ru1-N5	93.48 (14)	178.97 (12)
N1-Ru1-N6	177.86 (12)	93.53 (13)
N2-Ru1-N3		86.69 (12)
N2-Ru1-N5	89.74 (12)	94.29 (12)
N2-Ru1-N6	95.74.(11)	177.10 (12)
N3-Ru1-N5		93.11 (12)
N3-Ru1-N6		90.41 (12)
N5-Ru1-N6	86.78 (12)	85.99 (13)
C5-N4-C10	119.8 (3)	111.8 (3)
C5-N4-C15	118.7 (3)	111.2 (3)
C10-N4-C15	121.6 (3)	113.0 (3)
C20-N8-C25	120.7 (3)	117.7 (3)
C20-N8-C30	117.5 (3)	122.1 (3)
C25-N8-C30	121.8 (3)	120.3 (3)

The orientation of the unbound pyridine is controlled by π -stacking, although there are two possible orientations for effective stacking. The distance of the centroid of the free N7-ring to the mean plane of the N2-ring bound to the Ru atom is 3.387 Å. The rings are offset, *i.e.* they are not directly over one another, the N7-ring centroid being almost aligned with atom C12, and the N atom is almost aligned with the centroid of the N2-ring, as shown in Fig. 3. This implies an angle of 21° between the ring normal and the centroid-to-centroid vector,

Figure 3 π -stacking of the N2- and N7-containing rings in **1b**.

Figure 4

The offset π -stacking between rings in **1b**. Portions of the other pyridine rings have been removed so that the view of the interaction is not obscured.

and a shift of one ring with respect to the other of 1.27 Å, as shown in Fig. 4. Offset stacking is the most common mode of π -stacking found for nitrogen-containing aromatics and centroid–centroid separations of less than 3.6 Å are considered fairly strong interactions, although the strongest known have centroid–centroid separations of ~3.4 Å (Janiak, 2000). A ~20° angle between the ring normal and the the centroid-tocentroid vector is also rather typical (Janiak, 2000).

The pyridine ring containing atom N3 is nearly parallel to the Ru-bound N5 pyridine ring with distances of approach between 3.13 and 3.56 Å to the plane of the N5 pyridine ring and a centroid-to-centroid distance of 3.568 Å. The distance from the N3-ring centroid to the mean N5-ring plane is 3.347 Å.

Again, the rings are offset, however, atom N3 is not directly over the N5-ring and atom C9 is directly over the centroid of the N5-ring, as shown in Fig. 5.

Furthermore, there are weak intermolecular π -stacking interactions between the pyridyl rings that are *trans* to each

 π -stacking of the N3- and N5-containing rings in **1b**.

Figure 6 Intermolecular π -stacking in **1b** (distances in Å).

other (Fig. 6). The N1 pyridyl rings in one molecule interact with adjacent N1 pyridyl rings (centroid-to-centroid distance = 3.496 Å) and the N6 pyridyl rings interact with adjacent N6 pyridyl rings (centroid-to-centroid distance = 3.902 Å) with slipped overlap to form a chain owing to the interaction between *trans*-pyridine rings.

Examination of the structure reveals that the unbound pyridine rings in the complex appear to be close enough to each other to allow **1b** to act as a chiral bidentate ligand by coordination to another metal atom through the unbound N-atom donors. There is considerable interest in bimetallic and multimetallic polypyridyl complexes, and **1b** could be an effective reagent in the formation of such complexes.

Another interesting feature of this structure is that the complexes are arranged in a manner that forms a cavity which contains two hydrogen-bonded dimers of methylene chloride molecules, with a C31-H···Cl6 hydrogen bond of 2.89 Å, which is in the range observed for other $C-H\cdots Cl$ hydrogen bonds (Thallapally & Nangia, 2001; Freytag & Jones, 2000; Neve et al., 2002). Furthermore, the dimers are close to their symmetry-related equivalents and there is even a shorter C31-H···Cl3' hydrogen bond and its counterpart, which leads to the formation of a tetramer; this is shown in Fig. 7. Since the distance measured in the X-ray data overestimates the separation as the actual C-H bond distance is longer than the value of 0.99 Å used in the riding model, these are relatively strong bonds. Normally one would expect any hydrogen bonding involving methylene chloride to occur with one of the free pyridine N atoms; however, in this case, pyridines are involved in π -stacking and this produces orientations in which the lone pairs are not sterically accessible.

When **1a** was treated with slightly more than one equivalent of silver(I) hexafluoridoantimonate in methylene chloride, it yielded an air-stable yellow $\kappa^3 - \kappa^2$ complex [RuCl{ κ^2 -py₃N}{ κ^3 -py₃N}][SbF₆]·CH₂Cl₂, **2a**, in 73% yield. Complex **2a** was characterized by ¹H NMR spectroscopy and elemental analysis. Crystallization from chloroform yielded [RuCl{ κ^2 -(2-py)₃N}{ κ^3 -(2-py)₃N}][SbF₆]·CHCl₃, **2b**, and the structure is shown in Fig. 2. This complex represents, to our knowledge, the first example of a κ^2, κ^3 -(2-py)₃N complex.

Table 2 shows that in **2b** the average C-N4-C angle is 112° and the central N atom is pyramidal (0.42 Å out of the

C5/C10/C15 plane), whereas the average C-N8-C angle is 120.0° and the central N atom is essentially in the plane (0.006 Å out of the C20/C25/C30 plane). This demonstrates the proclivity of the central N atom in $(2-py)_3N$ to be sp^2 hybridized and provide some added stability to a κ^2 -(2-py)₃N mode of binding. In the κ^3 mode of $(2-py)_3N$, the N-Ru-N angles are all compressed to less than 90°, having values of 86.14 (12), 85.98 (12), and 86.69 (12)° for N1-Ru-N2, N1-Ru-N3, and N2-Ru-N3, respectively. The bidentate portion of the κ^2 -mode of $(2-py)_3N$ shows an even smaller angle of 85.99 (13)° for N5-Ru-N6. Hydrogen bonding of the solvent is also observed in this complex, wherein the solvent, i.e. CHCl₃, is hydrogen bonded to the chloride ligand attached to the Ru atom $(C-H \cdot \cdot \cdot Cl - Ru = 2.72 \text{ Å})$. This is substantially closer than the nearest approach of the pyridine C6-H group to Cl-Ru of 2.93 Å, which is only slightly shorter than the sum of the van der Waals radii (2.95 Å).

Treatment of **2** with an excess of silver(I) hexafluoridoantimonate gives the bright-yellow air-stable complex $[Ru\{\kappa^3-py_3N\}_2][SbF_6]_2$, **3**, in 68% yield. This cation has been prepared previously by Keene and co-workers from $[Ru(DMF)_6]^{2+}$ (DMF is dimethylformamide) and excess (2-py)₃N, and isolated as the hexafluoridophosphate (Keene *et al.*, 1988*a*). The reaction of $[CyRuCl_2]_2$ with (2-py)₃N in methylene chloride followed by treatment with excess sodium hexafluoridoantimonate in acetone gives $[CyRuCl\{\kappa^2-(2-py)_3N\}][SbF_6]$, **4**, in 95% yield. This complex was prepared previously and characterized crystallographically by Crabtree and Mosny (Mosny *et al.*, 1995) in lower yield by reaction of $[CyRuCl_2]_2$ with one

Figure 7

The methylene chloride hydrogen-bonded tetramer (H \cdots Cl distances in Å). The primed atoms are related by a center of inversion.

equivalent of silver(I) hexafluoridoantimonate in the presence of $(2-py)_3N$. They also reported the preparation of the complex [CyRu{ κ^3 -(2-py)_3N}][SbF₆]₂ by reaction of **4** with silver(I) hexafluoridoantimonate.

Capitalizing upon the relative ease of preparation of these κ^2 -(2-py)₃N complexes from readily available [CyRuCl₂]₂, a successful synthesis of [RuCl₂(2,2'-bipy)₂], **5**, was achieved by treating [CyRuCl₂]₂ with excess 2,2'-bipyridine in diglyme under reflux. This route to **5** is efficient and may in some cases be preferred over existing literature syntheses.

4. Conclusions

We have found that $[CyRuCl_2]_2$ is an effective precursor for the preparation of κ^2 -(2-py)₃N and κ^3 -(2-py)₃N complexes of ruthenium. To our knowledge, the use of $[CyRuCl_2]_2$ in the preparation of polypyridyl ruthenium complexes is unprecedented, and this may be a general route in the preparation of many other *cis*-RuCl₂L₂ complexes (*L* is a bidentate pyridine ligand). This easily prepared precursor allowed the preparation of $[RuCl{\kappa^2-(2-py)_3N}{\kappa^3-(2-py)_3N}][SbF_6]\cdotCHCl_3$, which is the first example of a complex containing both a κ^2 -(2-py)₃N} and a κ^3 -(2-py)₃N ligand. The neutral *cis*- $[RuCl_2{\kappa^2-(2-py)_3N}_2]\cdot$ CH₂Cl₂ complex exhibited multiple modes of π -stacking between the ligands both intramolecularly and intermolecularly, and also contains a hydrogen-bonded tetramer of methylene chloride.

Acknowledgements

We thank Yale University for providing funding for this research.

Funding information

Funding for this research was provided by: Yale University.

References

- Anderson, P. A., Strouse, G. F., Treadway, J. A., Keene, F. R. & Meyer, T. J. (1994). *Inorg. Chem.* 33, 3863–3864.
- Balzani, V., Bergamini, G., Marchioni, F. & Ceroni, P. (2006). *Coord. Chem. Rev.* **250**, 1254–1266.
- Bessel, C. A., See, R. F., Jameson, D. L., Churchill, M. R. & Takeuchi, K. J. (1993). J. Chem. Soc. Dalton Trans. pp. 1563–1576.
- Bignozzi, C. A., Argazzi, R., Schoonover, J. R., Gordon, K. C., Dyer, R. B. & Scandola, F. (1992). *Inorg. Chem.* **31**, 5260–5267.

- Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). *Acta Cryst.* A**71**, 59–75.
- Colasson, B., Credi, A. & Ragazzon, G. (2016). Coord. Chem. Rev. 325, 125–134.
- Collin, J. P., Guillerez, S. & Sauvage, J. P. (1989). J. Chem. Soc. Chem. Commun. pp. 776–778.
- Cuza, E., Mekuimemba, C. D., Cosquer, N., Conan, F., Pillet, S., Chastanet, G. & Triki, S. (2021). *Inorg. Chem.* **60**, 6536–6549.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Faller, J. W. & Gundersen, L. L. (1993). *Tetrahedron Lett.* **34**, 2275–2278.
- Faller, J. W. & Ma, Y. N. (1991). J. Am. Chem. Soc. 113, 1579-1586.
- Faller, J. W. & Smart, C. J. (1989). Tetrahedron Lett. 30, 1189–1192.
- Freytag, M. & Jones, P. G. (2000). Chem. Commun. pp. 277-278.
- Hafeli, T. A. & Keene, F. R. (1988). Aust. J. Chem. 41, 1379-1388.
- Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.
- Juris, A., Balzani, V., Barigelletti, F., Campagna, S., Belser, P. & von Zelewsky, A. (1988). Coord. Chem. Rev. 84, 85–277.
- Kalyanasundaram, K. (1982). Coord. Chem. Rev. 46, 159-244.
- Keene, F. R., Snow, M. R., Stephenson, P. J. & Tiekink, E. R. T. (1988a). Inorg. Chem. 27, 2040–2045.
- Keene, F. R., Snow, M. R. & Tiekink, E. R. T. (1988b). Acta Cryst. C44, 757–758.
- Keene, F. R., Snow, M. R. & Tiekink, E. R. T. (1988c). Acta Cryst. C44, 937–938.
- Keene, F. R., Stephenson, P. J. & Tiekink, E. R. T. (1991). Inorg. Chim. Acta, 187, 217–220.
- Moritz, P. S., Diamantis, A. A., Keene, F. R., Snow, M. R. & Tiekink, E. R. T. (1988). Aust. J. Chem. 41, 1353–1362.
- Mosny, K. K. & Crabtree, R. H. (1996). Inorg. Chim. Acta, 247, 93-98.
- Mosny, K. K., de Gala, S. R. & Crabtree, R. H. (1995). *Transition Met. Chem.* **20**, 595–599.
- Neve, F., Francescangeli, O. & Crispini, A. (2002). *Inorg. Chim. Acta*, **338**, 51–58.
- Reitsma, D. A. & Keene, F. R. (1993). J. Chem. Soc. Dalton Trans. pp. 2859–2860.
- Reitsma, D. A. & Keene, F. R. (1994). Organometallics, 13, 1351– 1354.
- Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Rutherford, T. J., Reitsma, D. A. & Keene, F. R. (1994). J. Chem. Soc. Dalton Trans. pp. 3659–3666.
- Sahni, S. K., Drew, M. G. B., Bell, T. W. & Brunschwig, B. S. (1993). J. Chem. Soc. Chem. Commun. pp. 123–125.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Strouse, G. F., Anderson, P. A., Schoonover, J. R., Meyer, T. J. & Keene, F. R. (1992). *Inorg. Chem.* **31**, 3004–3006.
- Szelke, H., Wadepohl, H., Abu-Youssef, M. & Krämer, R. (2009). *Eur. J. Inorg. Chem.* 2009, 251–260.
- Tang, W. H., Liu, Y. H., Peng, S. M. & Liu, S. T. (2015). J. Organomet. Chem. 775, 94–100.
- Thallapally, P. K. & Nangia, A. (2001). CrystEngComm, 3, 114-119.

Acta Cryst. (2023). C79, 491-496 [https://doi.org/10.1107/S2053229623009415]

Studies of κ^2 - and κ^3 -tripyridylamine complexes of ruthenium and π -stacking by pyridyls

Jack Faller, Kevin J. Chase, Jonathan Parr and Brandon Mercado

Computing details

Dichloridobis[tris(pyridin-2-yl)amine- $\kappa^2 N$, N']ruthenium(II) dichloromethane disolvate (1b)

Crystal data

 $[\operatorname{RuCl}_2(\operatorname{C}_{15}\operatorname{H}_{12}\operatorname{N}_4)_2] \cdot 2\operatorname{CH}_2\operatorname{Cl}_2$ $M_r = 838.39$ Triclinic, $P\overline{1}$ a = 11.2435 (7) Å b = 11.4038 (7) Å c = 13.6340 (7) Å a = 74.278 (5)° $\beta = 75.995$ (5)° $\gamma = 84.642$ (5)° V = 1631.99 (17) Å³

Data collection

Rigaku Mercury275R CCD diffractometer Detector resolution: 6.8 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2019) $T_{\min} = 0.926, T_{\max} = 1.000$ 34353 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.108$ S = 1.039877 reflections 424 parameters 0 restraints Primary atom site location: dual Z = 2 F(000) = 844 $D_x = 1.706 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 15256 reflections $\theta = 2.8-30.5^{\circ}$ $\mu = 1.01 \text{ mm}^{-1}$ T = 93 K Prism, orange $0.37 \times 0.29 \times 0.2 \text{ mm}$

9877 independent reflections 6726 reflections with $I > 2\sigma(I)$ $R_{int} = 0.093$ $\theta_{max} = 30.5^\circ, \ \theta_{min} = 2.7^\circ$ $h = -15 \rightarrow 16$ $k = -16 \rightarrow 16$ $l = -19 \rightarrow 19$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0266P)^2 + 3.9087P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.97$ e Å⁻³ $\Delta\rho_{min} = -0.76$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ru1	0.76400 (3)	0.73839(3)	0.50380(2)	0.01125 (8)	
Cl1	0.96002 (8)	0.71921 (8)	0.38718 (7)	0.01494 (18)	
C12	0.66580 (8)	0.80970 (8)	0.35919(7)	0.01553 (19)	
C13	1.14367 (11)	0.95770 (11)	0.88069 (9)	0.0323 (3)	
Cl4	0.89342 (11)	0.99325 (10)	0.85424 (9)	0.0312 (3)	
C15	1.37129 (11)	1.34020 (11)	0.86258 (9)	0.0361 (3)	
C16	1.10635 (11)	1.32412 (11)	0.92797 (9)	0.0358 (3)	
N1	0.8092 (3)	0.9115 (3)	0.4951 (2)	0.0123 (6)	
N2	0.8448 (3)	0.6834 (3)	0.6271 (2)	0.0123 (6)	
N3	0.6383 (3)	1.0142 (3)	0.7273 (3)	0.0257 (8)	
N4	0.7763 (3)	0.8649 (3)	0.6766 (2)	0.0127 (6)	
N5	0.5991 (3)	0.7491 (3)	0.6038 (2)	0.0122 (6)	
N6	0.7166 (3)	0.5678 (3)	0.5075 (2)	0.0123 (6)	
N7	0.6217 (3)	0.5179 (3)	0.8553 (3)	0.0220 (7)	
N8	0.6141 (3)	0.5413 (3)	0.6825 (2)	0.0140 (6)	
C1	0.8431 (3)	0.9909 (3)	0.4010 (3)	0.0158 (8)	
H1	0.841044	0.966068	0.340388	0.019*	
C2	0.8801 (3)	1.1051 (3)	0.3888 (3)	0.0162 (8)	
H2	0.899673	1.159809	0.321172	0.019*	
C3	0.8888 (3)	1.1405 (3)	0.4754 (3)	0.0179 (8)	
Н3	0.916364	1.219205	0.468523	0.021*	
C4	0.8571 (3)	1.0602 (3)	0.5717 (3)	0.0146 (7)	
H4	0.863908	1.081662	0.632727	0.017*	
C5	0.8150 (3)	0.9472 (3)	0.5787 (3)	0.0129 (7)	
C6	0.5434 (4)	1.0466 (4)	0.7950 (4)	0.0316 (11)	
H6	0.512007	1.128064	0.778063	0.038*	
C7	0.4882 (4)	0.9701 (5)	0.8872 (4)	0.0311 (11)	
H7	0.420620	0.997012	0.933752	0.037*	
C8	0.5344 (4)	0.8523 (4)	0.9101 (3)	0.0277 (10)	
H8	0.498303	0.796129	0.973571	0.033*	
C9	0.6313 (4)	0.8157 (3)	0.8427 (3)	0.0176 (8)	
H9	0.664006	0.734654	0.858153	0.021*	
C10	0.6803 (3)	0.8989 (3)	0.7520 (3)	0.0156 (8)	
C11	0.9096 (3)	0.5772 (3)	0.6425 (3)	0.0146 (7)	
H11	0.921410	0.531855	0.591715	0.017*	
C12	0.9591 (3)	0.5317 (3)	0.7280 (3)	0.0161 (8)	
H12	1.001666	0.454927	0.737285	0.019*	
C13	0.9465 (3)	0.5987 (3)	0.8004 (3)	0.0175 (8)	
H13	0.979346	0.568807	0.860782	0.021*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C14	0.8857 (3)	0.7091 (3)	0.7833 (3)	0.0158 (8)
H14	0.877527	0.757892	0.831152	0.019*
C15	0.8363 (3)	0.7496 (3)	0.6970 (3)	0.0137 (7)
C16	0.7464 (3)	0.5277 (3)	0.4209 (3)	0.0144 (7)
H16	0.797867	0.575801	0.360192	0.017*
C17	0.7062 (3)	0.4205 (3)	0.4161 (3)	0.0176 (8)
H17	0.733441	0.392770	0.354419	0.021*
C18	0.6264 (3)	0.3535 (3)	0.5008 (3)	0.0184 (8)
H18	0.595363	0.280010	0.498074	0.022*
C19	0.5921 (3)	0.3942 (3)	0.5895 (3)	0.0170 (8)
H19	0.535170	0.350752	0.648962	0.020*
C20	0.6420 (3)	0.5000 (3)	0.5910(3)	0.0128 (7)
C21	0.6584 (4)	0.4546 (4)	0.9414 (3)	0.0267 (10)
H21	0.639614	0.487612	1.000517	0.032*
C22	0.7203 (4)	0.3469 (4)	0.9493 (3)	0.0298 (10)
H22	0.745311	0.305038	1.011724	0.036*
C23	0.7458 (4)	0.2998 (4)	0.8640 (4)	0.0311 (11)
H23	0.788795	0.223605	0.867265	0.037*
C24	0.7103 (4)	0.3607 (3)	0.7744 (3)	0.0226 (9)
H24	0.727817	0.328566	0.714851	0.027*
C25	0.6479 (3)	0.4713 (3)	0.7736 (3)	0.0146 (7)
C26	0.5354 (3)	0.8562 (3)	0.5945 (3)	0.0149 (7)
H26	0.567244	0.923808	0.538769	0.018*
C27	0.4275 (3)	0.8713 (3)	0.6615 (3)	0.0147 (7)
H27	0.386480	0.948849	0.654234	0.018*
C28	0.3784 (3)	0.7724 (4)	0.7402 (3)	0.0169 (8)
H28	0.302883	0.780619	0.787888	0.020*
C29	0.4402 (3)	0.6625 (3)	0.7484 (3)	0.0165 (8)
H29	0.407755	0.592811	0.801363	0.020*
C30	0.5503 (3)	0.6541 (3)	0.6789 (3)	0.0134 (7)
C31	1.0237 (4)	1.0647 (4)	0.8564 (3)	0.0245 (9)
H31A	1.002534	1.109425	0.911565	0.029*
H31B	1.051384	1.124580	0.788381	0.029*
C32	1.2459 (4)	1.2483 (4)	0.8893 (4)	0.0278 (10)
H32A	1.254901	1.174403	0.945609	0.033*
H32B	1.244774	1.221948	0.826080	0.033*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ru1	0.01253 (15)	0.01005 (15)	0.01226 (14)	-0.00182 (11)	-0.00308 (11)	-0.00394 (11)
Cl1	0.0144 (4)	0.0150 (4)	0.0155 (4)	-0.0022 (3)	-0.0007 (3)	-0.0060 (4)
Cl2	0.0191 (5)	0.0143 (4)	0.0156 (4)	-0.0009 (4)	-0.0076 (4)	-0.0044 (4)
Cl3	0.0353 (6)	0.0345 (6)	0.0242 (5)	0.0071 (5)	-0.0049 (5)	-0.0069 (5)
Cl4	0.0423 (7)	0.0231 (5)	0.0348 (6)	-0.0018 (5)	-0.0160 (5)	-0.0119 (5)
C15	0.0419 (7)	0.0314 (6)	0.0354 (6)	-0.0143 (5)	0.0000 (5)	-0.0127 (5)
Cl6	0.0376 (7)	0.0344 (6)	0.0377 (7)	0.0091 (5)	-0.0129 (5)	-0.0126 (5)
N1	0.0091 (14)	0.0130 (15)	0.0152 (15)	0.0023 (12)	-0.0031 (12)	-0.0051 (12)

N2	0.0139 (15)	0.0094 (15)	0.0134 (15)	-0.0048 (12)	-0.0025 (12)	-0.0017 (12)
N3	0.031 (2)	0.0227 (19)	0.028 (2)	0.0054 (16)	-0.0105 (16)	-0.0126 (16)
N4	0.0179 (16)	0.0076 (14)	0.0134 (15)	-0.0005 (12)	-0.0052 (12)	-0.0027 (12)
N5	0.0143 (15)	0.0110 (15)	0.0139 (15)	-0.0011 (12)	-0.0056 (12)	-0.0052 (12)
N6	0.0101 (14)	0.0137 (15)	0.0132 (15)	-0.0004 (12)	-0.0042 (12)	-0.0024 (12)
N7	0.0280 (19)	0.0210 (18)	0.0160 (17)	-0.0002 (15)	-0.0027 (14)	-0.0053 (14)
N8	0.0167 (16)	0.0121 (15)	0.0132 (15)	-0.0002 (12)	-0.0031 (12)	-0.0033 (12)
C1	0.0127 (18)	0.019 (2)	0.0152 (18)	-0.0004 (15)	-0.0025 (14)	-0.0045 (15)
C2	0.0139 (18)	0.0140 (19)	0.0193 (19)	-0.0021 (15)	-0.0034 (15)	-0.0013 (15)
C3	0.0147 (19)	0.0114 (18)	0.029 (2)	-0.0012 (15)	-0.0070 (16)	-0.0046 (16)
C4	0.0135 (18)	0.0124 (18)	0.0188 (19)	0.0030 (14)	-0.0052 (15)	-0.0055 (15)
C5	0.0128 (17)	0.0086 (17)	0.0171 (18)	0.0042 (14)	-0.0054 (14)	-0.0027 (14)
C6	0.041 (3)	0.030 (3)	0.034 (3)	0.017 (2)	-0.024 (2)	-0.017 (2)
C7	0.019 (2)	0.048 (3)	0.036 (3)	0.013 (2)	-0.0082 (19)	-0.030 (2)
C8	0.028 (2)	0.038 (3)	0.018 (2)	-0.012 (2)	-0.0026 (18)	-0.0089 (19)
C9	0.022 (2)	0.0124 (18)	0.0183 (19)	0.0001 (15)	-0.0044 (16)	-0.0037 (15)
C10	0.0164 (19)	0.0178 (19)	0.0180 (19)	-0.0015 (15)	-0.0076 (15)	-0.0099 (16)
C11	0.0139 (18)	0.0129 (18)	0.0156 (18)	-0.0039 (14)	0.0005 (14)	-0.0036 (15)
C12	0.0102 (17)	0.0145 (19)	0.022 (2)	-0.0006 (14)	-0.0037 (15)	-0.0021 (16)
C13	0.0169 (19)	0.018 (2)	0.0179 (19)	-0.0015 (15)	-0.0069 (15)	-0.0030 (16)
C14	0.0204 (19)	0.0144 (19)	0.0148 (18)	-0.0006 (15)	-0.0067 (15)	-0.0050 (15)
C15	0.0106 (17)	0.0125 (18)	0.0164 (18)	-0.0049 (14)	0.0010 (14)	-0.0031 (14)
C16	0.0133 (18)	0.0145 (19)	0.0175 (18)	0.0002 (14)	-0.0039 (14)	-0.0072 (15)
C17	0.019 (2)	0.017 (2)	0.0202 (19)	0.0012 (16)	-0.0066 (16)	-0.0095 (16)
C18	0.0175 (19)	0.0128 (19)	0.030 (2)	-0.0005 (15)	-0.0096 (17)	-0.0097 (17)
C19	0.0183 (19)	0.0081 (17)	0.023 (2)	-0.0010 (15)	-0.0058 (16)	0.0001 (15)
C20	0.0145 (18)	0.0115 (18)	0.0137 (17)	0.0014 (14)	-0.0055 (14)	-0.0039 (14)
C21	0.035 (2)	0.029 (2)	0.014 (2)	-0.003 (2)	-0.0041 (18)	-0.0036 (18)
C22	0.031 (2)	0.032 (3)	0.022 (2)	0.001 (2)	-0.0104 (19)	0.0049 (19)
C23	0.030 (2)	0.015 (2)	0.038 (3)	0.0063 (18)	-0.001 (2)	0.0024 (19)
C24	0.034 (2)	0.0125 (19)	0.020 (2)	0.0003 (17)	-0.0021 (18)	-0.0043 (16)
C25	0.0143 (18)	0.0088 (17)	0.0184 (19)	-0.0028 (14)	-0.0009 (15)	-0.0013 (14)
C26	0.0146 (18)	0.0136 (18)	0.0180 (19)	0.0018 (15)	-0.0073 (15)	-0.0041 (15)
C27	0.0170 (19)	0.0127 (18)	0.0177 (18)	0.0023 (15)	-0.0080 (15)	-0.0067 (15)
C28	0.0122 (18)	0.022 (2)	0.0195 (19)	-0.0004 (15)	-0.0028 (15)	-0.0107 (16)
C29	0.0170 (19)	0.0170 (19)	0.0147 (18)	-0.0039 (15)	-0.0036 (15)	-0.0014 (15)
C30	0.0160 (18)	0.0113 (18)	0.0156 (18)	-0.0007 (14)	-0.0054 (14)	-0.0060 (15)
C31	0.031 (2)	0.018 (2)	0.023 (2)	0.0005 (18)	-0.0010 (18)	-0.0079 (17)
C32	0.030 (2)	0.020 (2)	0.031 (2)	-0.0055 (18)	0.0015 (19)	-0.0092 (19)

Geometric parameters (Å, °)

Ru1—Cl1	2.4157 (9)	C8—H8	0.9500	
Ru1—Cl2	2.4051 (9)	C8—C9	1.358 (6)	
Ru1—N1	2.050 (3)	С9—Н9	0.9500	
Ru1—N2	2.027 (3)	C9—C10	1.365 (5)	
Ru1—N5	2.033 (3)	C11—H11	0.9500	
Ru1—N6	2.049 (3)	C11—C12	1.367 (5)	

Cl3—C31	1.763 (4)	C12—H12	0.9500
Cl4—C31	1.752 (4)	C12—C13	1.378 (5)
C15—C32	1.744 (4)	C13—H13	0.9500
Cl6—C32	1.755 (4)	C13—C14	1.366 (5)
N1—C1	1.345 (5)	C14—H14	0.9500
N1—C5	1.327 (4)	C14—C15	1.370 (5)
N2—C11	1.346 (5)	C16—H16	0.9500
N2—C15	1.348 (4)	C16—C17	1.365 (5)
N3—C6	1.327 (6)	C17—H17	0.9500
N3-C10	1.337 (5)	C17—C18	1.368 (5)
N4—C5	1.403 (5)	C18—H18	0.9500
N4-C10	1.406 (5)	C18—C19	1.369 (5)
N4-C15	1410(5)	C19—H19	0.9500
N5-C26	1 348 (5)	C19-C20	1.384(5)
N5-C30	1.376(5)	C21—H21	0.9500
N6-C16	1.327(3) 1.336(4)	$C_{21} - C_{22}$	1 345 (6)
N6-C20	1.335 (5)	C22—H22	0.9500
N7-C21	1.338(5)	C22 - C23	1 367 (6)
N7	1.330(5)	C23—H23	0.9500
N8-C20	1.326(3) 1 406(4)	C_{23} C_{24}	1 363 (6)
N8-C25	1 399 (5)	C24—H24	0.9500
N8-C30	1.399(5) 1 408(5)	C_{24} C_{25}	1.384(5)
C1—H1	0.9500	C26—H26	0.9500
C1-C2	1 359 (5)	$C_{26} - C_{27}$	1 359 (5)
С2—Н2	0.9500	C27—H27	0.9500
$C^2 - C^3$	1.374(5)	C27 - C28	1 379 (5)
С3—Н3	0.9500	C28—H28	0.9500
$C_3 - C_4$	1 368 (5)	$C_{28} - C_{29}$	1 366 (5)
C4—H4	0.9500	C29—H29	0.9500
C4-C5	1 386 (5)	$C_{29} - C_{30}$	1 378 (5)
С6—Н6	0.9500	C31—H31A	0,9900
C6-C7	1 362 (7)	C31—H31B	0.9900
С7—Н7	0.9500	C32—H32A	0.9900
C7 - C8	1 376 (6)	C32—H32B	0.9900
0, 00	1.570(0)	052 11526	0.9900
Cl2—Ru1—Cl1	91 45 (3)	C11—C12—C13	1191(4)
N1— $Ru1$ — $Cl1$	88 02 (8)	C13 - C12 - H12	120.5
N1— $Ru1$ — $C12$	92.07 (9)	C12-C13-H13	120.8
N_2 —Ru1—Cl1	89.57 (9)	C12 - C13 - C12	118.4 (3)
N_2 —Ru1—Cl2	178.12 (9)	C14—C13—H13	120.8
N_2 —Ru1—N1	86.39 (12)	C13—C14—H14	120.0
N2—Ru1—N5	89.74 (12)	C13 - C14 - C15	120.0 (3)
N2—Ru1—N6	95.74 (11)	C15—C14—H14	120.0
N5—Ru1—Cl1	178.31 (9)	N2—C15—N4	117.1 (3)
N5— $Ru1$ — $C12$	89.28 (9)	N2-C15-C14	122.2 (3)
N5—Ru1—N1	93.48 (12)	C14—C15—N4	120.7 (3)
N5—Ru1—N6	86.78 (12)	N6—C16—H16	118.6
N6—Ru1—Cl1	91.76 (9)	N6—C16—C17	122.8 (4)
	- \- /		

N6—Ru1—Cl2	85.81 (8)	C17—C16—H16	118.6
N6—Ru1—N1	177.86 (12)	C16—C17—H17	120.3
C1—N1—Ru1	119.7 (2)	C16—C17—C18	119.4 (4)
C5—N1—Ru1	122.6 (2)	С18—С17—Н17	120.3
C5—N1—C1	117.5 (3)	C17—C18—H18	120.6
C11—N2—Ru1	120.5 (2)	C17—C18—C19	118.7 (3)
C11—N2—C15	117.2 (3)	C19—C18—H18	120.6
C15— $N2$ — $Ru1$	122.4(2)	C18—C19—H19	120.6
C6-N3-C10	1171(4)	C18 - C19 - C20	1187(4)
C_{5} N4 C_{10}	119.8 (3)	C_{20} C_{19} H_{19}	120.6
C_{5} N4 C_{15}	119.0(3) 118.7(3)	N6-C20-N8	116.9(3)
C10 - N4 - C15	121.6 (3)	N6-C20-C19	122.6(3)
C_{26} N5 $R_{\rm H1}$	119.6(2)	C_{19} C_{20} N_{8}	122.0(3) 120.4(3)
C_{20} N5 Rul	117.0(2) 122.6(2)	N7_C21_H21	118.1
C_{30} N5 C_{26}	122.0(2) 117.8(3)	N7 C21 C22	123.8(4)
$C_{30} = N_{3} = C_{20}$	117.0(3) 1204(2)	$N = C_{21} = C_{22}$	123.8 (4)
$C_{10} = N_0 = R_{11}$	120.4(2)	$C_{22} = C_{21} = H_{21}$	121.2
C_{20} NG C_{10}	121.0(2)	C_{21} C_{22} C	121.2
$C_{20} = N_{0} = C_{10}$	117.3(3)	$C_{21} = C_{22} = C_{23}$	117.5 (4)
$C_{23} = N_{1} = C_{21}$	117.7 (4)	C23—C22—H22	121.2
$C_{20} = N_8 = C_{30}$	117.5 (3)	C22—C23—H23	119.5
$C_{25} = N_8 = C_{20}$	120.7 (3)	$C_{24} = C_{23} = C_{22}$	120.9 (4)
C25—N8—C30	121.8 (3)	C24—C23—H23	119.5
N1—C1—H1	118.5	С23—С24—Н24	121.3
N1—C1—C2	123.0 (3)	C23—C24—C25	117.3 (4)
C2—C1—H1	118.5	C25—C24—H24	121.3
С1—С2—Н2	120.4	N7—C25—N8	117.1 (3)
C1—C2—C3	119.1 (4)	N7—C25—C24	122.7 (4)
С3—С2—Н2	120.4	C24—C25—N8	120.2 (3)
С2—С3—Н3	120.6	N5—C26—H26	118.6
C4—C3—C2	118.8 (3)	N5—C26—C27	122.7 (4)
С4—С3—Н3	120.6	С27—С26—Н26	118.6
C3—C4—H4	120.5	С26—С27—Н27	120.5
C3—C4—C5	118.9 (3)	C26—C27—C28	119.0 (3)
С5—С4—Н4	120.5	С28—С27—Н27	120.5
N1	117.1 (3)	С27—С28—Н28	120.6
N1—C5—C4	122.5 (3)	C29—C28—C27	118.8 (4)
C4—C5—N4	120.4 (3)	C29—C28—H28	120.6
N3—C6—H6	118.0	С28—С29—Н29	120.4
N3—C6—C7	124.0 (4)	C28—C29—C30	119.2 (4)
С7—С6—Н6	118.0	С30—С29—Н29	120.4
С6—С7—Н7	121.4	N5—C30—N8	116.8 (3)
C6—C7—C8	117.2 (4)	N5—C30—C29	122.5 (3)
С8—С7—Н7	121.4	C29—C30—N8	120.6 (3)
С7—С8—Н8	119.7	Cl3—C31—H31A	109.4
C9—C8—C7	120.5 (4)	Cl3—C31—H31B	109.4
C9—C8—H8	119.7	C14— $C31$ — $C13$	111.2 (2)
C8—C9—H9	121.0	Cl4—C31—H31A	109.4
C8—C9—C10	118.0 (4)	Cl4—C31—H31B	109.4

С10—С9—Н9	121.0	H31A—C31—H31B	108.0
N3—C10—N4	116.1 (3)	Cl5—C32—Cl6	112.2 (2)
N3—C10—C9	123.2 (4)	Cl5—C32—H32A	109.2
C9—C10—N4	120.7 (3)	Cl5—C32—H32B	109.2
N2—C11—H11	118.5	Cl6—C32—H32A	109.2
N2—C11—C12	123.0 (3)	Cl6—C32—H32B	109.2
C12—C11—H11	118.5	H32A—C32—H32B	107.9
C11—C12—H12	120.5		
	12010		
Ru1—N1—C1—C2	-176.7(3)	C11—C12—C13—C14	-0.6(5)
Ru1 - N1 - C5 - N4	-65(4)	C12—C13—C14—C15	15(6)
Ru1—N1—C5—C4	173.5 (3)	C13 - C14 - C15 - N2	0.4 (6)
Ru1 - N2 - C11 - C12	-1755(3)	C13 - C14 - C15 - N4	-178.2(3)
Ru1 - N2 - C15 - N4	-49(4)	C15 - N2 - C11 - C12	4 2 (5)
$R_{11} = N_2 = C_{15} = C_{14}$	176 5 (3)	C15 - N2 - C1 - C12	592(4)
$R_{11} = N_{12} = C_{13} = C_{14}$	-176.9(3)	C15 N4 C5 C4	-120.8(4)
$R_{11} = 105 - C20 - C27$	-4.2(4)	$C15 \qquad N4 \qquad C10 \qquad N3$	120.0(4)
$R_{11} = N5 = C30 = N8$	(+,2)(+)	$C_{13} = N_4 = C_{10} = N_3$	-86(5)
Ru1 - N5 - C30 - C29	-172.0(3)	C15 - N4 - C10 - C9	178.2(3)
$\frac{1}{10} - \frac{10}{10} - \frac{10}{10} - \frac{10}{10}$	-1/2.9(3)	C10 No $C20$ No	176.2(3)
Ru1 - N6 - C20 - N8	-10.3(4)	C10 - N0 - C20 - C19	-2.3(3)
Ru1 - N6 - C20 - C19	108.8(3)	C16-C17-C18-C19	-2.0(6)
NI = CI = C2 = C3	2.9(6)	C1/-C18-C19-C20	-1.7(6)
N2 - C11 - C12 - C13	-2.3(5)	C18 - C19 - C20 - N6	4.1 (6)
N3—C6—C7—C8	-0.4 (7)	C18—C19—C20—N8	-176.6 (3)
N5—C26—C27—C28	-2.4 (5)	C20—N6—C16—C17	-1.5 (5)
N6—C16—C17—C18	3.8 (6)	C20—N8—C25—N7	178.0 (3)
N7—C21—C22—C23	-0.6 (7)	C20—N8—C25—C24	0.6 (5)
C1—N1—C5—N4	178.3 (3)	C20—N8—C30—N5	-54.5 (4)
C1—N1—C5—C4	-1.7 (5)	C20—N8—C30—C29	123.2 (4)
C1—C2—C3—C4	-1.5 (6)	C21—N7—C25—N8	-177.0 (3)
C2—C3—C4—C5	-1.3 (5)	C21—N7—C25—C24	0.3 (6)
C3—C4—C5—N1	3.0 (5)	C21—C22—C23—C24	0.5 (7)
C3—C4—C5—N4	-177.0 (3)	C22—C23—C24—C25	0.0 (6)
C5—N1—C1—C2	-1.3 (5)	C23—C24—C25—N7	-0.4 (6)
C5—N4—C10—N3	-5.4 (5)	C23—C24—C25—N8	176.9 (4)
C5—N4—C10—C9	172.0 (3)	C25—N7—C21—C22	0.2 (6)
C5—N4—C15—N2	-52.7 (4)	C25—N8—C20—N6	-117.6 (4)
C5—N4—C15—C14	125.9 (4)	C25—N8—C20—C19	63.0 (5)
C6—N3—C10—N4	176.5 (3)	C25—N8—C30—N5	126.2 (4)
C6—N3—C10—C9	-0.8 (6)	C25—N8—C30—C29	-56.1 (5)
C6—C7—C8—C9	0.2 (6)	C26—N5—C30—N8	175.6 (3)
C7—C8—C9—C10	-0.3 (6)	C26—N5—C30—C29	-2.1(5)
C8—C9—C10—N3	0.7 (6)	C26—C27—C28—C29	0.2 (5)
C8—C9—C10—N4	-176.6 (3)	C27—C28—C29—C30	0.8 (5)
C10—N3—C6—C7	0.7 (6)	C28—C29—C30—N5	0.1 (5)
C10—N4—C5—N1	-121.4 (4)	C28—C29—C30—N8	-177.6 (3)
C10—N4—C5—C4	58.6 (5)	C30—N5—C26—C27	3.3 (5)
C10-N4-C15-N2	127 9 (3)	$C_{30} = N_8 = C_{20} = N_6$	63 1 (4)
010 111 010 112	12,12 (3)		00.1 (1)

C10—N4—C15—C14	-53.5 (5)	C30—N8—C20—C19	-116.3 (4)
C11—N2—C15—N4	175.4 (3)	C30—N8—C25—N7	-2.7 (5)
C11—N2—C15—C14	-3.2 (5)	C30—N8—C25—C24	179.8 (3)

F(000) = 1936

 $\theta = 3.3 - 30.4^{\circ}$

 $\mu = 1.56 \text{ mm}^{-1}$

Needle, yellow

 $0.2 \times 0.04 \times 0.01 \text{ mm}$

T = 93 K

 $D_{\rm x} = 1.855 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 8950 reflections

Chlorido[tris(pyridin-2-yl)amine- $\kappa^2 N, N'$][tris(pyridin-2-yl)amine- $\kappa^3 N, N', N''$]ruthenium(II)

hexafluoridoantimonate chloroform monosolvate (2b)

Crystal data

[RuCl(C₁₅H₁₂N₄)₂][SbF₆]·CHCl₃ $M_r = 988.21$ Monoclinic, $P2_1/n$ a = 8.3209 (3) Å b = 27.3213 (10) Å c = 15.7839 (6) Å $\beta = 99.554$ (4)° V = 3538.5 (2) Å³ Z = 4

Data collection

Dectris Pilatus 3R	8658 independent reflections
diffractometer	6339 reflections with $I > 2\sigma(I)$
Detector resolution: 5.8 pixels mm ⁻¹	$R_{\rm int} = 0.067$
ω scans	$\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} = 2.7^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 11$
(CrysAlis PRO; Rigaku OD, 2019)	$k = -36 \rightarrow 36$
$T_{\min} = 0.783, T_{\max} = 1.000$	$l = -21 \rightarrow 21$
32718 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H-atom parameters constrained
$wR(F^2) = 0.081$	$w = 1/[\sigma^2(F_o^2) + (0.0259P)^2 + 4.6355P]$
S = 1.08	where $P = (F_o^2 + 2F_c^2)/3$
8658 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
460 parameters	$\Delta \rho_{\rm max} = 0.98 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -1.31 \text{ e } \text{\AA}^{-3}$
Primary atom site location: iterative	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and is	sotropic or equivalent i	isotropic displacement	parameters (Å ²)
--------------------------------------	--------------------------	------------------------	----------------------------	---

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Sb1	0.69166 (3)	0.62728 (2)	-0.05383 (2)	0.01521 (7)	
F1	0.6827 (4)	0.59602 (10)	0.05068 (15)	0.0327 (7)	
F2	0.5627 (3)	0.67836 (9)	-0.02234 (18)	0.0328 (7)	
F3	0.8788 (3)	0.66146 (10)	-0.00166 (16)	0.0287 (6)	
F4	0.8247 (3)	0.57702 (10)	-0.08400 (18)	0.0355 (7)	

F5	0.5049 (3)	0.59389 (11)	-0.10526 (17)	0.0349 (7)
F6	0.7015 (4)	0.65920 (12)	-0.15811 (16)	0.0418 (8)
Ru1	0.58927 (4)	0.60754 (2)	0.30593 (2)	0.00852 (7)
Cl1	0.77395 (11)	0.59764 (3)	0.44096 (5)	0.01372 (19)
N2	0.7417 (4)	0.56320 (12)	0.24889 (19)	0.0107 (6)
N3	0.4391 (4)	0.60839 (12)	0.18936 (19)	0.0115 (6)
N1	0.4703 (4)	0.54419 (11)	0.32919 (19)	0.0113 (7)
N4	0.4977 (4)	0.52254 (12)	0.18626 (18)	0.0115 (7)
N5	0.7063 (4)	0.67232 (12)	0.28082 (19)	0.0115 (7)
N6	0.4277 (4)	0.65211 (12)	0.35747 (19)	0.0117(7)
N8	0.6459(4)	0.70582(12)	0 40989 (19)	0.0123(7)
N7	0.8885 (4)	0.72276 (13)	0.5000 (2)	0.0127(7)
C6	0.0005(1)	0.56764 (15)	0.2601(2)	0.0141(8)
H6	0.957103	0 592094	0 297909	0.017*
C7	0.9997(5)	0.53263(15)	0.2181 (3)	0.017
е, Н7	1 114568	0.541992	0.226651	0.022*
C8	0.9284(5)	0.50120 (15)	0.1636 (2)	0.022
H8	0.9234 (3)	0.480445	0.134202	0.0105 ())
C9	0.7597(5)	0.49589 (15)	0.154202 0.1530 (2)	0.022
НО	0.706172	0.470935	0.117000	0.0192 (0)
C10	0.700172 0.6719(5)	0.470755 (14)	0.1958 (2)	0.0118 (8)
C11	0.0719(5) 0.3591(5)	0.52755(14) 0.64812(15)	0.1533(2) 0.1527(2)	0.0162(8)
H11	0.378994	0.678958	0.1327 (2)	0.0102 (0)
C12	0.378994	0.64568 (16)	0.100210	0.019
H12	0.2490 (3)	0.67/313	0.0700(2)	0.0100 ())
C13	0.199487 0.2108 (5)	0.074515 0.60054(17)	0.032487 0.0360 (3)	0.022 0.0218 (10)
U12	0.2198 (3)	0.00034 (17)	-0.015685	0.0218 (10)
C14	0.143333 0.3023(5)	0.597921 0.55957 (16)	0.015085 0.0716(2)	0.020°
H14	0.3023 (3)	0.53957 (10)	0.0710(2)	0.0108 (8)
C15	0.204010	0.528515	0.044008 0.1478(2)	0.019
C15	0.4114(5) 0.4138(5)	0.50490(15)	0.1478(2) 0.4028(2)	0.0127(8)
	0.4138 (3)	0.557844	0.4028 (2)	0.0140(8)
Γ	0.427994 0.2261 (5)	0.337844	0.447430 0.4152(2)	0.017°
U2	0.3301(3)	0.49008 (10)	0.4133 (3)	0.0181(9)
П2 С3	0.293013 0.2185 (5)	0.403214 0.45520 (15)	0.407210 0.2522 (2)	0.022°
	0.3183 (3)	0.43329 (13)	0.3322 (3)	0.0177(9)
	0.209121 0.2740 (5)	0.424770 0.46486 (15)	0.300920	0.021°
C4	0.3740 (3)	0.40400 (13)	0.2730 (2)	0.01/1(9)
П4 С5	0.302903	0.441202 0.50080 (14)	0.230780	0.021°
C16	0.4401(4)	0.50969(14)	0.2004(2)	0.0110(8)
	0.7090 (3)	0.07804 (13)	0.2073(2)	0.0142 (8)
H10	0.755458	0.052300	0.100493	0.017^{*}
C17	0.8558 (5)	0.71946 (10)	0.1895 (2)	0.0176 (9)
HI/ C19	0.898884	0.7214/2	0.138081	0.021^{*}
	0.028272	0.73793 (10)	0.24/0(3)	0.0188 (9)
	0.928272	0.75220 (15)	0.2308/8	0.023^{*}
	0.8034 (5)	0.75320(15)	0.5218 (2)	0.0152 (8)
H19	0.811851	0.//919/	0.362252	0.018*
C20	0.7234 (4)	0.71047 (14)	0.3365 (2)	0.0113 (8)

C21	0.2662 (5)	0.64252 (15)	0.3464 (2)	0.0162 (8)
H21	0.228360	0.612872	0.318558	0.019*
C22	0.1540 (5)	0.67308 (16)	0.3730 (3)	0.0192 (9)
H22	0.042697	0.663737	0.366764	0.023*
C23	0.2053 (5)	0.71796 (16)	0.4093 (3)	0.0188 (9)
H23	0.129180	0.740390	0.426053	0.023*
C24	0.3687 (5)	0.72921 (15)	0.4203 (2)	0.0163 (9)
H24	0.407285	0.759756	0.444306	0.020*
C25	0.4759 (5)	0.69520 (14)	0.3959 (2)	0.0120 (8)
C26	0.9761 (5)	0.72691 (16)	0.5791 (3)	0.0207 (9)
H26	1.087385	0.736011	0.583817	0.025*
C27	0.9150 (6)	0.71882 (17)	0.6538 (3)	0.0244 (10)
H27	0.982144	0.721872	0.708417	0.029*
C28	0.7517 (6)	0.70605 (17)	0.6463 (3)	0.0249 (10)
H28	0.705096	0.700071	0.696331	0.030*
C29	0.6573 (5)	0.70206 (16)	0.5659 (2)	0.0200 (9)
H29	0.545079	0.693674	0.559312	0.024*
C30	0.7328 (5)	0.71082 (14)	0.4946 (2)	0.0119 (8)
Cl2	1.1042 (2)	0.60896 (5)	0.71672 (8)	0.0461 (4)
C13	1.30678 (17)	0.62246 (5)	0.58615 (9)	0.0424 (3)
Cl4	1.14129 (16)	0.53000 (4)	0.59932 (7)	0.0312 (3)
C31	1.1291 (6)	0.59395 (18)	0.6109 (3)	0.0276 (11)
H31	1.032515	0.606278	0.570191	0.033*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sb1	0.01827 (14)	0.01482 (14)	0.01267 (12)	-0.00029 (12)	0.00293 (10)	-0.00067 (11)
F1	0.0493 (18)	0.0286 (16)	0.0210 (12)	-0.0020 (13)	0.0081 (12)	0.0090 (11)
F2	0.0367 (16)	0.0175 (14)	0.0473 (16)	0.0085 (12)	0.0158 (13)	-0.0011 (12)
F3	0.0255 (14)	0.0242 (15)	0.0340 (14)	-0.0069 (12)	-0.0024 (11)	-0.0018 (11)
F4	0.0293 (15)	0.0330 (16)	0.0441 (16)	0.0110 (13)	0.0061 (13)	-0.0165 (13)
F5	0.0266 (15)	0.0394 (17)	0.0378 (15)	-0.0092 (13)	0.0028 (12)	-0.0125 (13)
F6	0.0501 (19)	0.057 (2)	0.0188 (13)	-0.0019 (17)	0.0086 (13)	0.0155 (13)
Ru1	0.00651 (14)	0.00916 (15)	0.00999 (13)	-0.00014 (12)	0.00161 (11)	-0.00153 (12)
Cl1	0.0134 (4)	0.0141 (5)	0.0128 (4)	-0.0008(4)	-0.0006 (3)	0.0000 (3)
N2	0.0101 (16)	0.0118 (16)	0.0107 (14)	-0.0015 (13)	0.0034 (13)	-0.0018 (13)
N3	0.0066 (15)	0.0152 (16)	0.0132 (14)	-0.0016 (13)	0.0030 (12)	0.0003 (13)
N1	0.0103 (16)	0.0102 (17)	0.0133 (15)	0.0011 (13)	0.0017 (13)	-0.0002 (13)
N4	0.0149 (17)	0.0120 (17)	0.0083 (14)	-0.0024 (13)	0.0041 (13)	-0.0024 (12)
N5	0.0076 (15)	0.0140 (17)	0.0129 (15)	0.0003 (13)	0.0014 (12)	0.0003 (13)
N6	0.0064 (15)	0.0145 (17)	0.0143 (15)	-0.0013 (13)	0.0022 (12)	-0.0023 (13)
N8	0.0094 (16)	0.0141 (17)	0.0143 (15)	-0.0029 (13)	0.0044 (13)	-0.0040 (13)
N7	0.0153 (18)	0.0180 (19)	0.0198 (17)	-0.0028 (15)	0.0023 (14)	-0.0025 (15)
C6	0.0103 (19)	0.013 (2)	0.0185 (19)	-0.0008 (16)	0.0010 (16)	-0.0029 (16)
C7	0.010(2)	0.023 (2)	0.024 (2)	0.0020 (17)	0.0073 (17)	0.0005 (18)
C8	0.018 (2)	0.019 (2)	0.019 (2)	0.0042 (17)	0.0066 (17)	-0.0036 (17)
C9	0.018 (2)	0.014 (2)	0.0144 (18)	0.0000 (16)	0.0035 (16)	-0.0029 (16)

C10	0.014 (2)	0.0108 (19)	0.0108 (17)	0.0016 (15)	0.0032 (15)	0.0027 (15)
C11	0.014 (2)	0.015 (2)	0.0193 (19)	-0.0022 (17)	0.0040 (16)	-0.0049 (17)
C12	0.016 (2)	0.019 (2)	0.0185 (19)	0.0048 (17)	-0.0023 (16)	0.0052 (17)
C13	0.018 (2)	0.032 (3)	0.0136 (18)	0.0021 (19)	-0.0008 (16)	0.0024 (18)
C14	0.016 (2)	0.017 (2)	0.0149 (19)	0.0006 (17)	0.0040 (17)	-0.0042 (16)
C15	0.0108 (19)	0.015 (2)	0.0141 (18)	-0.0010 (16)	0.0055 (15)	0.0000 (15)
C1	0.014 (2)	0.019 (2)	0.0109 (17)	0.0005 (16)	0.0040 (15)	-0.0046 (16)
C2	0.018 (2)	0.022 (2)	0.0164 (19)	-0.0009 (18)	0.0063 (17)	0.0022 (17)
C3	0.021 (2)	0.010 (2)	0.023 (2)	-0.0041 (17)	0.0049 (17)	0.0034 (17)
C4	0.020 (2)	0.015 (2)	0.0172 (19)	-0.0013 (17)	0.0048 (17)	-0.0045 (16)
C5	0.0060 (18)	0.016 (2)	0.0129 (17)	0.0031 (15)	-0.0002 (14)	0.0009 (15)
C16	0.0115 (19)	0.016 (2)	0.0142 (18)	0.0013 (16)	-0.0007 (15)	0.0003 (16)
C17	0.016 (2)	0.023 (2)	0.0141 (18)	-0.0013 (17)	0.0035 (16)	0.0016 (17)
C18	0.019 (2)	0.017 (2)	0.021 (2)	-0.0051 (17)	0.0018 (17)	0.0058 (17)
C19	0.013 (2)	0.015 (2)	0.0168 (19)	0.0014 (16)	-0.0001 (16)	0.0000 (16)
C20	0.0064 (18)	0.013 (2)	0.0144 (17)	0.0042 (15)	0.0025 (15)	0.0004 (15)
C21	0.014 (2)	0.014 (2)	0.0209 (19)	-0.0025 (16)	0.0019 (16)	-0.0063 (16)
C22	0.0068 (19)	0.024 (2)	0.027 (2)	-0.0014 (17)	0.0044 (17)	-0.0047 (18)
C23	0.016 (2)	0.019 (2)	0.022 (2)	0.0045 (17)	0.0062 (17)	-0.0069 (18)
C24	0.015 (2)	0.015 (2)	0.0184 (19)	0.0000 (16)	0.0013 (16)	-0.0079 (16)
C25	0.0099 (18)	0.013 (2)	0.0134 (17)	-0.0002 (15)	0.0024 (15)	-0.0005 (15)
C26	0.015 (2)	0.024 (2)	0.022 (2)	-0.0043 (18)	-0.0009 (17)	-0.0065 (18)
C27	0.027 (3)	0.024 (2)	0.019 (2)	0.005 (2)	-0.0061 (19)	-0.0041 (18)
C28	0.027 (3)	0.033 (3)	0.016 (2)	0.005 (2)	0.0080 (19)	0.0019 (19)
C29	0.016 (2)	0.028 (3)	0.017 (2)	-0.0038 (18)	0.0048 (17)	-0.0018 (18)
C30	0.0141 (19)	0.0086 (19)	0.0128 (17)	0.0006 (15)	0.0013 (15)	-0.0034 (15)
C12	0.0788 (11)	0.0278 (7)	0.0356 (6)	0.0110 (7)	0.0209 (7)	0.0019 (6)
Cl3	0.0421 (8)	0.0379 (8)	0.0484 (7)	-0.0087 (6)	0.0115 (6)	0.0051 (6)
Cl4	0.0390 (7)	0.0251 (6)	0.0300 (6)	-0.0012 (5)	0.0076 (5)	-0.0012 (5)
C31	0.024 (2)	0.028 (3)	0.030 (2)	0.002 (2)	0.003 (2)	0.005 (2)

Geometric parameters (Å, °)

Sb1—F1	1.870 (2)	C12—C13	1.393 (6)
Sb1—F2	1.877 (3)	C13—H13	0.9500
Sb1—F3	1.884 (2)	C13—C14	1.383 (6)
Sb1—F4	1.874 (3)	C14—H14	0.9500
Sb1—F5	1.867 (3)	C14—C15	1.389 (5)
Sb1—F6	1.876 (3)	C1—H1	0.9500
Ru1—Cl1	2.4269 (9)	C1—C2	1.382 (6)
Ru1—N2	2.065 (3)	C2—H2	0.9500
Ru1—N3	2.046 (3)	C2—C3	1.379 (6)
Ru1—N1	2.057 (3)	С3—Н3	0.9500
Ru1—N5	2.090 (3)	C3—C4	1.388 (6)
Ru1—N6	2.077 (3)	C4—H4	0.9500
N2C6	1.350 (5)	C4—C5	1.387 (6)
N2-C10	1.351 (5)	C16—H16	0.9500
N3—C11	1.352 (5)	C16—C17	1.385 (6)

N3—C15	1.358 (5)	С17—Н17	0.9500
N1—C1	1.351 (5)	C17—C18	1.387 (6)
N1—C5	1.354 (5)	C18—H18	0.9500
N4—C10	1.439 (5)	C18—C19	1.388 (6)
N4—C15	1.442 (5)	С19—Н19	0.9500
N4—C5	1.444 (5)	C19—C20	1.382 (5)
N5—C16	1.357 (5)	C21—H21	0.9500
N5—C20	1.355 (5)	C21—C22	1.369 (6)
N6-C21	1.352 (5)	C22—H22	0.9500
N6—C25	1.354 (5)	C22—C23	1,390 (6)
N8—C20	1.423 (5)	C23—H23	0.9500
N8—C25	1.425 (5)	C23—C24	1.376 (6)
N8—C30	1.417 (5)	C24—H24	0.9500
N7—C26	1.341 (5)	C24—C25	1.387 (5)
N7-C30	1 325 (5)	C26—H26	0.9500
C6—H6	0.9500	$C_{26} - C_{27}$	1 377 (6)
C6—C7	1 378 (6)	C27—H27	0.9500
C7—H7	0.9500	C_{27} C_{28}	1.389(7)
C7 - C8	1 384 (6)	C28—H28	0.9500
C8—H8	0.9500	C_{28} C_{29}	1 382 (6)
$C_8 - C_9$	1 393 (6)	C29—H29	0.9500
C9—H9	0.9500	C_{29} C_{30}	1 398 (5)
C9-C10	1 379 (5)	C_{12} C_{31}	1.576(5) 1.765(5)
C11_H11	0.9500	C_{12} C_{31}	1.703(3) 1.771(5)
	1 383 (5)	CH = C31	1.771(5) 1.761(5)
C12 H12	0.9500	$C_{14} = C_{31}$	1.701 (3)
012-1112	0.9500	031-1131	1.0000
F1—Sb1—F2	89 87 (12)	C14-C13-C12	1194(4)
F1—Sb1—F3	89 53 (12)	C14-C13-H13	120.3
F1—Sb1—F4	90.06(13)	C13 - C14 - H14	120.5
F1—Sb1—F6	179 44 (13)	C_{13} C_{14} C_{15}	120.0 118 4 (4)
F_2 —Sb1—F3	89.04 (12)	$C_{15} - C_{14} - H_{14}$	120.8
$F_{2} = 501 = 15$	178 69 (13)	N3C15N4	120.0 117.8(3)
$F_{4} = 501 - 12$	89.66 (12)	$N_3 = C_{15} = C_{14}$	117.0(3) 122.0(4)
F4 = 501 = 15 F4 = 501 = F6	90.24(14)	C14 - C15 - N4	122.9(4) 110.2(3)
$F_{4} = 501 = 10$	90.24(14)	N1 C1 H1	119.2 (5)
$F_{5} = S_{5} = S_{5} = F_{7}$	90.47(13)	N1 - C1 - C2	122 A (A)
15-301-12 E5 Sb1 E3	170.42(13)	$R_{1} = C_{1} = C_{2}$	122.4 (4)
$F_{5} = S_{5} = F_{5}$	1/9.40(13)	$C_2 = C_1 = H_2$	120.2
$F_{5} = 501 = F_{4}$	90.08(13)	$C_1 = C_2 = C_1$	120.2
$F_{3} = 501 = F_{0}$	90.00(13)	$C_3 = C_2 = C_1$	119.0 (4)
$\begin{array}{c} \Gamma 0 - S 0 1 - \Gamma 2 \\ \Gamma 6 - S b 1 - \Gamma 2 \end{array}$	89.82 (13) 80.00 (13)	$C_3 = C_2 = H_2$	120.2
$r_0 = 501 = r_5$	89.99 (13) 89.41 (0)	$C_2 = C_3 = C_4$	120.4
$\frac{1}{2} - \frac{1}{2} - \frac{1}$	00.41(7) 04.20(12)	$C_2 = C_3 = C_4$	119.1 (4) 120 4
$\frac{1}{1} - \frac{1}{1} - \frac{1}{1} = \frac{1}$	77.27 (12)	C_{+} C_{2} C_{4} H_{4}	120.4
$\frac{1}{2} - \frac{1}{2} - \frac{1}{2} = \frac{1}$	1/1.10(12) 172.06(10)	C_{3} C_{4} C_{2}	121.0 118.0(4)
$\frac{1}{1} = \frac{1}{1} = \frac{1}$	1/3.90 (10)	$C_{5} = C_{4} = U_{4}$	110.0 (4)
INS - KUI - INZ	00.09 (12) 95.09 (12)	C_{3} C_{4} H_{4}	121.0
N3—Ku1—N1	85.98 (12)	IN1-C3-N4	116.3 (3)

N3—Ru1—N5	93.11 (12)	N1C4	123.5 (3)
N3—Ru1—N6	90.41 (12)	C4—C5—N4	120.0 (3)
N1—Ru1—Cl1	90.16 (9)	N5—C16—H16	118.3
N1—Ru1—N2	86.14 (12)	N5-C16-C17	123.4 (4)
N1—Ru1—N5	178.97 (12)	С17—С16—Н16	118.3
N1—Ru1—N6	93.53 (13)	С16—С17—Н17	120.5
N5—Ru1—C11	90.79 (8)	C16—C17—C18	119.0 (4)
N6—Ru1—C11	94.47 (8)	С18—С17—Н17	120.5
N6—Ru1—N5	85.99 (13)	C17—C18—H18	120.8
C6—N2—Ru1	124.7 (3)	C17—C18—C19	118.4 (4)
C6-N2-C10	117.8 (3)	C19—C18—H18	120.8
C10 N2 Rul	117.5 (3)	C18 - C19 - H19	120.2
C11—N3—Ru1	125 3 (3)	C_{20} C_{19} C_{18}	119.6(4)
C11-N3-C15	117.6(3)	C_{20} C_{19} H_{19}	120.2
C15 = N3 = Bu1	117.0(3)	N5-C20-N8	120.2 116 5 (3)
C1 - N1 - Ru1	124.8 (3)	$N_{5} - C_{20} - C_{19}$	122.9(4)
C1 - N1 - C5	1172(3)	C_{19} C_{20} N_{8}	122.5(4) 120.5(3)
C_{5} N1 R_{11}	117.2(3) 118.0(3)	N6_C21_H21	118.1
C10 N4 $C15$	113.0(3)	N6-C21-C22	123.8(4)
C10 N4 C5	113.0(3) 111.8(3)	$C_{22} C_{21} H_{21}$	118 1
$C_{10} = N_4 = C_5$	111.0(3) 111.2(3)	$C_{22} = C_{21} = H_{21}$	120.5
$C_{10} = N_{10} = C_{10}$	111.2(3) 121.2(3)	$C_{21} = C_{22} = 1122$	120.3 110 1 (4)
C_{20} N5 Rul	121.2(3) 1220(2)	C_{23} C_{22} C_{23} C	120.5
$C_{20} = N_5 = R_{10}$	122.0(2) 1167(3)	$C_{23} = C_{22} = H_{23}$	120.5
$C_{20} = N_{5} = C_{10}$	110.7(3)	$C_{22} = C_{23} = M_{23}$	120.7
C_{21} N6 C_{25}	122.0(3) 1161(3)	$C_{24} = C_{23} = C_{22}$	110.0 (4)
$C_{21} = N_0 = C_{23}$	110.1(3) 1215(2)	$C_{24} = C_{23} = H_{24}$	120.7
C_{23} Ng C_{25}	121.3(3) 1177(2)	$C_{23} = C_{24} = H_{24}$	120.0
$C_{20} = N_8 = C_{23}$	117.7(3)	$C_{23} = C_{24} = C_{23}$	110.9 (4)
$C_{20} = N_{0} = C_{20}$	122.1(3) 120.2(2)	C_{23} C_{24} H_{24}	120.0
$C_{30} = N_{7} = C_{23}$	120.5(3)	$NO-C25-N\delta$	117.5(3)
$V_{20} = V_{10} = V_{20}$	117.0 (4)	$N_{0} = C_{23} = C_{24}$	123.4(4)
N2-C6-H6	119.1	C24—C25—N8	119.2 (3)
N2	121.8 (4)	$N = C_{20} = H_{20}$	117.9
C/-Cb-Hb	119.1	$N = C_{26} = C_{27}$	124.3 (4)
C_{0} C_{1} C_{1}	119.8	$C_2/-C_{26}$ -H ₂₆	117.9
$C_{0} - C_{1} - C_{8}$	120.5 (4)	$C_{26} = C_{27} = H_{27}$	121.2
$C_8 - C_7 - H_7$	119.8	$C_{26} = C_{27} = C_{28}$	117.5 (4)
C/-C8-H8	121.0	$C_{28} = C_{27} = H_{27}$	121.2
C/-C8-C9	118.0 (4)	C27—C28—H28	120.1
C9—C8—H8	121.0	$C_{29} = C_{28} = C_{27}$	119.8 (4)
C8—C9—H9	120.6	C29—C28—H28	120.1
C10-C9-C8	118.8 (4)	C28—C29—H29	121.2
C10—C9—H9	120.6	$C_{28} = C_{29} = C_{30}$	117.6 (4)
N2-C10-N4	11/.1 (3)	C30—C29—H29	121.2
N2 - C10 - C9	123.2 (4)	N/	115.1 (3)
C9—C10—N4	119.7 (3)	N/	123.8 (3)
N3—CII—HII	118.7	C29—C30—N8	121.0 (3)
N3-C11-C12	122.7 (4)	Cl2—C31—Cl3	109.9 (3)

C12—C11—H11	118.7	Cl2—C31—H31	108.8
C11—C12—H12	120.6	Cl3—C31—H31	108.8
C11—C12—C13	118.9 (4)	$C_{14} - C_{31} - C_{12}$	110.3 (3)
C13—C12—H12	120.6	C_{14} C_{31} C_{13}	110.4 (3)
C12—C13—H13	120.3	C_{14} C_{31} H_{31}	108.8
	120.0		100.0
Ru1—N2—C6—C7	-178.1(3)	C1—N1—C5—C4	-3.0(5)
Ru1—N2—C10—N4	-2.2 (4)	C1—C2—C3—C4	-2.4(6)
Ru1—N2—C10—C9	179.2 (3)	C2—C3—C4—C5	0.4 (6)
Ru1—N3—C11—C12	-175.0 (3)	C3—C4—C5—N1	2.4 (6)
Ru1—N3—C15—N4	-3.9 (4)	C3—C4—C5—N4	-176.7 (3)
Ru1—N3—C15—C14	174.8 (3)	C5—N1—C1—C2	0.8 (6)
Ru1—N1—C1—C2	-179.3 (3)	C5—N4—C10—N2	-62.6(4)
Ru1—N1—C5—N4	-3.8 (4)	C5—N4—C10—C9	116.0 (4)
Ru1—N1—C5—C4	177.1 (3)	C5—N4—C15—N3	66.4 (4)
Ru1—N5—C16—C17	-177.4 (3)	C5—N4—C15—C14	-112.4(4)
Ru1—N5—C20—N8	-5.0 (4)	C16—N5—C20—N8	175.2 (3)
Ru1—N5—C20—C19	178.6 (3)	C16—N5—C20—C19	-1.2(5)
Ru1—N6—C21—C22	-174.3 (3)	C16—C17—C18—C19	0.1 (6)
Ru1—N6—C25—N8	-8.2 (5)	C17—C18—C19—C20	1.1 (6)
Ru1—N6—C25—C24	170.7 (3)	C18—C19—C20—N5	-0.5 (6)
N2—C6—C7—C8	-1.0 (6)	C18—C19—C20—N8	-176.8(3)
N3—C11—C12—C13	0.1 (6)	C20—N5—C16—C17	2.4 (5)
N1—C1—C2—C3	1.8 (6)	C20—N8—C25—N6	62.8 (5)
N5—C16—C17—C18	-1.9 (6)	C20—N8—C25—C24	-116.1 (4)
N6—C21—C22—C23	3.8 (6)	C20—N8—C30—N7	3.6 (5)
N7—C26—C27—C28	-0.7 (7)	C20—N8—C30—C29	-174.6 (4)
C6—N2—C10—N4	178.5 (3)	C21—N6—C25—N8	178.8 (3)
C6—N2—C10—C9	-0.1 (5)	C21—N6—C25—C24	-2.4(6)
C6—C7—C8—C9	-0.2 (6)	C21—C22—C23—C24	-2.6(6)
C7—C8—C9—C10	1.2 (6)	C22—C23—C24—C25	-0.8(6)
C8—C9—C10—N2	-1.1 (6)	C23—C24—C25—N6	3.4 (6)
C8—C9—C10—N4	-179.6 (3)	C23—C24—C25—N8	-177.8 (4)
C10—N2—C6—C7	1.1 (6)	C25—N6—C21—C22	-1.3 (6)
C10—N4—C15—N3	-60.3 (4)	C25—N8—C20—N5	-54.6 (5)
C10—N4—C15—C14	120.9 (4)	C25—N8—C20—C19	121.9 (4)
C10—N4—C5—N1	66.4 (4)	C25—N8—C30—N7	-177.2 (4)
C10—N4—C5—C4	-114.5 (4)	C25—N8—C30—C29	4.6 (6)
C11—N3—C15—N4	179.4 (3)	C26—N7—C30—N8	-178.7 (4)
C11—N3—C15—C14	-1.9 (6)	C26—N7—C30—C29	-0.6 (6)
C11—C12—C13—C14	-1.2 (6)	C26—C27—C28—C29	-0.2(7)
C12—C13—C14—C15	0.8 (6)	C27—C28—C29—C30	0.6 (7)
C13—C14—C15—N3	0.8 (6)	C28—C29—C30—N8	177.8 (4)
C13—C14—C15—N4	179.6 (4)	C28—C29—C30—N7	-0.2 (7)
C15—N3—C11—C12	1.4 (6)	C30—N8—C20—N5	124.6 (4)
C15—N4—C10—N2	63.7 (4)	C30—N8—C20—C19	-58.9 (5)
C15—N4—C10—C9	-117.6 (4)	C30—N8—C25—N6	-116.4 (4)
C15 - N4 - C5 - N1	-60.9 (4)	C_{30} N8 C_{25} C_{24}	64.7 (5)

C15—N4—C5—C4	118.2 (4)	C30—N7—C26—C27	1.1 (7)
C1—N1—C5—N4	176.1 (3)		