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Abstract 

Interest in a pair of highly isomorphous structures often 
focuses on the differences between them. In cases where 
substantial correlated model errors exist or where there 
are differences in the quality of the two experimental 
data sets (cases quite common in macromolecular 
crystallography), independent refinement of the two 
structures does not lead to the most accurate estimate of 
the differences between them. An alternative procedure 
that has proven effective in some such cases is 
difference refinement, in which the residual between 
observed and calculated differences in structure-factor 
amplitudes between the two structures is minimized. 
A Bayesian approach has been used to extend the range 
of applicability of difference refinement to cases where 
there is only partial correlation in model errors and 
where the overlap between the data sets is limited. The 
resulting method, Bayesian difference refinement, uses 
residuals to be minimized that vary smoothly between 
difference refinement and independent refinement. 
When the errors in the two structural models are very 
similar, difference refinement is used; when they are 
very different, independent refinement is used; and 
when they are partially correlated, a combination of the 
two is used. The procedure is very simple to apply and 
does not significantly increase the computational 
demands of refinement. 

1. Introduction 

In the analysis of macromolecular structures, crystal- 
lographers are often interested in differences between 
closely related pairs of structures, a 'native' and one or 
more 'variants'. This situation commonly occurs, for 
example, in the analysis of conformational changes 
upon metal substitution (Fermi, Perutz, Dickinson & 
Chien, 1982; Luisi & Shibayama, 1989), ligand binding 
(Perutz, Fermi, Abraham, Poyart & Bursaux, 1986), or 
mutation (Nagai et al., 1987; Huang et al., 1990; 
Matthews, 1993; Eriksson, Baase & Matthews, 1993). 
Where a group of two or more related structures are 
being analyzed, typically a single native structure is 
refined and then each of the other structures is refined 
and related to this native. Ordinarily, the native 
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structure is very carefully refined and based on more 
complete and more accurately measured data than the 
variant structures in the group, so that it might be 
expected to be especially accurate. However, the 
models used to describe scattering from macromolecu- 
lar crystals are generally inaccurate in describing the 
experimental data, with typical residuals four times the 
uncertainty in measurement. This unfortunate fact tends 
to degrade the accuracy of estimates of differences 
between structures obtained by independently refining 
the two structures, particularly if there are differences 
in the quality or coverage of the two data sets. 

Difference refinement (Fermi et al., 1982; Terwil- 
liger & Berendzen, 1995) is an alternative approach to 
estimating these structural changes that is more robust 
in the face of these correlated model errors. The basis 
for difference refinement is that the parts of a native 
structure that are missing from the native model are 
often also missing from the models of the variants. 
Although the most probable set of parameters for the 
models describing a group of structures might be those 
obtained from a joint refinement based on a general- 
ization of the approach taken h~re, it is often 
impractical to re-refine the native structure every time 
a new variant is to be compared with it. Difference 
refinement assumes that the model for the native 
structure is well determined, and so the native structure 
is held fixed. The final round of atomic refinement of the 
variant structure is then carried out by performing a 
weighted least-squares minimization of the residual 
between observed and calculated differences in ampli- 
tudes of structure factors, given by 

X~irr = ~ [(F~. - Fch ) -- (F'on - F%)] 2 
h (o"2 + ~ + E~irr ) ( 1 ) 

F" h --Fch is the difference between the native and 
variant amplitudes of the calculated structure factors for 
a reflection with indices h, F" h -Foh is the difference 
between observed native and variant structure factors, 
a h and cry, are the instrumental uncertainties in the 
measured amplitudes of native and variant structure 
factors, respectively, and Edi ff is an estimate of the 
residual model error in the group of related reflections 
(usually a shell of resolution) into which the hth 
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reflection falls. In this minimization, either all the 
parameters of the structure to be refined or just those 
affecting the variant regions could be refined. 

The functional in (1) can be written in a way that 
emphasizes the basis of difference refinement by 
defining Fdiff h as the quantity F' or --(Fob --F,h) 
and a z as a 2 -+- cr~ 2 -k- E 2 . Then we can rewrite (1) as 

d i f f  h diffh 

S-" (F:'~h -- Fcuff~)2 
X,~iff ~ - -  . (2) 

diffh 

Fore- ~ may be viewed as the variant structure factor 
corrected by an estimate of a model error term, 
( F o b - F q ) .  

Difference refinement, as given by (2), has been 
applied to several structure refinements and has been 
shown in model and real test cases to substantially 
improve estimates of coordinate shifts from a native to a 
closely related variant structure, when compared with 
independently refining the two structures (Terwilliger & 
Berendzen, 1995). Here we address two important 
problems that remain. The first is related to the 
fundamental assumption of difference refinement, 
namely that the model errors in the native and variant 
structures are highly correlated. We have shown earlier 
(Terwilliger & Berendzen, 1995) that if the model error 
is not highly correlated then difference refinement as 
given by (2) can actually lead to poorer estimates of 
difference between two structures than does indepen- 
dent refinement. We will show that it is possible to take 
this correlation into account so that the refinement 
procedure will lead to estimates that are at least as good 
as those obtained by independent refinement, even when 
the correlation is low. 

The second outstanding problem is that since 
difference refinement is based on differences between 
both native and variant observed and calculated data, 
only reflections that have been measured for both 
structures can be included. One situation where this 
would be a substantial disadvantage is presented in the 
analysis of Laue diffraction data, where data sets 
frequently have completeness as low as 50%. Suppose 
that two Laue data sets, one for a native and one for a 
variant, were collected under slightly different geome- 
tries so that each data set comprised 50% of the data to a 
certain resolution, and the overlap between data sets 
was only 25%. Only the overlapping 25% would be 
usable in difference refinement of the variant, and half 
the available data would be thrown away, clearly an 
unsatisfactory solution. We will show how it is possible 
to include the reflections that have only been measured 
for the variant structure in a difference refinement 
procedure. 

We address these problems here using a Bayesian 
approach. This method allows us to combine all the 
information we have about each structure to be refined, 
including information about the distribution and corre- 

lation of model errors in the different structures. Once 
we obtain a Bayesian expression for the probability 
distribution for parameters in our models, we will be 
able to choose the values of the parameters that 
maximize this probability by minimizing an expression 
related to the one shown in (2). 

2.  B a y e s i a n  e s t i m a t i o n  o f  d i f f e r e n c e s  b e t w e e n  
m a c r o m o l e c u l a r  s t r u c t u r e s  

In this analysis we will assume that we have available a 
well determined model for a native structure and 
measured amplitudes of structure factors for this native 
structure as well as for a closely related variant 
structure. Our goal is to obtain the most likely values 
of the parameters in a crystallographic model describing 
the variant structure. We begin by developing a 
description of the native and variant structure factors 
that includes the crystallographic models used as well as 
sources of error that are uncorrelated and correlated 
between the two structures. We then use the observed 
data to estimate probability distributions describing 
these errors. Finally, we integrate over possible values 
of these error terms, fixing the parameters in the model 
for the native structure, to obtain an expression for the 
most likely values of the parameters in the variant 
structure. As in our previous treatment of difference 
refinement (Terwilliger & Berendzen, 1995), we will be 
approximating the component probability distributions 
and complex sums to first order (e.g. by using Gaussian 
distributions). 

2.1. Correlated and uncorrelated errors in macromo- 
lecular models 

Models of macromolecular structures are generally 
incomplete and cannot describe all aspects of the 
structure, no matter what values of the parameters are 
used. To describe this situation, let the quantity F h 
represent the complex native structure factor for a 
reflection with indices indicated by h. We have a 
crystallographic model for this native structure that 
accounts for most, but not all, of the factors that lead to 
F h, and based on this model we can obtain a calculated 
structure factor, Fch. Similarly, we write the structure 
factor for the variant structure as F' h and the corre- 
sponding structure factor, calculated from a model, as 
F',. h. The key idea of difference refinement is that the 
portion of the native structure factor that is not 
described by the native model, which we term the 
model error for the native structure, is correlated with 
the model error for the variant structure. We can write 
this explicitly as, 

F h : Fch + R h -k- S h (3) 

! t 
F h = F' ch Jr- R h Jr- S h, (4) 
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where we have separated the model error into two terms 
so that we can separately analyze those model-error 
terms that are identical in the two structures (Rh) from 
those that are present in one structure but uncorrelated 
with model-error terms in the other structure (Sh and 
s'h). 

In order to simplify our calculations, we now assume 
that the magnitudes of the model errors (R h + Sh) and 
(R h + S~) are small relative to the magnitudes of F h and 
F~,, respectively. In this case we can write that F h, the 
magnitude of F h, is approximately given by 

Fh ~ Fch + nh + S h, (5) 

where Fch is the magnitude of  Fch, and R h and Sh are the 
components of R h and S h along the direction of Fch. 
Similarly, for the variant structure we can write 

F'h ~-- F"  + R h + S'h. (6) 

Finally, we can write an expression for the 
experimentally observed structure-factor amplitudes, 
Foh and F'o~, in terms of the calculated amplitudes, Fc~ 
and F~h, 

Fo~ "" Fch + R h + S h + e h (7) 

Fo~_F'~ + n~ + S;, + ~,, (8) 

where e h and e~, are the errors in measurement of the 
native and variant structure factors, respectively. 

2.2. Probability distribution f o r  parameters  in the 
model  f o r  the variant structure 

To obtain a probability distribution for the parameters 
0' in the model describing the variant structure, we 
begin by using Bayes' rule (Box & Tiao, 1973) to write 
an expression for the posterior probability distribution 
for 0' given that we have made measurements {Foh} and 
{Fo~ } of the native and variant structure factors, where 
the brackets indicate that we are referring to the entire 
data sets. In this analysis, we will assume that the 
parameters in the model for the native structure are 
already accurately known. (In a more complete 
treatment, beyond the scope of this work, this assump- 
tion could be relaxed.) We write that, 

p(O'l{Fo~,F'oh}) o~ p({Fo~,Fo~}lO')po(O'). (9) 

The prior probability distribution for the parameters in 
the model for the variant structure, po(0') includes all 
our expectations of the bond angles, distances, and 
other restraints that are commonly included in macro- 
molecular refinement (Hendrickson & Konnert, 1980; 
Konnert, 1976; Sussman, Holbrook, Church & Kim, 
1977; Tronrud, Ten Eyck & Matthews, 1987). 

We can obtain an expression for the probability 
distribution p({Fo~,Foh}lO' ) on the right hand side 
of (9) in several steps. Using (5)-(8) we can calculate 
the related probability distribution p({Foh,Fo~}lO', 

{R h, S h, S~}), assuming that the measurement errors e h 
and e~, are normally distributed, 

p({Foh, F'oh}lO', {R h, S h, S~,}) 

o¢ l-[.A/'(Foh - Frh, ¢r~)A/'(F'oh - Fq,  0.~2), (10) 
h 

where A/'(x, 0 "2) = 1/0.(2:r) 1/2 exp(-x2/20. 2) represents 
a normal distribution with variance 0 "2, and 0.h and 0.~, 
are the uncertainties in measurement of Fob, and 
F'oh, respectively. We will obtain information about 
probability distributions for R h, S h, and S~, below. 
Meanwhile we can obtain an estimate of 
p({Foh, F'o,}10' ) by integrating (10) over the 'nuisance' 
variables R h, S h and S~, (Box, 1980). Assuming that (see 
below) R h, Sh, and S~, are independent of Fc~ and F"  we 
can write 

p( t ro  h , V'o h }10') 

fP({Foh, ro,}10'. {Rh, sh. S'hI)Po(tRh})Po(tShI)Po(tS'h}) 
x {dRh}{dSh}{dS'h}, (11) 

where po({Rh}),po({Sh}), and Po({S'h}) are estimates of 
the prior probability distributions for R h, S h and S~,, and 
the brackets again indicate that the entire data set is to 
be considered. 

2.3. Prior probabil i ty distributions for  the errors 

To make estimates of the prior distributions po({Rh}), 
po({Sh}), and po({S'h}) we assume that R h, Sh, and S~, 
are small relative to Fch and F~' h and also uncorrelated 
with them. As discussed by Read (1986), this assump- 
tion is not strictly true and the model errors are 
generally negatively correlated with the calculated 
structure factors. If the model errors are small, 
however, this correlation will be very small and may 
for our purposes be ignored. 

So long as the structure factors R h, S h and Sh are due 
to scattering at a number of locations in the unit cell of 
the native and variant crystals, their prior probability 
distribution can be quite reasonably described by 
Wilson statistics (Wilson, 1949). The components 
R h, S h and S~, along the direction of the calculated 
native structure factor will then have a normal prior 
probability distribution with a variance dependent on 
the resolution of the reflection. We can write that 

po(Rh) = A/'(R h, c~E2), (12) 

where for centric reflections the value of a is the 
expected intensity factor (Stewart & Karle, 1976) and 
for acentric reflections the value of ot is half the 
expected intensity factor (Terwilliger & Eisenberg, 
1987), and E z is a measure of the total correlated model 
error. Similar analyses may be applied to S h, and S~,, 
leading to, 

po(Sh) = .A/'(Sh, t~A2). (13) 
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Po(S'h) = .N" (Sh, otA'2), (14) 

where the model errors that are uncorrelated between 
the native and variant structures are given by otA 2 and 
etA '2 , respectively. 

We use a procedure similar to the one we previously 
developed for estimation of model errors in difference 
refinement (Terwilliger & Berendzen, 1995) to estimate 
the total correlated e r r o r  E 2 and the uncorrelated errors 
A z and A '2. From (7) and (8), if we had a good estimate 
of the parameters in the model for the variant structure, 
0', we could use the part of Fob -- F,. h that is correlated 
with F'o~ - F ' ~  to estimate the mean-square value of R h 
in a range of resolution. That is, 

((Vo, ' - Fch)(F'oh F'  ~ "~ , ' -- ch)) (R2) c~E2 (15) 

where centric and acentric reflections are treated 
separately, ~ is as defined above, and the averages are 
taken over reflections in a range of resolution. Similar 
arguments lead to the relations, 

((Fo, ' - Fch )2) "~ (R~ "4- Sh 2 -Jr- 8 2 ) "" orE 2 n t- ocA 2 -Jr- (0.h2), 

(16) 

and 

<(F;,,  , 2 - F~.,) ) "- (R 2 + S; 2 n t- 8h 2 ) "~ ocE 2 if- a'A '2 -Jr- (el;2). 

(17) 

(15), (16) and (17) can be used to estimate the 
parameters E 2, A 2 and A '2. 

2.4. Bayes ian  d i f f e rence  re f inement  

Substituting (10) into (11), integrating over the 
nuisance variables, substituting the result into (9), and 
taking the negative logarithm of both sides, yields an 
expression (neglecting a factor of two) for the log 
likelihood of a particular set of parameters 0' describing 
the model for the variant structure, 

R In P(O') ~ (F;h - -  FBdiffh)2 . . . .  lnPo(O' ), (18) 
h 0.2diff 

where Fsdiffh is given by 

FBdiffh = F'o~ --/4(Fo~ - Fc~). (19) 

Note that (18) and (19) are very similar to (2), except 
that the estimate of the model error made from the 
observed and calculated amplitudes of the native 
structure factor is multiplied by the factor /4 before 
subtracting it from the observed amplitude of the variant 
structure factor and (18) includes the prior probability 
distribution po(O'). The value of the factor /4 is 
determined by the ratio of the sum of the mean-square 
correlated model error term, E 2, to the sum of the 
mean-square model error term unique to the native 
structure and the variance in the measurement of the 
amplitude of the native structure, A 2 + 0 "2, 

/4 = E2 / ( E  2 --]- A 2 + cI2). (20) 

In large part, the factor /4 reflects the correlation 
between the model error terms for the native and variant 
structures, but it also reflects the correlation of the 
errors in the parameters in the models. If there were no 
errors in the model for the native structure, and if there 
were no correlation between the model-error terms 
(E  2 = 0) then/4 would be zero and the model-error term 
for the native structure would not be applied at all to the 
variant structure. If the correlation and model errors 
were high, then Fed,f r reduces to Fdi if, and Bayesian 
difference refinement is equivalent to difference 
refinement. 

Finally, the weighting factor in (18) is given by, 

O.Bd2 iffh = 0 . h 2  +A'hZ + 1/[1/(°'h2 + A 2 ) +  l / E 2 ] "  (21) 

That is, the uncertainty in FBaiG is related to the 
experimental uncertainties in the measurement of the 
amplitudes of the native and variant structure factors, o h 
and o-~,, the model errors unique to the native and variant 
structures, A h and A h, and to the correlated model error, 
E. 

Note that (19) provides an estimate of FBdm- for each 
reflection where the amplitude of the variant structure 
factor, F[,,, is measured, regardless of whether the 
amplitude of the corresponding native structure factor 
has been measured. For a reflection where the native 
value has not been measured (o h = c~) then /4 = 0 in 

_2 __ _,2 __ At2 __ L-2 19, and (21) reduces to, OBairr, ' - - %  -t-nh -1-~z . That 
is, for reflections where the amplitude of the native 
structure factor has not been measured, the model error 
that is unique to the variant model and that which is 
correlated with the native model contribute equally 
to the uncertainty in FBdiff h. For reflections where both 
native and variant have been measured, the correlated 
model error E 2 can contribute much more weakly 
[through the last term in (21)1. The result of this is that 
reflections for which both native and variant data have 
been measured contribute much more information on 
the variant structure than those where only variant data 
are measured, but all the measured variant data can be 
included in refinement. 

3. Comparison of independent refinement, 
difference refinement and Bayesian difference 

refinement using test data 

We recently constructed several test cases for evaluat- 
ing difference refinement based on known native and 
variant structures consisting of peptides with 51 atoms 
and two water molecules (Terwilliger & Berendzen, 
1995). The native and variant structures were each 
generated using short molecular dynamics simulations 
with X - P L O R  (Brfinger, Kuriyan & Karplus, 1987). For 
the test case we will consider here, the known native 
and variant structures differed by an r.m.s,  distance of 
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O. 1 ,&. The water molecules were used to simulate that 
part of  the known structures that was not included in the 
crystal lographic model.  That is, they were used in 
generat ing simulated native and variant  data sets, but 
were not included in the modeling.  For the case 
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Fig. 1. The effects of decreasing correlation of modeling errors on 
independent refinement (crosses), difference refinement (triangles), 
and Bayesian difference refinement (squares) with varying corre- 
lated errors. Simulated native and a variant data sets were prepared 
as described in the text. The shift between the known native and 
variant structures was 0.1 A r.m.s. ; measurement errors were 5%. 
50% of the variant structure data was not used in refinement. Two 
unmodelled water molecules were added at different positions in the 
native and variant structures, and the x axis shows the r.m.s, shift 
between their positions in the wild-type and variant structures. The 
standard R factors for the refinement were all approximately 20% 
(Terwilliger & Berendzen, 1995). (a) R.m.s. errors in the model 
variant atomic coordinates. (b) R.m.s. errors in the displacements 
from model native to model variant structures. (c) The correlation 
coefficient of model residuals, ft. 

considered here, these water molecules were placed in 
different positions in the known native and variant  
structures, with the shifts in these coordinates from 
native to variant ranging from 0 to 1.6,~. In this way,  
the effects of decreasing correlat ion of model errors on 
the refinement process could be assessed. 

In these tests, simulated data were generated for 1210 
structure factors from 8 to 2,~ and a 5% normal ly  
distributed measurement  error  was added to each 
observed amplitude. The model for the native structure 
was obtained by least-squares restrained refinement 
with a modified version of PROLSQ (Konnert ,  1976; 
Hendr ickson & Konnert ,  1980) using the known native 
structure as the starting model (Terwil l iger  & Berend- 
zen, 1995). The refined native structure differed from 
the known native structure by 0 .083,~  r .m.s .  Variant  
structures were refined in the same way, but either by 
independent refinement (using exactly the same method 
as for the native), by difference refinement,  or by 
Bayesian difference refinement. To simulate a case 
where complete data was not available for the variant 
structure, 50% of  the data for the variant structure were 
not used in the refinement process. 

Previously,  we found that difference refinement 
yields considerably smaller errors in coordinate shifts 
from native --~ variant than does independent refine- 
ment when the correlat ion of model errors is high. As 
this correlat ion decreases,  however ,  the errors in 
coordinate shifts obtained with difference refinement 
becomes even larger than those obtained with indepen- 
dent refinement. We now add Bayesian difference 
refinement to the comparison.  Fig. l (a)  compares  the 
overall  coordinate errors in the variant structures 
obtained with independent refinement,  difference refine- 
ment,  and Bayesian difference refinement as a function 
of  the r .m.s ,  shift coordinates of  the water molecules 
from native -~ variant structures that were not included 
in the refinements. Fig. l(b) compares  the errors in 
coordinate shifts from native ~ variant for the same 
three methods,  and Fig. l(c) shows the values of the 
factor ft. 

Figs. l (a)  and l(b) show that when the positions of 
the water molecules not included in the refinements are 
increasingly shifted between the known native and 
variant structures, the relative r .m.s ,  errors in the 
variant coordinates obtained by difference refinement 
and by independent refinement do change considerably.  
When  the shift in water molecule position is zero, for 
example,  difference refinement yields an r .m.s ,  coordi- 
nate error  of 0.094 A and an r .m.s ,  error  in coordinate 
shifts from native -~ variant of 0.064 ,~ compared to an 
r .m.s ,  coordinate error of 0 .135,~  and an r .m.s ,  error  
in coordinate shifts of 0.115 ,~ for independent refine- 
ment. Note that the principal  reason why difference 
refinement yields a more accurate structure than 
independent refinement in this case is that only half  
the reflection data are used in the refinement of  the 
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variant structure using either refinement method, but 
difference refinement includes information on the native 
structure, which was refined using all the data. When 
the coordinate shift for the water molecules is 0 .6A, 
however, both methods yield r.m.s, coordinate errors of 
0.115 A and the two methods yield similar errors in 
coordinate shifts of 0.103 to 0.110.&. When the 
coordinate shift of the water molecules is 1.6,~,, 
difference refinement yields an r.m.s, coordinate error 
of 0.162 A and an error in coordinate shifts of 0.163 ,h, 
while independent refinement yields an r.m.s, coordi- 
nate errors and r.m.s, errors in coordinate shifts of only 
0.119 A. That is, when the model errors in native and 
variant structures have little correlation, difference 
refinement is very inaccurate relative to independent 
refinement. 

As anticipated from the theoretical treatment we have 
presented, Bayesian difference refinement combines the 
best aspects of independent and difference refinement. 
When the model errors for native and variant structures 
are highly correlated and difference refinement is most 
effective, the factor fi in (20) is nearly unity (Fig. l c) 
and Bayesian difference refinement is essentially 
equivalent to difference refinement. The r.m.s, coordi- 
nate error when the shift in water molecule positions is 
zero is just 0.091.4, and the r.m.s, error in coordinate 
shifts is 0.059.4. Conversely, when the model errors 
have little correlation, the factor 15 is small and Bayesian 
difference refinement is very nearly the same as 
independent refinement. For moderate correlations of 
model errors in the range 0.8 </3 < 0.9, however, 
Bayesian difference refinement is superior to the other 
two methods. When the r.m.s, shift in coordinates of 
water molecules is 0.606A for example, the r.m.s. 
coordinate error using Bayesian difference refinement is 
14% better than that obtained by either independent or 
difference refinement. 

4. Comparison of Bayesian difference refinement 
with independent refinement using data for a mutant 

of gene V protein 

The purpose of using Bayesian difference refinement is 
to obtain accurate estimates of coordinate shifts from 
one structure to another when these shifts are quite 
small. One case where this is likely to be particularly 
useful is in comparing the structure of a mutant protein 
containing one or a few amino-acid substitutions with 
that of the wild-type protein. Such a case is illustrated in 
Fig. 2, which compares independent refinement of a 
mutant structure with Bayesian difference refinement of 
the same structure. In this example, the wild-type 
structure of gene V protein has been refined using data 
to a resolution of 1.8A, and data on the Ile47-+Val 
mutant to a resolution of 1.8,A is used to refine the 
structure of the mutant protein. In order to fully test the 
refinement procedures, the structure of the mutant is 

refined using simulated annealing (Brtinger et al.,  
1987). 

When the structure of the mutant protein is refined 
independently to the wild-type protein, side chains that 
are not very well defined in either structure (such as 

(a) 

(b) 

Fig. 2. Comparison of independent refinement and Bayesian 
difference refinement for a gene V protein mutant. The structure 
of the Ile47--~Val mutant of gene V protein (Zhang, Skinner, 
Sandberg, Wang & Terwilliger, 1996) was refined with simulated 
annealing usin~ X - P L O R  (Briinger et al . ,  1987) using the data 
from 5 to 1.8A. This structure has previously been refined at a 
resolution of 1.8, h, without using simulated annealing (Zhang et 
al . ,  1996). In the test refinement, the coordinates of water 
molecules were restrained with harmonic restraints. All coordi- 
nates and thermal factors were refined. Identical procedures were 
used for independent and Bayesian difference refinement except 
for the choice of observed or Fdiff structure factors. In each case 
the refined structure of the mutant protein is superimposed on that 
of the wild-type gene V protein (Skinner et al . ,  1994). Ile47 is 
shown in magenta, the wild-type structure is white, the Ile--~Val 
mutant structure is red. (a) Independe:'.t refinement. (b) Bayesian 
difference refinement. 
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many of those on the protein surface) will tend to shift 
somewhat arbitrarily between the two structures. This 
may be seen in Fig. 2(a), where when independent 
refinement is used, the mutation in the center of the 
figure at Va135 appears to affect many atoms that are 
located all around the structure, particularly on the 
surface. If, on the other hand, Bayesian difference 
refinement is used, those shifts which are reflected in 
the differences in measured data tend to occur, while 
those side chains that are poorly defined tend to 
remain in place. Fig. 2(b) shows that using Bayesian 
difference refinement only atoms near the site of 
mutation are substantially affected by the mutation. In 
effect, Bayesian difference refinement makes those 
changes that are indicated by difference Fourier 
analyses and tends to leave other atoms in place. 

5. Discussion 

In deriving Bayesian difference refinement, we have 
assumed that the native structure is at least as well 
determined as the variant, that the model errors in the 
native and variant structure are partly correlated, that 
the measurement and model-error distributions may 
be approximated as normal distributions, and that the 
model errors are uncorrelated with the calculated 
structure factors. Under these assumptions, which can 
be made good to first order in realistic macromole- 
cular cases, minimization of the Bayesian difference 
residual (18) will lead to the most probable values of 
the parameters of the model describing the changes 
from native ---> variant structures. For example, 
suppose that the native structure contained some 
substantial coordinate errors that could have been 
reduced by further refinement of that structure. Now 
suppose that we refine a very closely related variant 
structure that is, in fact, essentially identical to the 
native structure in this region. Carrying out Bayesian 
difference refinement on the variant structure will 
cause the same coordinate errors to be made in the 
variant structure that were made in the native 
structure. The difference refinement method will 
correctly yield very small shifts from native to 
variant in this region, but the absolute structure of 
the variant will be in error, matching the native. This 
result is of course desirable in the most common case 
when it is the changes between native and variant 
structures that are of interest. 

The new feature of Bayesian difference refinement 
is that the estimate of the model-error term based on 
the native structure, Fob- Fch, is multiplied by the 
factor fl before using it as a correction for the 
amplitude of the variant structure factor (19). An 
intuitive explanation as to why this might be a good 
idea is as follows. Suppose the native and variant 
structures are very similar, and the model-error terms 
for the two structures are very similar as well. In this 

case, correcting the amplitude of the variant structure 
factor by the entire model-error term estimated from 
the native structure would lead to a very good 
estimate of that part of the amplitude of the variant 
structure factor that can be represented by our model. 
Refining our variant model by difference refinement 
would lead to a very good estimate of coordinate 
shifts. Now suppose instead that the model-error 
terms for the native and variant structures had no 
similarity whatsoever. In this case, 'correcting' the 
amplitude of the variant structure factor with a 
model-error term estimated from the native structure 
would only increase the error in our estimate of 
shifts. The factor /5, which depends largely on the 
correlation of model errors between the two struc- 
tures, allows the subtraction of a reasonable fraction 
of the model term estimated from the native 
structure. Our tests using model data (Fig. 1) show 
that the factor /~ allows Bayesian difference refine- 
ment to combine the best aspects of difference 
refinement and of independent refinement into a 
single method. 

The second new feature of Bayesian difference 
refinement is that it provides a means of including 
measured structure-factor information for reflections 
where the amplitude of the variant structure factor has 
been measured but no measured data is available for 
the native structure. The factor/~ for these reflections 
will be zero and 0 .2 will tend towards infinity. Thus, 
the relative weighting of these observations will be 
lower than for those where native data is available, 
but they will be included in the refinement. 

A third feature of Bayesian difference refinement is 
that the appropriate weighting scheme is clear [(21)]. 
This weighting is similar to that given in (2), but it 
explicitly incorporates the uncertainty in amplitudes of 
structure factors calculated from the model for the 
native structure and treats model errors that are 
correlated between the structures separately from 
those that are unique to each structure. 

6. Conclusions 

Bayesian difference refinement appears to be a very 
simple and useful method for incorporating knowl- 
edge about the deficiencies in a crystallographic 
model for one structure into the refinement of a 
related 'variant '  structure. Using the Bayesian 
approach, the extent of correlation of model errors 
in two structures can be obtained and applied to the 
refinement of the variant structure. In our tests using 
model data, Bayesian difference refinement yielded 
variant structures and coordinate shifts from native 
--~ variant structures that were as accurate as, or 
more accurate than, difference refinement and 
independent refinement. 
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