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It has previously been shown that the presence of distinct

regions of solvent and protein in macromolecular crystals

leads to a high value of the standard deviation of local r.m.s.

electron density and that this can in turn be used as a reliable

measure of the quality of macromolecular electron-density

maps [Terwilliger & Berendzen (1999a). Acta Cryst. D55, 501±

505]. Here, it is demonstrated that a similar measure, �2
R, the

variance of the local roughness of the electron density, can be

calculated in reciprocal space. The formulation is suitable for

rapid evaluation of macromolecular crystallographic phases,

for phase improvement and for ab initio phasing procedures.
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1. Introduction

A key step in the determination of macromolecular crystal

structures, either by direct methods or by more traditional

MAD or MIR approaches, is the evaluation of the quality of

an electron-density map. In applying direct methods to

macromolecular crystal structure determination, statistical

relationships derived from characteristics of small-molecule

structures (e.g. Sheldrick, 1990; Weeks et al., 1995; Hauptman,

1997) are typically used to discriminate between possible

phase sets. In the MAD or MIR approaches, the crystal-

lographer typically manually examines an electron-density

map and equates its interpretability with its quality. There

would be considerable utility in having objective measures of

the quality of electron-density maps which include as many

features of macromolecular crystals as possible. Such

measures could be used to choose between possible phase sets

in ab initio methods and between possible heavy-atom solu-

tions in the MIR and MAD methods. Additionally, if the

measure of quality could be expressed in a simple reciprocal-

space formulation, the measure could be used to improve

phase quality or even to determine phases ab initio.

One measure of the quality of macromolecular electron-

density maps which has been proposed is an automated

analysis of the connectivity of electron-density maps (Baker et

al., 1993). This approach works well for evaluation of a map,

but unfortunately it has proven dif®cult to use in phase

improvement. We have recently demonstrated that an

evaluation of the distinction between solvent and protein

regions can be a very powerful criterion for scoring electron-

density maps (Terwilliger & Berendzen, 1999a,b). Our

approach is based on the well known observation that

macromolecular crystals typically contain distinct regions of

protein (where the local variation of electron density from

point to point is very high) and solvent (where the electron

density is essentially constant). This observation has been the

basis of widely used solvent-¯attening procedures (Wang,



1985; Xiang et al., 1993; Podjarny et al., 1987; Abrahams et al.,

1994; Zhang & Main, 1990).

We have used the difference between protein and solvent

regions to generate an objective measure of the quality of a

macromolecular electron-density map. Firstly, we calculated

the local r.m.s. electron density near each grid point in the

asymmetric unit, omitting the F000 term in the Fourier synth-

esis. In this way, the local r.m.s. density is very small in the

solvent region but large in the protein region. We then

determined the standard deviation of this local r.m.s. density

over the entire asymmetric unit and use it as a ®gure of merit

of the phasing. Maps which have a uniform distribution of

local r.m.s. density have low values of the standard deviation;

those with distinct protein and solvent regions have higher

values. We have found this measure very useful in differ-

entiating between heavy-atom solutions in the MIR and MAD

approaches, as well as in identi®cation of the hand of heavy-

atom solutions when anomalous differences have been

measured (Terwilliger & Berendzen, 1999a).

Although it is dif®cult to express the standard deviation of

local r.m.s. electron density in a reciprocal-space formulation,

a very closely related characteristic, the variance of the local

roughness, can be calculated readily. Here, we de®ne this

variance of the local roughness as the overall variance of the

local variance of electron density in a map, and show how it

can be calculated in reciprocal space. The expression we

derive is suitable as a ®gure of merit for phase-quality

evaluation, for phase improvement and for ab initio phasing

methods.

2. Theory

In our previous work, we calculated the standard deviation of

local r.m.s. electron density in a map. It was calculated using a

grid with spacing approximately one-third of the resolution of

the map in boxes ®ve grid units on an edge, and the standard

deviation of the local r.m.s. density was obtained from over-

lapping boxes throughout the asymmetric unit of the crystal

(Terwilliger & Berendzen, 1999a). We found that the precise

size and overlap of the boxes had only small effects on the

calculation. Here, we use a closely related but more general-

izable approach, in which the overall variance of the local

roughness of electron density is calculated. Instead of using

overlapping boxes to determine the variation of local mean-

square density from point to point in the cell, we use a

windowing function to de®ne the region over which the local

variance (roughness) of electron density is calculated. Any

windowing function could be used for this purpose, but a

particularly convenient one is a Gaussian function.

The local roughness in a map [r(x)] can be represented by

the weighted variance of electron density in a region de®ned

by a windowing function centered at x:

r�x� � R
R3

���x0� ÿ ��x��2g�xÿ x0�d3x0; �1�

or equivalently

r�x� � R
R3

�2�x0�g�xÿ x0�d3x0 ÿ ��x�2; �2�

where ��x� is the mean local electron density, given by

��x� � R
R3

��x0�g�xÿ x0�d3x0; �3�

and g(x) is an arbitrary windowing function. If the windowing

function is a three-dimensional Gaussian function with unit

volume and a variance (for each of the components x, y, z) of

�2 then it can be expressed as

g�x� � �1=2��1=2�1=�3� exp�ÿ0:5�jjxjj2=�2��: �4�
The variance (�2

R) of this local roughness of electron density

over the entire unit cell is then given by

�2
R � �1=V� R

V

r2�x�d3xÿ r2; �5�

where r � �1=V� R r�x� and V is the volume of the unit cell.

To calculate the variance of local roughness of the electron

density, �2
R, in reciprocal space, we use the facts that the ®rst

term on the right-hand side of (2) represents the convolution

of �2(x) and g(x), and that ��x� in (2) is in turn the convolution

of �(x) and g(x). The electron density �(x), assumed to be a

real function, and the squared electron density �2(x) can be

expressed as (cf. Bracewell, 1986)

��x� �P
h

Fh exp�ÿ2�ih � x�; �6�

and

�2�x� �P
h

Bh exp�ÿ2�ih � x�; �7�

respectively, where h � (ha*, kb*, lc*) and the reciprocal

lattice vectors are a*, b* and c*. The coef®cients Bh can be

calculated from the structure factors Fh using the relation

Bh �
P

k

FkFhÿk; �8�

summing over all values of k. The Gaussian function g(x) can

be readily expressed in Fourier space; it appears as the

temperature factor in the Fourier transform of a Gaussian

distribution of electron density about an atom, for example.

An expression for a Gaussian centered at the origin with unit

volume and a variance of �2 is

g�x� �P
h

Gh exp�ÿ2�ih � x�; �9�

where

Gh � exp�ÿ2�2�2S2
h� �10�

and Sh is the magnitude of the scattering vector

jjhjj � 2 sin �=�.

As ��x� (3) is the convolution of �(x) and g(x), we can write

��x� �P
h

Qh exp�ÿ2�ih � x�; �11�

where the coef®cients Qh are simply the original structure

factors Fh damped by the exponential factors Gh,

Qh � FhGh: �12�
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The second term on the right-hand side of (2) can now be

expressed using (7) and (8) as

��x�2 �P
h

BAVG
h exp�ÿ2�ih � x�; �13�

where the coef®cients BAVG
h are based on the dampened

structure factors Qk in (12),

BAVG
h �P

k

QkQhÿk: �14�

Next, as the ®rst term on the right-hand side of (2) is the

convolution of �2�x� and g(x), we can writeR
R3

�2�x0�g�xÿ x0�d3x0 �P
h

Th exp�ÿ2�ih � x�; �15�

where the coef®cients Th are given by

Th � BhGh: �16�
We can now express the local roughness of a map (1) in the

form

r�x� �P
h

Rh exp�ÿ2�ih � x�; �17�

where the coef®cients Rh are given by

Rh � BhGh ÿ BAVG
h : �18�

The desired variance �2
R in (5) is composed of two parts, the

mean value of r2(x) and the square of the mean value of r(x)

over the unit cell. The mean value of r(x) over the unit cell is

simply the h = (0, 0, 0) term of its corresponding transform,

R000. Similarly, the mean value of r2(x) is given by the

h = (0, 0, 0) term of its transform. Using Parseval's theorem

(cf. Bracewell, 1986), the mean value of r2(x) can be expressed

in the form

�1=V� R
V

r2�x� �P
h

jjRhjj2; �19�

where the integral is taken over the unit-cell volume.

Finally, the variance of local roughness (�2
R) in (5) can be

written as

�2
R �

P
h

jjRhjj2 ÿ R2
000 �20�

or more simply as P
h6��000�

jjRhjj2: �21�

3. Discussion

(21) is a representation in reciprocal space of �2
R, the variance

of the local roughness of electron density in a Fourier synth-

esis. In the case of macromolecular crystals containing well

de®ned regions of protein and solvent, this variance tends to

be very high, as protein-containing areas of the unit cell are

very rough and solvent-containing areas are very smooth

(Terwilliger & Berendzen, 1999a). Consequently, the value of

this variance can be used as a measure of the relative qualities

of various possible phase sets for a macromolecular structure.

The variance of local roughness, �2
R, in (21) is given by the

sum of squares of the coef®cients Rh, other than R000, in the

Fourier synthesis for the local roughness, r(x). This is

equivalent to noting that �2
R is simply the overall mean square

value of the local roughness, after subtracting the overall

average value of R000. The coef®cients Rh for the local

roughness, given in (18), each contain two terms, BhGh and

BAVG
h . The ®rst term, BhGh, consists of coef®cients in the

Fourier series expression (15) for the local mean-square

electron density. The second term, BAVG
h , are coef®cients in

the Fourier series expression for the local mean electron

density, squared. The difference corresponds to the local

variance of the electron density, which we describe as local

roughness.

An important feature of (21) is that only the low-order

terms are large. This is a consequence of the presence of the

exponential terms Gh multiplying the Bh terms in (18) and

multiplying the Fh terms in (12). Because of this, �2
R in (21) is,

to a ®rst approximation, the sum of the squares of the lowest-

order terms in the Fourier series (7) describing �2�x�. The

magnitudes of these low-order terms describe how well

de®ned the regions of the unit cell are which contain low and

high values of �2�x�. If the distribution of �2�x� is relatively

uniform in the unit cell, then the low-order terms in this

Fourier series will be small. If the distribution is highly non-

uniform then the low-order terms, and hence �2
R, will be large.

(21) has several important properties which should be

emphasized. The most signi®cant is that the exponential term

limits the range of h over which the terms in the summation

are large to those with small jjhjj. This means that evaluating

�2
R can be rapid. The calculation of each Bh in (8) or BAVG

h in

(14) requires just one pass through all re¯ections. As only

small values of h make a large contribution to �2
R, a relatively

small number of passes through the re¯ections are necessary

to calculate �2
R. The potential rapidity of calculation of �2

R

means that Monte Carlo methods or methods based on the

genetic algorithm could potentially be used to optimize �2
R

even in cases with large numbers of re¯ections. If a windowing

function other than a Gaussian is used, or if the Gaussian

function has a very narrow width, however, the number of

terms needed to accurately evaluate �2
R would not necessarily

be small. In general, the calculation of �2
R using the low-order

terms in (21) corresponds to truncation of the spectrum of the

windowing function at some resolution.

The second signi®cant aspect of (21) is that the value of

�2
R depends on the crystallographic phases in an easily

calculable way. It is straightforward to differentiate (21) with

respect to individual phases. This means that matrix

methods can be used to adjust the phases to maximize �2
R.

As re¯ections only interact signi®cantly in (8) with other

re¯ections which differ in k by a small number, such matrix

methods would have to involve at most only a fraction of the

elements in the matrix and possibly just diagonal elements.

This kind of approach could be used to combine the maxi-

mization of �2
R with that of other direct-methods ®gures of

merit to improve the ability of direct-methods to solve

macromolecular structures.



As (21) is essentially a reciprocal-space formulation of the

real-space measure of map quality which we have already

examined in detail (Terwilliger & Berendzen, 1999a), most of

the properties of the two formulations will be very similar. In

Fig. 1, we present a set of model calculations using (21) to

evaluate electron-density maps in reciprocal space. 6200

model data from 20 to 3.0 AÊ were generated based on coor-

dinates from a dehalogenase enzyme from Rhodococcus

species ATCC 55388 (American Type Culture Collection,

1992) determined recently in our laboratory. The protein

contains 316 amino-acid residues and crystallizes in space

group P21212 with unit-cell dimensions a = 94, b = 80, c = 43 AÊ

and one molecule in the asymmetric unit (J. Newman, personal

communication). Fig. 1(a) shows results for a total of 2000

phase sets generated from the model data, with phase errors

ranging from 0±150�. These model data sets were analyzed

using (21) with a value of � = 6 AÊ and including all 364 terms

for which the exponential term G(h) in (10) has a value of

0.0001 or larger. The logarithm of the variance in local

roughness, log(�2
R), is plotted in Fig. 1(a) as a function of the

cosine of the mean phase error in the data set. For phase sets

with hcos(��)i of �0.3 or greater, the logarithm of the

variance in local roughness is quite closely related to the phase

accuracy. For phase sets with lower hcos(��)i, there is only a

small correlation.

Fig. 1(b) shows the practical implications of the data in

Fig. 1(a) and also illustrates that only low-order terms in (21)

are necessary for calculating �2
R. In Fig. 1(b), the data in

Fig. 1(a) are analyzed to estimate the probability that a correct

choice of the better of two phase sets can be determined from

the logarithm of the variance of local roughness. Fig. 1(b)

shows analyses of four groups of 2000 phase sets each. In each

of the four analyses, a different minimum value of the expo-

nential term G(h) was used, ranging from 0.0001 to 0.1. To

obtain Fig. 1(b), the data in Fig. 1(a) were grouped into pairs

of sets differing by 0.1� 0.05 units in hcos(��)i. Each member

of each set was compared with each member of the paired set,

and the fraction of times that the member with the higher

value of log(�2
R) also had the higher value of hcos(��)i was

plotted.

Fig. 1(b) shows that, as expected in phase sets with very low

phase accuracy (hcos(��)i < 0.25), the value of log(�2
R) leads

to only a 50% chance of choosing the better of two phase sets

which differ in accuracy. For phase sets with values of

hcos(��)i from 0.25 to 0.4, however, the probability of

choosing the better of two phase sets differing by this amount

increases from 0.6 to 0.9. The 58 lowest order terms in the

series in (21) give almost the same likelihood of making a

correct choice as the 364 lowest order terms. This means that

high-order terms can be ignored without a substantial effect.

4. Conclusions

The reciprocal-space formulation presented here has major

advantages compared with the real-space calculations carried

out previously (Terwilliger & Berendzen, 1999a). These are

that the variance �2
R can be calculated without a Fourier

transform and that potentially phases can be adjusted to

maximize the variance. The rapid calculation of variance

means that it can be used as a measure of the quality of phases

in many different trials, and the potential for maximization of

the variance means that it can be used in phase improvement

and possibly even ab initio phasing algorithms. The most

powerful means for phase improvement for macromolecules

without non-crystallographic symmetry is at present solvent

¯attening (Wang, 1985; Xiang et al., 1993; Podjarny et al., 1987;

Abrahams et al., 1994; Zhang & Main, 1990). Carrying out this

type of procedure requires that the electron-density map be of

suf®ciently high quality that an envelope de®ning the

boundary between protein and solvent can be reliably calcu-

lated. (21) provides a means for improving phases even before

the boundary is clearly de®ned. Maximizing �2
R will maximize

the distinction between protein and solvent regions without

requiring a knowledge of where each are located. Conse-

quently, (21) may be useful in cases where solvent ¯attening is

not effective, as well as providing a complementary approach

in cases where phases are good to begin with.
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Figure 1
Calculation of variance of local roughness using (21). (a) The logarithm of
�2

R is plotted for 2000 model phase sets, as described in the text. The
abscissa is hcos(��)i, the mean value of the effective ®gure of merit of the
phase set. (b) The probability of choosing the better of two phase sets
which differ in quality by 0.1 units of hcos(��)i is plotted for model data
obtained as in (a), using the 364 lowest order terms (diamonds), 249
lowest order terms (triangles), 145 lowest order terms (squares) or 58
lowest order terms (crosses), as described in the text.
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There are several aspects of the reciprocal-space formula-

tion which remain to be optimized. One is the choice of the

windowing function. We have chosen a Gaussian function, but

the derivation we carried out is independent of the windowing

function and any function could have been used. A Gaussian is

particularly convenient because it results in strongly damped

coef®cients that become very small for all but small values of

jhj: Other windowing functions, however, might yield better

measures of the quality of the electron-density map, and a

survey of other functions might improve the algorithm.

Another possibility might be to construct a histogram of

values of �2
R from many solved protein structures which could

in turn be used to construct a data-likelihood model for esti-

mation of phase errors. Such an approach could be consider-

ably more powerful than the one described here because it

would give probability information which could be combined

in a Bayesian approach with other sources of phase informa-

tion.
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