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Abstract 

A simple weighting scheme for atomic refinement is 
discussed. The approach, called 'Bayesian weighting', 
is designed to be robust with respect to the bias that 
arises from the incomplete nature of the atomic model, 
which in macromolecular crystallography is typically 
quite serious. Bayesian weights are based on the mean- 
squared residual errors over shells of resolution, with 
centric and acentric reflections considered separately 
and with allowances made for experimental uncertain- 
ties. Use of Bayesian weighting is shown in test cases 
typical for macromolecular crystallography to improve 
the accuracy of the refined coordinates when compared 
with schemes employing unit weights or experimental 
variances. 

I. Introduction 

The philosopher Paul Val6ry once remarked that 'a 
work of art is never finished, only abandoned'. He 
could well have said the same about structural models of 
macromolecules. If one has been so fortunate as to 
obtain high-quality crystallographic data with a reso- 
lution of 2.5 A or better, one builds an atomic model 
containing parameters such as coordinates and B 
factors. One then alternates between refinement of the 
parameters (generally by least-squares minimization) 
and grudging elaboration upon the model (by adding 
water molecules, for example). The refined set of model 
parameters constitutes our working estimate of the 
macromolecular structure. One forms this estimate, 
however, in the presence of imperfections in the 
working model, which most often does not fully include 
such details as the structure of the solvent, multiple 
conformations, and anisotropic and anharmonic motions 
(Gros, van Gunsteren & Hol, 1990; Kuriyan, Petsko, 
Levy & Karplus, 1986). Nor is it always obvious how to 
remedy these or other imperfections in a parsimonious 
way. The point at which one says 'good enough' and 
abandons the problem is rarely a point at which the data 
are described to within experimental uncertainty; the 
disagreement between calculated and observed structure 
factors is typically in the range of 15 to 20%, even 
though the data are typically accurate to about 5% 
(Jensen, 1985). This deficiency can have a substantial 

effect on the accuracies of the refined models. Identical 
protein structures refined in different laboratories, for 
example, typically differ by 0.2-0.3,& r.m.s. (Kuriyan 
et al., 1986; Daopin, Davies, Schlunegger & Griitter, 
1994). 

We wish to find an approach to atomic refinement that 
is robust with respect to incompleteness of the working 
model and that returns the most likely set of model 
parameters, given the experimental data (structure 
factors) and certain prior knowledge about the system 
(e.g., bond lengths). We shall employ the Bayesian 
formulation of probability theory, which is eminently 
suited to this task. We begin by describing the general 
statistical approach and show that, given certain 
simplifying assumptions, it leads to familiar least- 
squares refinement with a somewhat-modified weighting 
scheme for the experimental data involving the r.m.s. 
discrepancies between calculated and observed structure 
factors. We have applied this scheme, termed 'Bayesian 
weighting', to macromolecular crystallographic model 
cases involving simulated and measured data and shown 
that application of the method can yield a model that is 
considerably more accurate than methods based on 
uniform weighting or experimental uncertainties alone. 

2. The Bayesian view of refinement 

The Bayesian approach to estimation of model para- 
meters is not distinguished from the 'frequentist' 
approach by mere application of Bayes' theorem, but 
rather by the extent to which prior knowledge is 
incorporated into the process and also by the way the 
resulting posterior probability is interpreted --  as a 
quantity monotonically related to the subjective like- 
lihood of the parameters being correct (Cox, 1946). 
Though somewhat controversial, this interpretation 
nonetheless corresponds better to the typical crystal- 
lographer's notions of what he or she is doing in 
refinement than does the frequentist interpretation. 

Let us represent our knowledge of a set of 
experimentally determined structure factors by P ,  and 
let 0 represent the statement that a particular set of 
model parameters (i.e., coordinates, temperature fac- 
tors, and occupancies) are correct. Underlying our 
model is a set of assumptions, A, not only about the 
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applicability of the atomic model, but also about such 
geometrical properties as the range of lengths found for 
C - - C  bonds. The 'most likely' set of parameters we 
shall take to be that set which maximizes the probability 
of the statement 0 given the data )r" and the assumptions 
A, denoted as p(OI.T,A). This distribution (called the 
posterior probability distribution because it is formed 
after we have taken in account the new information in 
F)  is given by Bayes' theorem (Box & Tiao, 1973) as, 

p(OI.F,a) = p(.FIO, A)p(OIA)/p(.TIA). (1) 

The distribution p(.T'IO, A), called the likelihood, 
describes the probability that the data are consistent 
with the values of the parameters and the assumptions of 
the model. The distribution p(OIA), called the prior 
probability distribution or (considered as a set) 'priors', 
describes the probability of a particular set of parameter 
values being true; it is based on our knowledge of the 
situation before conducting the experiment. The term in 
the denominator, p(~IA), gives the probability that the 
particular data set .T would crop up from the set of all 
possible data sets, given our prior knowledge; it is a 
constant that may be obtained by normalization if 
necessary, but for most purposes may be simply 
neglected. 

To find the most likely set of parameters, p(OI.F, A) is 
not usually maximized directly but rather the negative 
logarithm of something proportional to it, L(~'I0, A), is 
minimized. Dropping the explicit listing of the assump- 
tions A throughout and neglecting the additive constant 
from p(bt-lA ), we obtain the most common basis for 
parameter estimation, 

L(01.F) = - log [p ( f l0 ) ]  - log[p(0)]. (2) 

In the absence of model errors and when the experi- 
mental uncertainties are normally distributed, the first 
term on the right-hand side is proportional to the 
familiar .(2 statistic (Bevington & Robinson, 1992) that 
is the basis of least-squares fitting, 

X 2 = ~ Wh[Foh - Fch (0)] 2. (3) 
h 

Here the Fo, ' are the observed structure factors for 
the reflection with indices represented by h, and Fch(O) 
is the corresponding structure factor calculated from the 
model. The W h are weights, which in the absence of 
model errors or outliers is given by the reciprocal of the 
square of the experimental uncertainty, 1/0"2bs . 

A word about the second term is in order before 
proceeding. In the case where the priors are flat when 
compared with the likelihood ('non-informative priors', 
in statistical jargon) then finding the most likely 
parameter set reduces to minimizing X 2. In macro- 
molecular crystallography, however, the priors usually 
are informative, and the log[p(0)] term is familiar 
(though usually from a different approach) as restraints 
on model geometry. Indeed, macromolecular crystal- 

lographers have been using a Bayesian approach to 
refinement for many years with little controversy, 
perhaps because the priors are accurately known from 
small-molecule crystallography and because using them 
has been shown to dramatically improve the quality of 
the resulting structure. While these restraints usually 
appear as various energy-like terms in the functional to 
be minimized (cf. Hendrickson, 1985; Briinger & 
Nilges, 1993), and are converted to probability densities 
through Boltzmann statistics, they could equally well be 
considered simply as likelihoods from the start. That is, 
if we find in surveying accurately determined C - - C  
bond distances a normal distribution about a mean 
distance, then we can expect that C - - C  distances in a 
macromolecule should obey the same distribution. The 
negative logarithm of the distribution will give rise to a 
term harmonic in deviation from the mean distance. 
One advantage of this point of view is that informative 
prior probability distributions may exist for combina- 
tions of parameters that are not interpretable as 
energies, such as can be found in profile methods for 
assessing correctness of structures (Bowie & Eisenberg, 
1994). 

As pointed out in the introduction, model errors are 
quite significant in macromolecular crystallography. As 
a consequence, various practices for carrying out 
atomic refinement have arisen more or less ad hoc 
because they have been empirically shown to improve 
convergence or the quality of the final parameter set. 
The sum in least-squares minimization (3), for example, 
is often restricted to be over only those reflections that 
have been measured to some minimum level of accuracy 
(e.g., F >  2O'obs) or those above some minimum 
resolution (e.g., dmi n < 5 ,~). Various schemes for the 
weighting factors Wh have also been proposed. 
Hendrickson (1985) advocated using weights given by 
1/((F o -F~) }sh (where ()sh denotes an average over a 
shell of resolutions) for the initial stages of refinement 
and experimental weights for the later stages. Others 
have used unit weights for all the data (Harris & Moss, 
1992; Briinger & Nilges, 1993). The capability for 
using a variety of weighting schemes is present in most 
macromolecular crystallographic refinement packages. 

In crystallographic analyses of small molecules, the 
weighting problem has been dealt with in considerable 
detail. Weightings proportional to 1/F 2, 1/F 4, or 
2 / s i n0  are sometimes used, either alone or in 
combination with experimental uncertainties (cf. Hong 
& Robertson, 1985). The modified weights are 
generally produced in a manner that leads to a X 2 
approximately equal to the number of observations. 
Wilson (1973, 1976a,b, 1979) has examined the effects 
of weighting and refinement method on errors in 
crystallographic models and has shown that the method 
used can affect both the biases and the variances in the 
refined model. However, in small-molecule crystal- 
lography the overall model errors are in the order of a 
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few percent of the structure factors. It is not certain 
whether the same approaches would work for macro- 
molecular crystallography, where the model errors are 
on the order of 10-20%. 

p ( f l D ,  O) o~ I-I A/'(Fo,, - IF~,,(0) 4- Dhl, a2), (6) 
h 

where .Af(x, 0 "2) = 1/`7(27r) 1/2 exp(-x2/2`72) represents 
a normal distribution with variance ,72. 

3. Robust  estimation in the presence of  model  errors 

We have recently presented a simple framework for 
describing the effects of model incompleteness on the 
refinement process in macromolecular crystallography 
(Terwilliger & Berendzen, 1995). In this framework it 
is assumed explicitly that most features of the electron- 
density distribution in the crystal can be described by 
the atomic model being used in the refinement process, 
but that some cannot. For example, if the atomic model 
does not contain parameters describing multiple con- 
formations of the structure, then any multiple con- 
formations actually present in the structure cannot 
possibly be described by the model, and fits to the most 
highly populated conformation would miss the addi- 
tional electron density to the less-populated conforma- 
tions. Calculations based on such a model will be 
missing an additive part of the complex structure factor, 
which we will denote as D h for the reflection with 
indices h. 

If we accurately knew the D h we could immediately 
account for the defects in the model, because then the 
observed structure factors Fob would be given by 

Fo,, = IF~h(0) 4- Dhl 4- 6h, (4) 

where F~h(0 ) is the complex structure-factor amplitude 
calculated from the partial model with the set of 
parameters 0 and ~h is the measurement error. Of 
course, we do not know the D h, but we can make a 
statistical assessment of their effects on the amplitudes 
of the calculated structure factors as a probability 
distribution conditional upon the value of the atomic 
parameters, p(DIO), where 79 is a set of 'discrepancies' 
defined as additive to structure-factor amplitudes. We 
can use this information to improve our estimates of the 
parameters specified by 0. Following the approach of 
Box (Box, 1980) we shall treat D as a 'nuisance 
parameter' and integrate over all possible values, 
weighting by the probability of obtaining the dis- 
crepancy conditional upon the value of the atomic 
parameters. This process is known in the statistical 
literature as 'marginalization'. The probability of the 
data agreeing with the parameters becomes in this case, 

p(~-I0) = fp(:FI79, O)p(DlO)dD, (5) 

where the integral is over all values of the discrepancies 
D. Assuming a normal distribution of measurement 
errors, we can write first term in the integral (to within a 
multiplicative constant) as the product over all 
reflections 

3.1. Estimation of the discrepancy distribution 

Since the discrepancies arise from those parts of the 
true structure that are not included in the model, they 
are generally uncorrelated with the calculated or 
observed structure factors. It is thus not possible to 
estimate them individually using some function of F,, or 
Fo, ,. We can, however, estimate the distribution of the 
discrepancy p(DI0) given the observations and the 
structure factors calculated for a group of related 
reflections. Using the space-group-dependent intensity 
factors e h (Stewart & Karle, 1976) to describe the 
variation of intensity among particular classes of 
reflections, we may 2 write the mean-square amplitude 
of the D h as eh(IDhl/eh)~h. The problem of obtaining 
p(D[O) is then identical to the situation encountered in 
the analysis of heavy-atom model errors in isomorphous 
replacement (cf. Terwilliger & Eisenberg, 1987). We 
shall assume that the complex structure factor 
discrepancies D h are small and uncorrelated with 
respect to the calculated structure factors Fc, ,. Then 
the relation between observed and calculated structure 
factors (4) can be approximated as, 

Fob ~_ Feb (0) + D h + 6h, (7) 

where D h = IDhlCOS(Oeh) and et h is the difference in 
phase angle between Fch and D h. While the expected 
value of (ID21/eh)sh is the same for centric and acentric 
reflections (Wilson, 1949), the factor COS2(Cth) is always 
unity for centric reflections and it has a mean value of 
1/2 for acentric reflections. Thus, the expected value of 
D~h for centric reflections is twice the expected value for 
acentric reflections. The shapes of distributions related 
to p(DI0) have been examined in detail before (cf. 
Ramachandran, Srinivasan & Sarma, 1963; Read, 
1986). However, for the present purposes p(DlO) is 
sufficiently well described by the product of normal 
distributions 1-Ih A/'(Dh, e h E 2 )  • 

The integral in (5) may now be rewritten as, 

p()r'l 0 ) = I-IJ'A/" (F,, h -[Fch (0)+ Dh], `T2)A/" (Dh, ShE2)dDh, 
h 

(8) 

and carried out without further approximation. Re- 
arranging and taking the logarithm of both sides leads to 
the first term in (2), the negative log likelihood of the 
data agreeing with the parameters, 

- logLo(f'[O)] = ½ ~--~[F,, h - Fch (0)] 2 / (eh  E2 + ,72). (9) 
h 

This is a least-squares equation (3) with weights W h 
given by 1/(eh E2 + ,72). 
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The value of E 2 may be readily estimated. From (7), 
we can write 

(D~h/eh) "" ((Fo~ - Fch)2/eh)sh,,/c - ( ~ 2 / E h ) s h . a / c ,  (10) 

where the notation ()sh.a/c denotes an average taken over 
an appropriate shell of resolution, with acentric and 
centric reflections treated separately. Substituting E 2 / Q  
for (D~h/eh), where Q = 1 for centric reflections and 2 
for acentric reflections, and substituting the experi- 
mental variance cry, as an estimate of ~,, we obtain the 
following relation, 

E 2 "~ Q[((Foh - Fch)/s2).~h.~/c - ((r~/Sh)sh.a/c ]. (11) 

(9) and (11) provide a straightforward means of 
applying weighting factors that reflect both experi- 
mental and model errors to the refinement of macro- 
molecular structures. (7) is strictly valid only when we 
knew beforehand the values of D h. If  we use the results 
of a previous round of refinement without discrepancies 
fully taken into account, the Fch will tend to be closer to 
the Fob than they ought, and our estimates of E 2 will 
tend to be slight underestimates. In most cases, this 
should affect the results of refinement only very 
slightly. 

4.  Tes t s  o f  w e i g h t i n g  s c h e m e s  w i t h  s i m u l a t e d  da ta  
a n d  p a r t i a l l y  c o m p l e t e  m o d e l s  

The treatment presented here suggests that an effective 
weighting for least-squares macromolecular refinement 
would consist of adding the mean square model variance 
for the appropriate class of reflections and range of 
resolution to the experimental variances. We tested the 
utility of Bayesian weighting by comparing refinements 
performed with it against those performed with two 
other commonly used weighting schemes, unit weight- 
ing (equal weights for all reflections), and experimental 
weighting (weights of l/or2), in a case with simulated 
data where the 'right answer'  is known by definition. In 
the tests, varying numbers of atoms were excluded from 
the refinement procedure so as to simulate the effects of 
incomplete models. 

We based the simulated data on the refined structure 
of gene V protein (Skinner et al . ,  1994), which we call 
the 'known model ' .  Known model structure factors and 
intensities were calculated from the 711 non-H atoms of 
this structure, which includes 45 water molecules, for 
7639 reflections from 5 to 1.8 ,~, in space group C'2., with 
cell dimensions of a -  76, b = 28 and c = 42 A. The 
effects of measurement errors were simulated by adding 
a normally distributed random variable to the known 
model intensities. Amplitudes and variances in ampli- 
tudes calculated from these intensities and known errors 
were used as the data for refinement. (Oobs)/(F) was set 
at 5%. 

Identical refinement procedures were used with each 
weighting scheme. A model with deviations from the 
known model structure representing errors was gener- 
ated by deleting 75 atoms from the known model 
structure and refining the coordinates and temperature 
factors of this incomplete model with unit weights using 
X - P L O R  (Briinger, Karplus & Petsko, 1989). The 
resulting model, which had an r.m.s,  coordinate error 
of 0.074 A for main-chain atoms and 0.094,~, for side- 
chain atoms, was used as the starting point for all 
subsequent refinements, with varying numbers of the 
deleted atoms replaced. The coordinates and tempera- 
ture factors of the atoms in the models were refined to 
convergence against the simulated data using X - P L O R ,  
adjusting the overall weighting on structure factors so as 
to obtain an r.m.s, deviation of bond lengths of 0.013 ,~, 
from ideality. For Bayesian weighting [using (9)] the 
values of E 2 were estimated from the starting model in 
shells of resolution using (11). 
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Fig. 1. The effects of model incompleteness upon refined structures 
using unit weighting (circles), experimental weighting (triangles) 
and Bayesian weighting (squares). Simulated data were generated 
by adding a 5 % variance to a set of structure factors calculated from 
a gene V protein structure. Refinements against this data set were 
carried out from a new starting point with varying percentages of 
the 711 non-H atoms missing from the model. (a) The r.m.s. 
coordinate errors for the main-chain atoms (closed symbols) and 
side-chain atoms (open symbols) in the refined models. (b) The 
standard R factors for the refinements shown in (a). 
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We evaluated the refinements by comparing the 
coordinates of the refined models with those of the 
known model. Fig. l(a) shows the r.m.s, coordinate 
error for each weighting scheme as a function of the 
percentage of atoms missing from the refined models; 
Fig. l(b) shows the standard R factors for each of the 
same refinements. 

When all atoms are included in the model, so that the 
model error after refinement is small, all three 
weighting methods yield small coordinate errors. 
Bayesian weighing gives smaller coordinate errors 
than experimental weighting even in this case, possibly 
because at the start of refinement the model contains 
considerable error. Standard R factors for these 
refinements were in the range 4 .6-5.0%. 

Bayesian weighting is much more advantageous when 
the model errors are larger. With 10.5% of all atoms in 
the structure not included in the model, for example, the 
standard R factors were in the range 19-21%, and 
Bayesian weighting y!elded an r.m.s, error for main- 
chain atoms of 0.060 A. Unit weighting was some 40% 
worse, with an r.m.s, error for the same atoms of 
0.085 A,, and experimental weighting was roughly 60% 
worse, with an r.m.s, error of 0.095 A, despite the fact 
that the variances were much better estimates of the 
errors in 'measurement'  than would be the case with 
actual data. 

We next examined whether the estimates of the 
model variance made using (11) were accurate 
estimates and whether the variances for centric and 
acentric reflections indeed differed by a factor or 
two. We used (11) to calculate the known model 
errors, with the known model structure factors 
substituted for those from the refined model. Fig. 
2 illustrates the actual and estimated values of E 2 
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Fig. 2. Model variances as a function of resolution for the test case 
with 10.5% of atoms not included in the model. The known model 
variances are indicated by filled symbols, while those estimated 
from the refinement are indicated by open symbols. Model 
variances for centric reflections are indicated by squares, those 
for acentric reflections are indicated by circles. Variances for the 
two classes of reflections are predicted to differ by a factor of two, 
or one unit on a log 2 scale. 

for the centric and acentric reflections in various 
ranges of resolution for the refinement carried out 
above with 10.5% of atoms not included in the 
refinement. It may be seen that the centric model 
variance is indeed twice the acentric model variance 
and that the estimates of this variance obtained from 
the refinement itself are quite good. 

5 .  C o n c l u s i o n s  

The analyses presented here show that the deficiencies 
in macromolecular crystallographic models lead to 
errors in refinement that are similar to those that 
would result from large errors in measurement. 
Consequently, in least-squares refinement procedures 
the weighting function should include not just experi- 
mental variances but also model variances that reflect 
these deficiencies in the model. The test cases using 
model and real data indicate that a weighting method 
that includes the model variance resulted in refined 
structures that are more accurate than those obtained 
with unit weighting or with weighting based on 
experimental variances alone. 
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