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Abstract

Applications of structural databases in the protein
crystallographic structure determination process are
reviewed, using mostly examples from work carried
out by the authors. Four application areas are discussed:
model building, model refinement, model validation and
model analysis.

1. Abbreviations

3D, three-dimensional; CBH, cellobiohydrolase; CSD,
Cambridge Structural Database; HIC-Up, Hetero-
compound Information Centre, Uppsala; PDB, Protein
Data Bank; RBP, retinol-binding protein; RMSD, root-
mean-square distance or deviation; VRML, virtual
reality modelling language; WWW, World Wide Web.

2. Introduction

An unattributed inequality postulates that ‘data #
information # knowledge # wisdom’. To proceed from
raw data to information requires processing of that data
(e.g., calculation of the most densely populated areas of
the Ramachandran plot based on a set of 1000 high-
resolution protein models taken from the PDB). To
translate information into knowledge requires careful
analysis, interpretation, and validation (e.g., the knowl-
edge that the large majority of residues in protein
structures lie in one of the most densely populated areas
of the Ramachandran plot, with the exception of glycine
residues). To proceed from knowledge to wisdom
requires insight (e.g., to apply Occam’s razor when faced
with a model with a poor Ramachandran plot, namely to
assume that the model contains problematic regions,
rather than assuming it to be the result of a freak of
Nature, or even due to El Nifio). Over the past decade,
databases, and information and knowledge derived from
databases, have become indispensable tools for prac-
tising macromolecular crystallographers.

Nowadays, at most stages of a structure determination
project databases are used, either explicitly or implicitly
(e.g., using information or knowledge derived from
analysis of databases). A typical project may start with a
literature search using, for example, the MEDLINE or
ISI databases. If the sequence of a target protein is
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available, a wealth of sequence comparison and analysis
tools can be used. For example, to find (globally or
locally) homologous proteins, programs such as BLAST
(Altschul et al., 1990) or FASTA (Pearson & Lipman,
1988) can be used on large protein and/or translated
nucleic acid sequence databases, such as SWISS-PROT
and TrEMBL (Bairoch & Apweiler, 1997), and
GenBank (Denson et al., 1997). To identify sequence
characteristics associated with structure or function, the
PROSITE (Bairoch & Bucher, 1994) or ProDOM
(Sonnhammer & Kahn, 1994) databases can be
accessed. When the time has come to produce diffrac-
tion-quality crystals, crystallization and heavy-atom
databases can be consulted. If a protein is similar in
sequence to another one whose structure is known, that
structure can be retrieved from the Protein Data Bank
(Bernstein et al., 1977), and used as a probe in mole-
cular-replacement calculations. In other cases, a model
may have to be built from scratch using experimental
electron density, a task typically involving the recycling
of fragments found in a (small) structural database.
When a model is sufficiently complete to be subjected to
crystallographic refinement, target values for its
geometry can be derived from an analysis of high-
resolution small-molecule crystal structures as found in
the CSD (Allen et al., 1979). During the rebuilding and
refinement process, database methods can be used to
check the progress and to pinpoint parts of the model
that may be problematic. Similar tools can be used to
validate the final model, prior to deposition and publi-
cation (MacArthur ef al., 1994). In the final stage, while
analysing the structure, databases can be used to look
for similarities with other proteins whose structure is
known, be it at the level of the overall fold (Holm &
Sander, 1994; Kleywegt & Jones, 1997¢), or at the level
of, e.g., loops and active-site residues (Kleywegt, 1998).

Here we review some of the methods and databases
used in the actual process of protein model building,
refinement, validation, and analysis. In addition, we
briefly describe some of our recent work in these areas.

3. Model building

In the early days of protein crystallography, protein
models were built by hand (Kendrew et al., 1960), using
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metal rods to show chemical bonds. Although
myoglobin was built with a series of vertical metal rods
that were colour-coded to represent density values, later
wire models used an optical system based on an inclined
semi-silvered mirror to produce an illusion of super-
imposing a contoured electron density onto the model
(Editorial, 1997). The model was supported by a series
of rods and clamps. With the advent of affordable
computers and graphics systems, numerous software
systems were designed to replace these wonders of
engineering.

The first application of structural databases in the
area of crystallographic model building was described by
Jones & Thirup (1986). It was initially developed in
order to make the generation of a trace from a skeleton
simpler and more effective, Fig. 1. [A few years earlier,
Jonathan Greer (1981) had used multiple protein
models for the construction of homology models.] When
the method [implemented in FRODO (Jones, 1978,
1985)] was tested, it was noticed that two turns in
retinol-binding protein (RBP) were very similar in
structure, yet did not resemble any previously classified
type of turn. A search of the PDB revealed many more
instances of this type of turn, which triggered the
question whether any part of the RBP structure was
unique, or whether the whole RBP structure could be
constructed through recycling of fragments from other,
previously solved protein structures. Indeed, as it turned
out, RBP could be reconstructed from only three other
protein structures with an RMSD of the order of 1 A on
Co atoms. The next step, then, was to create a database

Skeleton

'

Database of well refined,
high-resolution models

|

Similar fragments

Fig. 1. Illustration of the use of structural databases to generate main-
chain coordinates for a protein model, based on skeletonized
electron density.
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consisting of a small number (initially 37) of well refined
high-resolution protein structures that could be used to
construct new protein models using crystallographic
data (Jones & Thirup, 1986), NMR data (Kraulis &
Jones, 1987), or in homology modelling (Jones & Thirup,
1986).

Before automatic model-building procedures can be
used, a set of ‘guide points’ is required. In the case of
electron-density maps these are conveniently abstracted
in the form of a so-called skeleton (Greer, 1974, 1985).
In the original implementation in FRODO, such a
skeleton had to be converted into a set of Co positions,
either automatically (by placing points along the
skeleton at 3.8 A intervals), or manually. This initial set
of Ca positions could then be used to query the struc-
tural database. For reasons of speed, least-squares
superpositioning methods were impractical at the time,
and so a two-step procedure was used. In the first step, a
simple method based on Ca—Cu distance plots (Phil-
lips, 1970) (i.e., matrices containing the distances
between all pairs of Ca atoms in a protein model) was
used to locate fragments that were likely to be similar. In
the second step, a full least-squares analysis was used on
the selected fragments. The distance matrices were pre-
computed for all structures in the database, and locating
fragments of similar local conformation to that of a
stretch of N guide Co positions was, therefore, a simple
and speedy operation. For each consecutive stretch of N
residues in the database structures, the sum of squared
differences between the inter-Co distances was calcu-
lated. The database fragments for which this sum was
small were then used in the least-squares comparison.
Originally, the length of the fragments could be deter-
mined by the user (this method is still available in O as
the Lego_CA command). Later, this was fixed at five
residues, which turned out to be sufficient to reproduce
main-chain coordinates with an RMSD of ~0.5 A (Jones
et al., 1991). This cut-off, in turn, ensures that the
carbonyl O atoms will be pointing in the right direction
in most instances. An additional benefit of using shorter
fragments is that less-frequent main-chain conforma-
tions have a higher probability of being recognised.

The current implementation [the Lego_auto_mc
command in O (Jones et al., 1991; Jones & Kjeldgaard,
1994, 1997)] locates the best fit for five-residue stretches
in the database (i—2 to i+2), but it only updates the
coordinates of the middle three residues (i—1 to i+1).
The algorithm then moves forward three residues and
finds the best fit for residues i+1 to i+5, etc. In this
fashion, it rapidly generates a set of main-chain coor-
dinates for a model, starting from approximate Cu
positions. [If the random error in the approximate Co
positions is greater than ~0.3 A, the autobuilt model will
be closer to the true structure than the starting model
(Jones et al., 1991).] A side-effect of the use of five-
residue fragments to generate coordinates for three
residues at a time is that all residues other than number
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3, 6,9, etc. will have their main-chain ¢ and 1 torsion
angles determined by the fusion of two fragments that
are not necessarily adjacent fragments from one and the
same database structure, Fig. 2. Hence, paradoxically,
models generated in this fashion (i.e., derived entirely
from recycled database fragments) will generally not
display a Ramachandran plot typical of a well refined
high-resolution model, even though all the structures in
the database had good Ramachandran plots. However,
because the random errors in the main chain are then
usually rather small, a single cycle of crystallographic
refinement quickly leads to a much improved Rama-
chandran plot (Kleywegt & Jones, 1996b), Fig. 3.

The algorithm outlined here lies at the basis of many a
homology modelling program. Interestingly, the
approach was also extended for application to NMR
data (short and medium range NOEs plus vicinal
coupling constants) (Kraulis & Jones, 1987). In this case,
a slightly larger database was used (56 protein crystal
structures refined to a resolution of 2.0 A or better), and
instead of using Co—Cou distance matrices, distances
between calculated HN, Ho and Hp protons were used.
Not unexpectedly, the approach produces models with
good local conformations, but since the long-range NOE
information is not used, the relative orientation of
secondary-structure elements, for instance, is ill-deter-
mined. Nevertheless, the approach showed promise as a
method for local refinement of structures generated by
other means (e.g., distance-geometry or simulated-
annealing methods). This method has not caught on in
the NMR community, but other methods have been
developed to make NMR models more ‘protein-like’
(see below).

4. Side chains

About two decades ago, Joel Janin and co-workers
investigated the distribution of x; and x, side-chain
torsion angles in crystal structures of proteins (Janin et
al., 1978). They found that these torsion angles behave
in accordance with simple energy-based calculations,
with preferences for values of +60, 180 and —60° for
aliphatic side chains, and +90° and —90° for the yx,
torsion angle of aromatic residues. Inspection of the

1 2 3 4 5 6 7 8

Fig. 2. When O auto-builds main-chain coordinates, overlapping
fragments of five residues are retrieved from the database, and these
are used to update the coordinates for the central three residues.
Hence, only every third residue will inherit main-chain torsion
angles (¢ and ) from a single database fragment (see also Fig. 3).
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combined yx,/ x, distributions revealed that several types
of residue displayed preferences for certain combina-
tions of torsion angles. For example, leucine residues
turned out to prefer the combinations —60/180° and 180/
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Fig. 3. The phenomenon illustrated in Fig. 2 explains why the
Ramachandran plot of an automatically built model is usually poor.
However, the errors tend to be small and randomly distributed, and
therefore the model can usually be vastly improved by a single cycle
of reciprocal space crystallographic refinement. Ramachandran plot
of (a) the initial model of cellobiohydrolase I (Divne et al., 1994),
and (b) the model obtained after a single cycle of simulated-
annealing refinement. In both plots, the pink areas represent the
core regions as defined in (Kleywegt & Jones, 1996b).
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Table 1. Distribution of individual side-chain torsion
angles

We used the list of Hobohm & Sander (1994) of August 1995 and the
Protein Data Bank release of October 1995, to create a set of 403
protein models that were mutually 95% or less identical in sequence,
that contained more than 20 amino-acid residues, and that had been
solved by X-ray crystallography at a resolution not worse than 2.0 A.
For each model, all atoms (and their associated torsion angles) whose
temperature factor was higher than the average protein temperature
factor plus two standard deviations were discarded. This was
performed in order to exclude residues from the analysis whose
conformation might have been determined more by the restraints or
force field used in the refinement than by actual experimental data. For
the side-chain torsion-angle analysis, each torsion angle was divided
into bins of 1°. The preferred torsion-angle values were integrated and
averaged with an interactive graphics program, 02D (GJK, unpub-
lished program). In the table, the average values of the most populated
regions (that account for at least 5% of the population) are listed in
degrees, together with the percentage of the population they represent
(in parentheses).

Residue Torsion Preferred values and population (%)

Thr X1 300 (46) 61 (43) 187 (7)

Cys X1 295 (55) 182 (28) 63 (16)

Ser X1 63 (45) 297 (30) 180 (21)

Val X1 175 (69) 297 (19) 66 (7)

Leu X1 289 (65) 181 (29)
X2 175 (58) 64 (30)

Pro X1 267 (45) 337 (43)
X2 326 (46) 34 (44)

His X 294 (55) 185 (32) 61 (12)
X2 278 (47) 82 (34) 178 (7)

Ile X1 296 (74) 61 (14) 191 (10)
X2 168 (78) 299 (14) 78 (7)

Phe X1 293 (52) 181 (33) 62 (13)
P 77 (45) 282 (40)

Tyr X1 293 (53) 180 (32) 63 (13)
X2 77 (48) 282 (43)

Trp X1 291 (53) 181 (32) 61 (14)
X2 91 (57) 263 (27) 342 (8)

Asp X1 290 (50) 187 (30) 61 (18)
X2 one broad peak (max. ~340°)

Asn X1 291 (52) 188 (29) 63 (15)
X2 flat distribution

Met X1 292 (60) 185 (28) 63 (7)
X2 179 (60) 296 (25) 68 (10)
X3 286 (40) 74 (31) 180 (19)

Glu X1 292 (55) 185 (30) 62 (9)
X2 179 (63) 290 (19) 73 (14)
X3 one broad peak (max. ~0°)

Gln X1 294 (57) 183 (31) 66 (6)
X2 178 (61) 292 (20) 69 (14)
X3 flat distribution

Arg X1 292 (55) 183 (31) 66 (8)
X2 181 (75) 289 (11) 67 (6)
X3 179 (43) 293 (27) 68 (21)
X4 176 (46) 266 (28) 93 (21)

Lys X1 291 (56) 185 (32) 64 (6)
X2 179 (71) 289 (14) 69 (7)
X3 178 (70) 292 (11) 69 (9)
X4 177 (59) 292 (17) 68 (15)

+60°. Upon completing their high-resolution refinement
of penicillopepsin, James & Sielecki (1983) repeated the
analysis using a small set of well refined high-resolution
crystal structures from their own laboratory. This
revealed the distributions of torsion angles and combi-
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nations to be even narrower and sharper than had been
observed previously.

A few years later, Ponder & Richards (1987) derived a
library of (preferred) side-chain rotamers, i.e. residue-
specific preferred (combinations of) side-chain torsion
angles, for the purpose of enumerating sequences that
could effectively pack on a given backbone scaffold or
‘core structure’. This set of rotamers formed the basis for
the rotamer library used in O (Jones et al., 1991), which
retained only those rotamers that occurred with a
frequency of at least 10% in the analysis of Ponder and
Richards, and which mostly used the x; and xi/x
torsion angles. When O autobuilds side chains, every
residue is modelled by default in its most common
rotamer conformation (the Lego_auto_sc command).
Subsequently, the user can correct those instances where
the side chain is in a different rotamer conformation
(Lego_side_ch command) or in a non-rotamer confor-
mation (Tor_residue and Tor_general commands). In
the former case, the program can also execute this task
automatically (RSR_rotamer command) by calculating
for each rotamer how well it fits the experimental
electron density (after a rigid-body rotational search
pivoting around the Co atom in order to optimize the fit
to the density). The rotamer conformation that gives the
best fit is subsequently selected. More recently, a new
command has been added to O that also allows auto-
matic real-space fitting of torsion angles against the
density [Fm_rsr_tors command, (TAJ, unpublished
results)].

We have recently repeated the analysis of side-chain
torsion angles, now using a 5% population cut-off to
obtain a larger set of rotamers (Tables 1 and 2). One
interesting observation pertains to the third leucine
rotamer, which has rather unusual torsion angles, yet
accounts for almost 10% of the leucine population
surveyed, Fig. 4. It is most likely that this is a (frequent)
model-building artifact, since its shape resembles that of
the most frequent rotamer. This pitfall has also been
noted by P. A. Karplus (quoted and discussed in
Kuszewski et al., 1997). This case may serve as a warning
for crystallographers, homology modellers, and structure
validators.

Other workers have derived rotamer libraries that
take into account a dependence on the local main-chain
conformation. However, for crystallographic model-
building purposes this is unnecessary, since the correct
conformation can usually be identified on the basis of
the shape of the electron density (caveat emptor; see
above).

5. Bias

We have discussed two ways of using databases in the
process of protein crystallographic model building: the
construction of a model’s main chain using a small
structural database, and the generation of side chains
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Table 2. Rotamer library used for crystallographic model building with O

The data described in the headnote to Table 1 were used to generate xi, x» plots, that were divided into 10 x 10° squares, and the torsion-angle
combinations were tallied for each residue type individually. Rotamer populations and values were obtained by integration and averaging with
02D. Preferred torsion angles are listed as g~ (~+60°), g" (~—60°), t (~180°), ¢ (~0°), 0" (~+90°), 0~ (~—90°) and x (other values); o= is used in
cases where a x, torsion angle of +90° is chemically equivalent to one of —90°. Only rotamers whose population is at least 5% have been included.
Glycine and alanine do not have side-chain rotamers. Preferred conformations for cysteine, valine, threonine, and serine side chains are defined by

the x; torsion alone, and are listed in Table 1.

Residue Rotamer Population (%) x1 (°) x2 ()
Leu gt 54 300 180
tg~ 27 190 70
07X 9 260 40
Pro XX 40 30 303
XX 37 340 40
cc 20 0 0
His g'g" 30 300 290
g'o" 19 300 100
to* 16 190 80
to~ 12 190 270
gt 8 300 170
g o 7 70 280
Tle gt 58 300 170
tt 7 190 170
Phe g'o* 49 300 90
to* 32 190 90
g ot 13 70 90
Tyr g o* 48 300 90
to* 32 190 90
g 0 14 70 90
Trp g'o" 38 300 100
to* 15 180 80
to~ 14 180 260
g'c 9 300 350
g o 9 70 280
g o" 5 70 90
g0~ 5 300 280
Asp g'x 39 300 340
tx 14 190 340
27X 11 70 340

using a derived database (rotamer library). It is some-
times argued that the use of databases in model building
will introduce bias into the model (and, hence, the
structural database), making it more likely that genu-
inely unusual conformations will be discriminated
against. We submit that this argument is invalid. First, in
regions where the experimental density is of high
quality, the crystallographer (or a refinement program)
can and will rely on this density to model the protein’s
main chain and side chains. In regions where the density
is ambiguous or even invisible, one has no proof for the
model assuming a ‘genuinely unusual’ conformation in
the first place. In this case, it is safer to rely on a database
of well refined and high-resolution structures to model
the main chain, and on a library of rotamers to model
the side chains. Frequently, unusual local conformations
arise because of model-building errors (see Kleywegt et
al,, 1996, for an example). Also, as more and more
structures are solved at atomic resolution and refined
without reference to databases it becomes clear that
protein structures are even more ‘well behaved’ (in
terms of main-chain and side-chain geometry) than

Residue Rotamer Population (%) x1(°) x2 (°)
Asn g'x 33 300 320
tc 21 190 0
g'x 17 300 140
gc 12 70 0
tx 7 190 210
Met g't 36 300 190
g'g" 26 300 300
tt 17 190 180
tg” 9 190 70
gt 7 70 190
Glu gt 34 300 180
tt 23 190 180
g 15 300 300
gt 6 70 190
Gln gt 38 300 180
tt 20 190 180
g'g 18 300 300
tg~ 10 190 70
gt 5 70 100
Arg o't 44 300 190
tt 27 190 190
g'e” 11 300 290
gt 8 70 190
tg~ 5 190 70
Lys gt 42 300 190
tt 25 190 180
e 14 300 290
gt 6 70 180
tg~ 6 190 70

assumed previously (see, e.g., Sevcik et al., 1996). The
use of databases helps the crystallographer to rapidly
produce a ‘zero-order’ model that can be expected to be
reasonably close to the final model (Jones & Thirup,
1986; Jones et al., 1991; Zou & Mowbray, 1994), and that
portrays genuine protein-like features. [Or, as
Kuszewski and co-workers have argued (Kuszewski et
al., 1996), the distributions of main-chain and side-chain
torsion angles found in the crystallographic database are
a direct result of the underlying physical chemistry of
the system.] Careful refinement and intelligent
rebuilding (Kleywegt & Jones, 1995a, 1996a, 1997b) will
subsequently apply the final touches, as well as reveal
parts of the protein that genuinely deviate from the
zero-order model. It should be noted that such devia-
tions are often of biological importance (Herzberg &
Moult, 1991). For instance, the active-site serine residue
in o/ B hydrolase enzymes (Ollis et al., 1992) is an outlier
in the Ramachandran plot, but this is a feature of these
proteins, not an error in the models. In order to be able
to discriminate errors and genuine outliers, one often
needs access to the experimental data (Jones et al,
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1996). Deposition of structure factors is therefore
crucial to ensure the integrity of the structural database.

6. Refinement

In crystallographic refinement, database information is
typically used in the form of dictionaries that describe
geometrical and stereochemical features (e.g., bond
lengths and angles, planarity and chirality) in terms of
target values and the (desired or observed) tightness of
the distribution around these target values
(Hendrickson & Konnert, 1980). This information is
used to restrain or constrain the model during crystal-
lographic refinement, since the crystallographic data
alone (at anything worse than atomic resolution)
contain insufficient information to produce proper
geometry. If one were to refine a model only against the
crystallographic data, this would lead to spurious
‘errors’ and a general deterioration of the model, as
indeed it did in the very first published least-squares
reﬁnoement of a protein model, that of rubredoxin at
1.5 A resolution (Watenpaugh et al., 1973). Until a few
years ago, all refinement and model-building programs
used their own set of atom types and geometric target
values (Laskowski, Moss et al, 1993; Priestle, 1994).
Engh & Huber (1991) carried out an analysis of the
geometry of fragments of small molecules, as found in
the CSD, that resemble fragments occurring in the 20
amino acids. This yielded a new set of unique atom
types, new target values for bond lengths and bond
angles and values for their experimentally observed
sample standard deviations. This prompted Briinger to
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Fig. 4. Distribution of side-chain torsion angles for 6638 leucine
residues as observed in 403 crystal structures. The two major
rotamers are labeled 1 and 2, and the probably spurious third
rotamer is labeled (3).
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use the free R value (Briinger, 1992; Kleywegt &
Briinger, 1996) to determine appropriate weights for the
geometric terms relative to the weight of the crystal-
lographic residual (Briinger, 1993). The improved target
values for bond lengths and bond angles, combined with
the fact that they were restrained more tightly, led to a
general improvement of the quality of refined protein
models with respect to both the bond lengths and the
bond angles, and the fit to the crystallographic data as
assessed using the free R value. Priestle has ‘translated’
the Engh & Huber dictionary for most of the common
refinement and rebuilding programs (Priestle, 1994), and
nowadays most protein models are refined with it. More
recently, the group of Berman has carried out a similar
analysis for nucleic acids yielding a much improved
dictionary (Parkinson et al., 1996), compatible with the
Engh & Huber dictionary for proteins (i.e., target values
derived from a similar source, and restraints of
comparable strength).

Compared with the high-quality dictionaries available
for protein and nucleic acid model refinement, the
dictionaries used for other entities (‘hetero compounds’)
are generally in a sorry state (GJK, unpublished obser-
vations). Because of the unlimited chemical diversity of
hetero compounds, compared with the small number of
building blocks that make up proteins and nucleic acids,
a comprehensive analysis in the vein of Engh & Huber is
impractical. Every time a new hetero compound is
introduced into a refinement or model-building
program, dictionaries will have to be defined. Sometimes
these can be derived from the entries for regular amino
acids or nucleic acids, or they may be obtainable from
colleagues (in which case they should be critically
checked), or experienced chemists may be able to define
them largely from scratch. Alternatively, the CSD can be
searched to find out if the crystal structure of the hetero
compound (or a related compound) has been solved
previously. If this is not the case, the CSD can still be
used to retrieve instances of smaller fragments of the
hetero compound, and statistics pertaining to the
distributions of bond lengths and angles can be calcu-
lated to yield target values and approximate standard
deviation values. However, the CSD is a commercial
database, and relatively few macromolecular crystal-
lographers have access to it (although the Cambridge
Crystallographic Data Centre operates a scheme under
which infrequent academic users may be granted some
access time free of charge). The PDB is an alternative
database to look for coordinates of hetero compounds,
and we have recently set up a WWW-based service for
this purpose, called HIC-Up (‘Hetero-compound Infor-
mation Centre, Uppsala’, at URL http://alpha2.bmc.
uu.se/hicup/). This site contains coordinates, ready-made
dictionaries (for CNS, X-PLOR, TNT and O), as well as
other relevant information for the hetero compounds
encountered in the PDB. The user should be aware,
however, that macromolecular crystallography is
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generally not a reliable method to determine small-
molecule structures. Not only will limited resolution lead
to less accurate hetero-compound structures, they may
also have been refined using inappropriate dictionaries
in the first place. In order to try and prevent indis-
criminate use of dictionaries derived from such coordi-
nates, a simple quality assessment is included for every
hetero compound (see below).

A novel application of the use of databases in
refinement is the approach of Kuszewski and co-
workers, who have developed a database-derived
conformational potential (Kuszewski et al., 1996, 1997).
In their 1996 paper, they noted that ‘in most cases, a
high-resolution (< 2 A) crystal structure will provide a
better description of the structure in solution than the
corresponding NMR structure’ (for example, chemical
shifts calculated from crystallographic models compare
better with those determined experimentally than
chemical shifts calculated from NMR models). This
prompted them to devise a mechanism through which
conformational information derived from high-resolu-
tion crystal structures can be incorporated into the
(NMR) model-refinement process. Their original
implementation used the PROCHECK database of
high-resolution crystal structures (Laskowski, MacAr-
thur et al., 1993) to derive matrices of energy values at
evenly spaced points along axes that correspond to the
various types of dihedral angle found in proteins (e.g., x;
angles, /v and x;/x,). The populations were counted
in bins, converted into probabilities, and transformed
into a pseudo-potential by taking the negative logarithm
(derivatives are approximated simply by the local slope

Peptide flip
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Pep-flip value = RMSD (Omodel, Odatabase)
Fig. 5. Calculation of the pep-flip value as implemented in O.
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of the energy function). Models refined using this
potential fit the NMR data equally well, but in addition
they converge more rapidly and (not unexpectedly) they
score much better in quality tests using PROCHECK
and WHAT IF. Naturally, since this method essentially
‘fudges’ both the Ramachandran plot and the rotamer
distributions, these two criteria can no longer be used to
validate a model refined in this fashion!

The conformational database potential method has
been implemented in the refinement program CNS
(Briinger et al., 1998). We have carried out some preli-
minary tests of the use of this potential in the refinement
of a low-resolution protein model [endoglucanase I
(Kleywegt et al., 1997), at 3.6 A resolution]. Using vali-
dation tests that are largely orthogonal to the potentials
used in the refinement program (such as the free R
value, pep-flip score, and Ca backbone quality), we find
that the method has a modest but distinct effect when
used on the final model. However, when used in the
refinement of an early, incomplete and partially
mistraced model, the effect is mostly cosmetic (ie.,
improved Ramachandran plot and rotamer quality, but
no impact on independent quality measures), and might
even lead to a false impression concerning the quality of
the model. A plausible explanation for these observa-
tions is that the database potential forces a model to
assume favourable torsion-angle combinations, but not
necessarily the correct ones. In crude models, this will
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Fig. 6. The orientation of a peptide plane is intimately linked to the
location in the Ramachandran plot of the two residues that are
linked by it. Flipping the peptide plane between residues i and i+1
changes the v angle of residue i and the ¢ angle of residue i+1 by
~150-180°. If residue i has a negative ¢ value, an erroneous flip may
not result in the residue becoming an outlier. However, if residue
i+1 has a negative ¢ value, an erroneous flip will almost always result
in the residue becoming an outlier. Hence, residues that have
unusual ¢, ¥ values and are pep-flip outliers are often indicative of
local main-chain errors.
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lead to many residues lying in favourable but incorrect
regions of the Ramachandran plot, for instance. On the
other hand, on near-final models, in which most of the
atoms are roughly in their correct position already, the
effect is more benevolent. When deciding whether or
not to use the database potential in crystallographic
refinement, one will need to weigh the importance of
improved model quality and the inevitable loss of
several powerful validation criteria.

7. Validation

Structural databases have become an indispensable tool
in the area of model validation. Ramachandran analysis
is a prime example of this; whereas the ‘allowed’ areas of
the Ramachandran plot were originally defined based
on simulations of dipeptides (Ramachandran et al., 1963;
Ramakrishnan & Ramachandran, 1965), nowadays most
programs use distributions derived from an analysis of a
set of well refined and high-resolution crystal structures
(Morris et al., 1992; Laskowski, MacArthur et al., 1993;
Kleywegt & Jones, 1996b; Hooft et al., 1997).

Recently, we developed a Ramachandran-like
procedure for the validation of protein models for which
only Cua coordinates are available (Kleywegt, 1997). It is
based on the use of pseudo-angles and pseudo-torsion
angles between sequential Co atoms (Oldfield &

Rotamer side-chain fit

Model

| ™\

Rotamer 1 Rotamer 2

RSC = min { RMSD (Scmgde], SCrotamer) }

Fig. 7. Calculation of rotamer side-chain fit values as implemented in
0.
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Hubbard, 1994). A set of high-resolution models from
the PDB was used to delineate core, ‘disallowed’, and
other regions. It was shown that the fraction of residues
in core and ‘disallowed’ regions are sensitive indicators
of global model correctness, similar to the Ramachan-
dran plot for all-atom models (Kleywegt & Jones,
1996b).

In O, the same databases that are used in model
building (see above) can be used to find local structural
outliers, which may be either genuine, but unusual
features, or errors. The quality of the main chain can be
assessed quickly and sensitively by means of a Rama-
chandran plot (Kleywegt & Jones, 1996b). In addition,
the orientation of the peptide O atoms can be investi-
gated (Pep_flip command, Fig. 5). For every residue i in
a model (except the two residues at each terminus), a
penta-peptide i—2 to i+2 is used, and the structure
database is searched to find up to 20 similar penta-
peptides that superimpose with an RMSD of less than
1.0 A on Ca atoms. The RMS distance of the peptide O
atom of residue i to those of each of the database
fragments is calculated and this number is called the
pep-flip value. If the pep-flip value is large, the residue is
classified as an outlier (‘how large’ depends on the size
of the structural database; in O, typically, a value of
2.5 A is used, but for a larger database a lower cut-off
value would have to be used). This means that most
residues in the database that have similar local Co
conformations have their carbonyl O atom pointing in
the opposite direction to that of the model. This implies
that the peptide plane has an unusual orientation, and it
is up to the crystallographer to decide (using the elec-
tron density and/or analogy to related structures) if this
is due to an error in the model, or whether it is a genuine
feature of it. It is important to realise that almost every
model contains a few outliers [typically, ~1-2% of the
residues (Kleywegt & Jones, 1995b)]. As discussed in
(Kleywegt, 1996), the orientation of the peptide plane is
intimately associated with the location in the Rama-
chandran plot of the two residues linked by the peptide,
Fig. 6.

The rotamer library of O can be used to pinpoint
residues that have an unusual side-chain conformation
(RSC_fit command, Fig. 7). For every residue (except
glycyl and alanyl residues), each of the possible rotamers
is superimposed using the main-chain coordinates, and
the RMSD between the B, y and § side-chain heavy
atoms is calculated. The RSC-fit value is defined as the
RMSD of the rotamer that gives the smallest RMSD. If
this number is large, the residue is classified as an outlier
(again, ‘how large’ depends on the size of the rotamer
library; for the original library a value of 1.5 A was used,
but for the enlarged library a value of 1.0 A may be
more appropriate). This implies that the residue does
not have a side-chain conformation that resembles that
of any preferred rotamer. Again, it is up to the crystal-
lographer to investigate if this is a genuine feature of the
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model, or due to an error. A typical final model will
contain ~5-10% residues whose side chain is not in any
preferred rotamer conformation (Kleywegt & Jones,
1995b). In the near future, the definition of rotamers in
O will be recast in terms of the actual torsion angles, so
that the RSC-fit value can be expressed as the RMS
deviation of one, two or more torsion angles from
preferred values or value combinations, as suggested by
Noble et al. (1993).

As mentioned earlier, the geometry of hetero
compounds in deposited models in the PDB is of widely
varying quality. Since geometric dictionaries for such
compounds often have to be formulated by the crystal-
lographer, errors are easy to make and they will leave
their mark on the final geometry of the ligand, co-factor,
etc. Common mistakes include incorrect target values
for bond lengths and bond angles, and omission of
planarity and chirality restraints. Although this
phenomenon has been observed previously (van Aalten
et al., 1996), few validation methods are available that
are applicable to hetero compounds, and those that do
exist tend to require access to the experimental data
[e.g., real-space electron-density fits (Jones et al., 1991)].
In an attempt to provide at least a basic validation
service, we have written a program (called HETZE) that
checks whether bond lengths fall in a range of accep-
table values [mainly using the information compiled by
Allen et al. (1987), which is derived from an analysis of
the CSD], whether torsion angles that would appear to
be near 0 or 180° have been restrained sufficiently, and
whether improper torsion angles (i.e., virtual or pseudo-
torsions, used by X-PLOR to enforce flatness and
proper chirality) of C atoms with at least three non-H-
atom neighbours assume reasonable values (near 0, +35
or —35°). This program is accessible through the
HIC-Up WWW site mentioned earlier. The program has
also been run on all the hetero compounds collected at
that site to warn users for potentially unreliable coor-
dinate sets.

Databases are used extensively in validation methods.
The most interesting applications are those in which the
criteria that are checked are orthogonal to the infor-
mation included in the refinement (and rebuilding)
process. One example of this is the ‘directional atomic
contact analysis’ (DACA) method of Vriend & Sander
(1993). This method, in essence, checks how usual or
unusual the environment of each residue fragment is
compared with the database. If there are a few residues
with unusual environments in a model, this may help
pinpointing interesting parts of the model. On the other
hand, if many or most residues have unusual environ-
ments, then this is a strong indication that there is
something seriously wrong with the model (e.g., register
error, tracing error, homology model). Other examples
are methods that use pseudo-potentials or sequence—
structure profiles to assess how likely the fold of the
model is given the amino-acid sequence.
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A large number of validation-related statistics have
been collected for a subset of 476 crystallographic
protein models from the PDB (Kleywegt, 1996).
Although this Quality Data Base (QDB) was generated
for the specific purpose of investigating the use of non-
crystallographic symmetry in protein model refinement,
it also provides information about many other validation
criteria. A stand-alone program can be used to query the
database, to sort entries by any criterion, and to inves-
tigate possible correlations between criteria [e.g.,
between deviations from non-crystallographic symmetry
and resolution (Kleywegt, 1996)]. It has also been used
for formulating rules of thumb with respect to the
expected percentage of outliers for several validation
criteria (Kleywegt & Jones, 1995b).

In the past, most validation tools have been based on
the scrutiny of coordinates. For many of these tools, this
means that only outliers can be identified (Jones et al,
1996). In order to determine whether an outlier is due to
a genuine but unusual feature of the molecule(s) under
study, or whether it is more likely to be an error in the
model, one often needs access to the original crystal-
lographic data. This enables one to inspect maps, to
calculate omit maps and, if necessary, to do some more
refinement, perhaps using better methodology than was
available when the model was originally refined. In
Uppsala, Dr Tom Taylor is currently working on a
project to link PDB entries to the crystallographic data
(if deposited), as part of a European Union project on
macromolecular model validation. This involves calcu-
lating maps that can be accessed through the WWW
using VRML technology. At a later stage, limited
refinement will also be carried out in order to obtain
free R values and minimally biased maps.

8. Analysis

Once a protein structure has been solved, refined and
validated, the hardest part of the job has been
performed, but the biologically interesting work only
begins. The first eagerly asked question will often be:
does my protein have a novel fold? This question can be
answered using any of a number of programs [such as
DALI (Holm & Sander, 1994, 1996) and DEJAVU
(Kleywegt & Jones, 1997¢)] that will compare a model to
a database of known structures to try and find simila-
rities. Sometimes unexpected similarities are found
which in themselves may provide further insight into the
function and/or evolution of the proteins involved.
Sometimes protein structures show similarities on a
much smaller level than that of the fold or even domain
structure, e.g. involving a limited number of side chains.
This problem of three-dimensional pattern recognition
in structures was discussed by Lesk as early as 1979
(Lesk, 1979). Pharmacophoric pattern matching is a well
known technique in the context of chemical structure
databases (Willett, 1987). We have developed a set of
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programs that aid in identifying local similarities in
macromolecular structures, inspired by the work of
Artymiuk et al. (1994). SPASM (Kleywegt, 1998) is a
program that can be used to find out if a user-defined
motif also occurs in any previously solved structures. A
motif is defined as a (usually small) set of residues for
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each of which the main chain and/or side chain must be
matched in database proteins. A motif may be any
constellation of residues that the user deems interesting,
e.g. a hydrophobic cluster, a catalytic triad, a binding site
for an inorganic ion, ligand, substrate or co-factor, or
simply an unusual loop or interaction between two or

Fig. 8. Illustration of the use of
SPASM. (a) A search for loops
similar in conformation to resi-
dues 98-106 in cellular retinoic
acid-binding protein type II (PDB
code 1CBS). SPASM finds a
number of hits, and has generated
- a macro file for O which has
automatically read, superimposed
and drawn these hits onto the
target loop. (b) A search for
histidine-triads similar to that
observed in the structure of nitrite
reductase, where it binds copper
(PDB code 1AFN). Similar motifs
are found in the structures of
. ascorbate  oxidase, adenosine
deaminase, carbonic anhydrase,

haemocyanin and ecotin.

Py
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more residues. In the database, a residue’s main chain is
represented only by its Co atom, and its side chain by
the centre-of-gravity of all its side-chain atoms. This
makes the database screening very fast, and enables the
use of ‘fuzzy patterns’ (see below). The current SPASM
database contains 2190 structures from the PDB (June
1998 release) whose sequences are mutually less than
95% identical (Hobohm & Sander, 1994). If a protein is
encountered that contains a similar constellation of
residues as that defined by the user, instructions are
written to a macro file for O. When this macro is
executed, all hits will be retrieved and superimposed
onto the user’s model. In order to allow ‘fuzzy pattern
matching’, an option has been included to allow varia-
tions of the user-defined motif [namely, conservative
substitutions as defined by the BLOSUM-45 substitu-
tion matrix (Henikoff & Henikoff, 1992)]. The program
has been used in the analysis of an unusual Met-Trp
interaction in the interface of the complex between
acetylcholinesterase and the snake toxin fasciculin
(Harel et al., 1995), a set of five carboxylate residues
important for the structure and function of inorganic
pyrophosphatase (Heikinheimo et al., 1996), and the P-
loop phosphate-binding motif of phosphoenolpyruvate
carboxykinase (Matte et al, 1996). Two additional
examples are shown in Fig. 8, and others are discussed
by Kleywegt (1998).

RIGOR (Kleywegt, 1998) is a program that does
essentially the opposite of SPASM. RIGOR uses a
database of pre-defined motifs and scans the user’s
model to find out if any of these motifs occur in it. This
program, in other words, is more or less a three-
dimensional equivalent of PROSITE (Bairoch &
Bucher, 1994). The generation and annotation of a high-
quality database of pre-defined motifs is a major
undertaking, that should preferably be coordinated by a
database centre. For the time being, a motif database is
used that is generated automatically by a program
(called AUTOMOTIF) that looks for ‘interesting’
constellations of residues, such as hydrophobic clusters,
charged clusters, mixed clusters, and sets of residues in
the proximity of a hetero entity (ligand, ion, substrate,
etc.). This motif database contains ~3400 entries at
present.

Finally, structural biologists can take their models and
attempt to do some ‘database mining’ in sequence,
rather than structure, databases. If two or more models
with structural similarities are available, their structure-
based sequence alignment can be useful in efforts to
identify other proteins (whose structure has not been
determined yet) that may have a similar structure and/or
function. STRUPAT (GJK, unpublished results) is a
program that generates PROSITE-style sequence
patterns [such as ‘G-X-(WY)’] on the basis of a set of
structurally aligned protein models. It considers only
those parts of the models that are structurally similar in
each of the aligned models, and identifies common
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residue types. These PROSITE-style pattern(s) can then
be scanned against the SWISS-PROT and TrEMBL
databases to identify other proteins that also contain the
pattern.

An even more powerful means of identifying proteins
with weak sequence similarities is based on the use of
sequence profiles (Gribskov et al., 1987, 1990; Gribskov
& Veretnik, 1996). A profile is usually based upon a
multiple sequence alignment. It attaches a score to each
of the 20 amino-acid types (as well as one for gap
opening and extension, respectively) for each of the
residues in a sequence. Conserved residues will lead to
very high scores for one or more residue types, and
lower scores for all others, whereas variable positions
will tolerate more diverse residues. STRUPRO (GJK,
unpublished results) generates profiles based on aligned
structures, again only considering the structurally
conserved regions and ignoring the parts in between. In
the profiles produced by this program, insertions or
deletions inside the structurally conserved stretches are
highly penalized, whereas insertions may be made
between them with impunity. These profiles can subse-
quently be used to scan the SWISS-PROT database to
identify other proteins that may have a similar (domain)
fold (and, perhaps, a related function), even though the
sequence similarities may be weak.

9. Outlook

We have attempted to illustrate that, during the past ten
years, structural databases (both ‘raw’ and derived ones)
have become indispensable tools at many stages of the
process of protein structure determination, validation,
and analysis. This trend is only likely to be amplified in
the future.

(a) For model-building and validation purposes, the
increasing number and structural variety of atomic
resolution protein models will enable us to generate
more comprehensive and reliable databases (e.g., main-
chain and rotamer databases), improved geometric and
stereochemical restraints, and improved statistics
concerning protein structure (e.g., core Ramachandran
areas).

(b) The structural database may also be of use in the
future in the actual structure solution process. For
example, as more and more (domain) folds are known,
automated molecular replacement calculations may well
become feasible. In cases where phase information is
available, this can be used to improve the results of such
computations (Kleywegt & Jones, 1997a). Finally, we
have demonstrated previously (Kleywegt & Jones, 1994,
1997¢) how fold-recognition techniques can be
employed at the stage where (some) secondary-struc-
ture elements are visible in the skeleton, even though
their directionality and connectivity may still be
unknown.
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(c) As the size of the structural database increases, it
will become almost impossible for most structural biol-
ogists to memorize the details of each and every protein
structure ever determined. Hence, derived databases for
recognizing folds and smaller structural motifs will
become indispensable tools. In favourable cases, such
analyses may provide unexpected links between func-
tionally diverse proteins, which in turn can be used to
analyse the protein sequence databases.

(d) Genome sequencing efforts the world over are
now producing a veritable deluge of sequence infor-
mation. Functional genomics (i.e., the study of the
function of expressed genes whose sequences do not
resemble those of other characterized proteins) is only
just starting as a discipline, and ‘high-throughput struc-
tural biology’ is in its infancy. Structural databases are
likely to play an important role in the process of
predicting structure and function of the products of
newly sequenced genes. In addition, a rapidly expanding
structural database will also be beneficial in the area of
homology modelling and that of fold recognition.
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