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It is dif®cult but not impossible to determine a macromole-

cular structure using X-ray data obtained from twinned

crystals, providing it is noticed and corrected. For perfectly

twinned crystals, the structure can probably only be solved by

molecular replacement. It is possible to detect and charac-

terize twinning from an analysis of the intensity statistics and

crystal packing density. Tables of likely twinning operators and

some examples are discussed here.
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1. Introduction

Recent advances in the theory and practice of molecular

crystallography have increased the speed and scope of struc-

ture determination enormously, but suitable crystals are still

an essential pre-requisite. Twinning is a possible complication;

its symptoms can be recognized at the data-processing stage

and if suitably treated, the solution of the structure is possible.

It is frequently observed in crystals of small molecules and is

not regarded as an insoluble problem (Dunitz, 1964; Wei,

1969; Gao et al., 1994).

Twinning can be described as a crystal-growth anomaly

whereby the orientations of individual crystalline domains

within the crystal specimen differ in such a way that their

diffraction lattices overlap, either completely or partially

(Redinbo & Yeates, 1993; Giacovazzo, 1992; Yeates & Fam,

1999). There is some twinning operator which can be applied

to align the crystal axes of each domain (Fig. 1). For instance, a

trigonal crystal could contain three blocks, B1, B2 and B3,

where the B1 axes (a, b, c) are aligned with the B2 axes

(b, a, ÿc) and the B3 axes (ÿa, ÿb, c). The real-space twin-

ning operators [Treal] to convert B2 or B3 to B1 would be

0 1 0

1 0 0

0 0 ÿ1

0@ 1A a

b

c

0@ 1A and

ÿ1 0 0

0 ÿ1 0

0 0 1

0@ 1A a

b

c

0@ 1A;
respectively. The reciprocal-space twinning operators [Trecip]

are the inverse of [Treal]; so that [h1k1l1] will overlap [h2k2l2]

[Trecip]. (In both these cases [Trecip] = [Treal], but this is not

necessarily so.)

The different types of twinning have been described and

classi®ed (Donnay & Donnay, 1974; Giacovazzo, 1992). There

are two families: (i) quasi-twin-lattice symmetry (QTLS) and

(ii) twin-lattice symmetry (TLS) or merohedral twinning

(Catti & Ferraris, 1976; Giacovazzo, 1992). The QTLS twins

have two or more lattices which do not completely overlap;

they give rise to multiple diffraction spots and can often be

recognized under a microscope with a polarizing attachment.

If only two lattice axes can be aligned, these twins are called



non-merohedral or epitaxial. This is easily recognizable by

inspection of the observed three-dimensional diffraction

pattern, which reveals clearly distinct interpenetrating reci-

procal lattices (for details, see Liang et al., 1996; Lietzke et al.,

1996). Usually a single lattice can be identi®ed and the unique

data integrated.

On the other hand, TLS twins are generally indistinguish-

able even under a powerful optical microscope and the

reciprocal lattices of each domain completely overlap, giving

rise to single diffraction spots. TLS twins are further divided

into class I, where the twin fragments do not have the same

diffracting volume (referred to as partial merohedral twin-

ning) and the apparent lattice symmetry is the same as the true

Laue symmetry, and class II, where the twin fragments have

identical volumes (perfect merohedral twinning) and the

apparent twin lattice symmetry appears greater than the true

Laue symmetry. The independent twin operation imposes an

extra relationship in the lattice symmetry which is not part of

the Laue symmetry of the single crystal (Yeates, 1997). (This

of course is only possible if the Laue group is capable of

supporting a higher order of symmetry, and hence twinning

usually occurs in P4, P3, P6 or cubic systems.)

The twinning can either involve two domains (hemihedral),

four domains (tetartohedral) or, for some centric forms, eight

domains (ogdohedral).

To deal with twinned crystals it is essential to (i) identify the

nature of the twin operator and (ii) estimate the volume ratio

(the twinning fraction) of the domains in the crystals. Likely

merohedral twin operators for different space groups are

tabulated in Table 1. All these operators can be considered as

a rotation about some axis de®ned as the twin axis. Extra

complexities in the analysis are introduced when this axis is

parallel to some axis of non-crystallographic symmetry (see,

for example, Lea & Stuart, 1995).

We describe here some general strategies for detecting and

characterizing the merohedral twinning problem by analyzing

the data on the basis of diffraction pattern, intensity statistics

and packing density. Some troubleshooting ideas are also

discussed.

2. Data collection in the case of twinned crystals

For QTLS, the crystal lattices are not superposable in all three

dimensions, so care must be taken to make sure that the data

from each lattice can be integrated separately and overlaps
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Figure 1
The alignment of crystal axes by twinning operator. All the four blocks (a)±(d) align axes related by crystal symmetry in the case of trigonal P3i (see
Table 1).



research papers

1752 Chandra et al. � Twinned crystal data Acta Cryst. (1999). D55, 1750±1758

Table 1
Lookup tables.

Possible merohedral twin operators for tetragonal, trigonal, hexagonal and
cubic space groups. [Source: likely twinning operators (CCP4: General) under
CCP4 program suite.]

It is a requirement for merohedral twinning that two independent lattices
overlap. Since for tetragonal, trigonal, hexagonal or cubic systems the
symmetry requires that two cell axes are equal, twinning often occurs in these
systems. For these space groups axes can be aligned in the following ways:
�a; b; c� or �ÿa;ÿb; c� or �b; a;ÿc� or �ÿb;ÿa;ÿc�, with corresponding
reciprocal axes: �a�; b�; c�� or �ÿa�;ÿb�; c�� or �b�; a�;ÿc�� or
�ÿb�;ÿa�;ÿc��. The corresponding indexing systems are: �h; k; l� or
�ÿh;ÿk; l� or �k; h;ÿl� or �ÿk;ÿh;ÿl��. All P4i and related 4i space groups:
(hkl) is equivalent to (hkl), so we only need to check real axes �a; b; c� and
�b; a;ÿc� and reciprocal axes �b�; a�; c�� and �b�; a�;ÿc��, i.e. check if
reindexing (hkl) to (khl) gives a better match to previous data sets. Twinning
possible with this operator: apparent Laue symmetry for perfect twin would be
P422.

Space-group number Space group Point group Possible twin operator

75 P4 PG4 k, h, ÿl
76 P41 PG4 k, h, ÿl
77 P42 PG4 k, h, ÿl
78 P43 PG4 k, h, ÿl
79 I4 PG4 k, h, ÿl
80 I41 PG4 k, h, ÿl

For all P4i2i2 and related 4i2i2 space groups, (hkl) is equivalent to (hkl), (khl)
and (khl), so all axial pairs are already equivalent as a result of the crystal
symmetry. No twinning possible, but a perfect twin for the Laue group P4
might appear to have this symmetry.

Space-group number Space group Point group Twin operators

89 P422 PG422 None
90 P4212 PG422 None
91 P4122 PG422 None
92 P41212 PG422 None
93 P4222 PG422 None
94 P42212 PG422 None
95 P4322 PG422 None
96 P43212 PG422 None
97 I422 PG422 None
98 I4122 PG422 None

All P3i and R3: (hkl) neither equivalent to (hkl) nor (khl) nor (khl), so we
need to check all four possibilities. These are the only cases where
tetartohedral twinning can occur: real axes �a; b; c� �ÿa;ÿb; c�, �b; a;ÿc�
and �ÿb;ÿa; c�, reciprocal axes �a�; b�; c��, �ÿa�;ÿb�; c��, �b�; a�;ÿc�� and
�ÿb�;ÿa�; c��, i.e. for P3, consider reindexing (hkl) to (hkl) or (khl) or (khl).
For R3, the indices must satisfy the relationship ÿh + k + l = 3n, so it is only
possible to reindex as (khl). For trigonal space groups, symmetry equivalents
do not seem as `natural' as in other systems. Replacing the four basic sets with
other symmetry equivalents gives a bewildering range of apparent possibilities,
but all are equivalent to one of the above. Twofold twinning possible with this
operator: apparent Laue symmetry or twofold perfect twin could be P312
(operator k, h, ÿl), P321 (operator ÿk, ÿh, ÿl) or P6 (operator ÿh, ÿk, l).
Fourfold twinning with these operators could generate apparent Laue
symmetry P622.

Space-group
number

Space
group

Point
group Possible twin operator

143 P3 PG3 ÿh, ÿk, l; k, h, ÿl; ÿk, ÿh, ÿl
144 P31 PG3 ÿh, ÿk, l; k, h, ÿl; ÿk, ÿh, ÿl
145 P32 PG3 ÿh, ÿk, l; k, h, ÿl; ÿk, ÿh, ÿl
146 R3 PG3 k, h, ÿl

All P3i12: (hkl) already equivalent to (khl), so we only need to check real axes
�a; b; c� and �b; a;ÿc� and reciprocal axes (a*, b*, c*) and (b*, a*, ÿc*), i.e.
reindex (hkl) to (khl) [or its equivalent operator (ÿh, ÿk, l)]. Twinning
possible with this operator: apparent symmetry for twofold perfect twin would
be P622 (operator ÿh, ÿk, l).

Space-group number Space group Point group Possible twin operator

149 P312 PG312 ÿh, ÿk, l or k, h, ÿl
151 P3112 PG312 ÿh, ÿk, l or k, h, ÿl
153 P3212 PG312 ÿh, ÿk, l or k, h, ÿl

All P3i21: (hkl) already equivalent to (khl), so we only need to check real axes
�a; b; c� and �ÿa;ÿb;ÿc� and reciprocal axes �a�; b�; c�� and �ÿa�;ÿb�;ÿc��,
i.e. reindex (hkl) to (hkl) [or its equivalent operator (ÿk, ÿh, ÿl)]. Twinning
possible with this operator: apparent symmetry for twofold perfect twin would
be P622 (operator ÿh, ÿk, l).

Space-group number Space group Point group Possible twin operator

150 P321 PG321 ÿh, ÿk, l or ÿk, ÿh, ÿl
152 P3121 PG321 ÿh, ÿk, l or ÿk, ÿh, ÿl
154 P3221 PG321 ÿh, ÿk, l or ÿk, ÿh, ÿl

All P6i: (hkl) already equivalent to (hkl), so we only need to check real
axes �a; b; c� and �b; a;ÿc� and reciprocal axes �a�; b�; c�� and �b�; a�;ÿc��,
i.e. reindex (hkl) to (khl). Twinning possible with this operator:
apparent symmetry for twofold perfect twin would be P622 (operator
k, k, ÿl).

Space-group number Space group Point group Possible twin operator

168 P6 PG6 k, h, ÿl
169 P61 PG6 k, h, ÿl
170 P65 PG6 k, h, ÿl
171 P62 PG6 k, h, ÿl
172 P64 PG6 k, h, ÿl
173 P63 PG6 k, h, ÿl

All P6i22: (hkl) already equivalent to (hkl) and (khl) and (khl), so no twinning
is possible. However, a perfect twin for the Laue group P312, P321 or P6 might
appear to have this symmetry.

Space-group number Space group Point group Possible twin operator

177 P622 PG622 k, h, ÿl
178 P6122 PG622 None
179 P6522 PG622 None
180 P6222 PG622 None
181 P6422 PG622 None
182 P6322 PG622 None

All P2i3 and related 2i3 space groups: (hkl) already equivalent to (hkl), so we
only need to check real axes (a, b, c) and (b, a, ÿc) and reciprocal axes
(a*, b*, c*) and (b*, a*,ÿc*), i.e. reindex (hkl) to (khl). Twinning possible with
this operator: apparent symmetry for twofold perfect twin would be P43
(operator k, h, ÿl).

Space-group number Space group Point group Possible twin operator

195 P23 PG23 k, h, ÿl
196 F23 PG23 k, h, ÿl
197 I23 PG23 k, h, ÿl
198 P213 PG23 k, h, ÿl
199 I213 PG23 k, h, ÿl

All P4i32 and related 4i32 space groups: (hkl) already equivalent to (hkl) and
(khl) and (khl), so we do not need to check.

Space-group number Space group Point group Possible twin operator

207 P432 PG432 None
208 P4232 PG432 None
209 F432 PG432 None
210 F4132 PG432 None
211 I432 PG432 None
212 P4332 PG432 None
213 P4132 PG432 None
214 I4132 PG432 None



excluded, the data can perhaps then be treated for non-

merohedral twinning effects (Liang et al., 1996; Lietzke et al.,

1996). No examples of this type are discussed here.

For TLS, the twinning fraction may vary from crystal to

crystal (for details, see Valegard et al., 1998). In order to

estimate the twin volume fraction accurately, it is essential that

a complete data set is collected from a single crystal (for

details, see Ito et al., 1995). When the merohedral twinning is

near-perfect, it is possible to mistake the space group; if only

the supposed unique data were collected there would be no

chance of deconvolution.

3. Diagnostic signals of twinning

It is important to detect twinning before embarking on the

structure solution, and if it is possible to ®nd an untwinned

crystal this is by far the best approach!

3.1. Packing density

If the supposed asymmetric unit volume of the crystal is too

small to hold the molecule, it is likely that there is perfect

merohedral twinning and the space group has been wrongly

assigned.

3.2. Intensity statistics

The intensity statistics from an untwinned crystal are quite

different from those of twinned crystals. Wilson showed that

for a single crystal the mean and higher moments of centric

and acentric intensities and amplitudes follow a predictable

pattern (Wilson, 1949). These may be tabulated either as

hIki=hIik, hEik=hEki or as functions of Z (de®ned as I=hIi), but

they are all related to each other. For measurements ItH from a

twinned crystal, each `intensity' is in fact the sum of two or

more IHi
,

ItH1
� ��1ÿ x�IH1

� xIH2
�; �1�

ItH2
� �xIH1

� �1ÿ x�IH2
�; �2�

IH1
� ��1ÿ x�ItH1

ÿ xItH2
�=�1ÿ 2x�; �3�

IH2
� ��1ÿ x�ItH2

ÿ xItH1
�=�1ÿ 2x�: �4�

3.3. Useful distributions to inspect

(i) The N(Z) plot (given in TRUNCATE output) shows the

number of observed weak re¯ections plotted against the

expected value. For twinned data, there are many fewer weak

re¯ections than expected and hence the acentric distribution is

always sigmoidal. This follows from the fact that each

observed ItH is a sum of two or more IH, and it is unlikely that

all IH contributions will be weak (it is wise to exclude the

centric terms, since if the space group has been wrongly

assigned these may be wrongly ¯agged).

(ii) The kth moments of I or E also provide useful indica-

tors. The expected values are given in various references

(Stanley, 1972; Redinbo & Yeates, 1993; Breyer et al., 1999;

Yeates, 1997) and the observed values can be extracted from

several commonly used programs, for example TRUNCATE

and ECALC (Collaborative Computational Project, Number

4, 1994). The ratio of hI2i=hIi2 for acentric re¯ections against

resolution gives expected values of 2.0 for cases without

twinning and 1.5 for perfect hemihedral twinning, respectively.

Similarly, the acentric Wilson ratio, h|E|i2=h|E|2i, where E is the

normalized structure factor, is expected to give values of 0.785

for twinned and 0.885 for untwinned data.

(iii) Once the twinning operator is known and the twinned

partner intensity can be selected, it is often possible to `detwin'

the data assuming different values of the twinning ratio x. If

the indices (hkl) of ItH1
and ItH1

are related so that T[h1k1l1]

overlaps T[h2k2l2] [Trecip], then (1) and (2) are valid and,

providing x is not equal to 0.5, the true IH1
and IH2

can be

determined from (3) and (4). For the correct value of x the

detwinned data should satisfy certain criteria. The intensity

statistics of the detwinned data should be more `normal'. The

number of negative IH should be small (this is the basis of the

Britton plot; Britton, 1972). The correlation between IH1
and

IH2
should be minimum. This may not actually fall to zero,

since if there is non-crystallographic symmetry with an axis

parallel to the twin axis, there may well be real correlation

between the two observations.

3.4. Using twinned data

Twinned data has been used to solve many structures. The

techniques fall into two groups, depending on the methods to

be used. If the structure solution requires the use of ampli-

tudes, as is the case when using heavy-atom derivative or
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Figure 2
A HKLVIEW (Collaborative Computational Project, Number 4, 1994) of
the pseudo-precession photograph of the diffraction pattern (for l = 3) of
the crystals of �-LA. The diffraction pattern indicates an apparent
(hexagonal) symmetry. The observed diffraction appears to be normal,
but each of the observed intensities contains equal contributions from the
two domains. This is an indication of the symptoms of merohedral
twinning.
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MAD data to give experimental phases, it is essential to

detwin the intensities. This can be performed with programs

such as DETWIN (Leslie, 1998), providing both the 3 � 3

twinning matrix [T] and the twinning ratio x are known and

the value of x is not equal to 0.5 (for details, see Valegard et al.,

1998).

Possible twinning operators can usually be deduced from

the space-group symmetry and the apparent symmetry of the

diffraction pattern. The second technique is not to bother to

detwin the data but to use the summed intensities for structure

solutions. Any technique which exploits intensities (Is) rather

than structure factors (Fs) is suitable.

3.4.1. Molecular replacement. MR should be able to ®nd

solutions for each crystal block. However, the usual test of

whether these solutions overlap cannot be performed since

each is partially occupied, but the results are often clear. Such

a molecular-replacement search would in fact also indicate the

real-space twinning operator.

3.4.2. Re®nement against Is. Once the solution is obtained,

SHELXL can be used with the option to re®ne the twinning

factor x as well as the coordinates. SHELXL is a versatile

program which can handle re®nement with twinned data of

any kind, be it non-merohedral, merohedral or racemic

twinning.

3.5. Example: native bovine a-lactalbumin

Both native recombinant and native bovine �-lactalbumin

(�-LA; Sigma) crystallize as hemihedral twins (N. Chandra, K.

Brew & K. R. Acharya, unpublished results). The unit-cell

parameters are a = 93.5, b = 93.5, c = 67.0 AÊ ; � = 90.0, � = 90,

 = 120�. The pseudo-precession picture (Fig. 2) seems to show

that the Laue group is either P6/m or P6/mmm, as the

diffraction pattern nicely displays an apparent hexagonal

symmetry.

A data set to 2.5 AÊ resolution was collected from a single

crystal on a Siemens area detector using Cu K� radiation and

the data were reduced in Laue symmetry groups 3Å , 3Å1m, 3Åm1,

6/m and 6/mmm, corresponding to the space groups P3, P312,

P321, P6 and P622, respectively. The corresponding Rsym

values for these space groups are 6.9, 7.9, 8.5, 8.4 and 8.9%

(99.9% complete in each space group), respectively.

The problem of twinning was addressed on the basis of the

intensity statistics (Fig. 3), an intensity distribution which did

not follow the Wilson statistics (Fig. 4), and the crystal packing

density. Calculation of the solvent content for 12 molecules

per unit cell gives a reasonable value of 57% [the Vm

(Matthews, 1968) value is 2.99 AÊ 3 Daÿ1]. Therefore, none of

the above space groups could be eliminated. The ratio of

hI2i=hIi2 for �-LA is found to be 1.47 (Fig. 4) indicating the

crystals might be hemihedrally twinned. Similarly, the Wilson

ratio h|E|i2=h|E|2i calculated for acentric re¯ections gave a

value of 0.886, consistent with the data from �-LA crystals

being perfectly twinned.

We estimated the twinning fraction x from the parameter H

(Yeates, 1997), where

H � jItH1
ÿ ItH2

j=�ItH1
� ItH2

�: �5�

H is a function of x [from 0 to (1 ÿ 2x)] and the true crys-

tallographic intensities. The value of x is determined using the

fact that

hHi � 0:5ÿ x; �6�
hH2i � �0:5ÿ x�2=3: �7�

The mean value of x directly estimated from H was found to

be 0.49, compared with the average value of 0.50 obtained

based on intensity statistics described by Britton (1972), Rees

(1982) and Fisher & Sweet (1980).

The self-rotation function also showed more peaks than

were expected (Fig. 5). The molecular-replacement translation

search ®xed the correct space group as P3. The crystals are

twinned along the a, b or ÿa, ÿb axes, all of which are

Figure 4
A test for perfect merohedral (hemihedral) twinning for acentric data
from �-LA. The ratios are computed in thin resolution bins of 300±400
re¯ections.

Figure 3
A graphical representation of N(Z) curves against Z for acentric data
from �-LA. The term N(Z) represents the cumulative distribution
function, where Z represents the intensity relative to the mean intensity
(i.e. Z = I/hIi, where I is the intensity), gives the fraction of re¯ections
having an intensity less than Z. As indicated, a comparison with the
theoretical distribution shows that a sigmoid habitus follows the
distribution for perfect merohedral twinning (x = 1/2) (for details, see
Gomis-RuÈ th et al., 1995).



equivalent by the symmetry of the space group. That is, the

real-space twin matrix in this case is

0 1 0

1 0 0

0 0 ÿ1

0@ 1A:
Detwinning of the observed twinned structure factors was

carried out according to the method of Redinbo & Yeates

(1993); following this, the structure was re®ned to Rfree and R

values of 19.8 and 18.8%, respectively. The X-PLOR data-

input ®les were modi®ed and used as a means of a convenient

way to detwin the twinned data.

4. Partial twinning: XAT

When the twin volume fraction x is less than 0.5, the

twinning is called partial merohedral twinning; the diffrac-

tion pattern does not reveal a higher apparent symmetry,

but the observed intensities still contain contributions from

both the domains. If there is a good estimate of x and it is

below a value of about 0.45, the twinning can reliably be

corrected using (3) and (4) (Britton, 1972; Murray-Rust, 1973;

Rees, 1982; Fisher & Sweet, 1980; Redinbo & Yeates, 1993;

Yeates, 1997).

A high-resolution (1.509 AÊ ) data set (Rsym is 0.052 and the

completeness of the data is 95.9%) was collected using

synchrotron radiation at Daresbury Station 7.2 from crystals

of xenobiotic acetyltransferase (XAT). The crystals are in

space group R3, with unit-cell parameters a = 123.64, b = 123.64,

c = 63.08 AÊ , � = 90, � = 90,  = 120�, Z = 1 molecule per

asymmetric unit, Vm = 3.96 AÊ 3 Daÿ1 (Matthews, 1968), and

exhibit partial merohedral twinning with an average twin

fraction volume x, calculated from (3), (4) and (5), of 0.1982.

The only possible twin operator for R3 generates a rotation

about the diagonal of the a and b axes, i.e. the real-space twin

operator matrix is

0 1 0

1 0 0

0 0 ÿ1

0@ 1A:
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When using the measured data, the MR solution of XAT did

not re®ne well, with the Rfree and R values converging at 39.4

and 36.1%, respectively. There was only one MR solution with

a high correlation coef®cient (after rigid-body re®nement) of

71.2% with an R factor of 35.9% and, despite the high solvent

content (70%), there was no sign of a second molecule.

Furthermore, the self-rotation function showed only one

signi®cant peak.

To investigate whether the data could be partially twinned,

we re-examined the data-processing statistics more carefully.

The TRUNCATE program in the CCP4 package (Colla-

borative Computational Project, Number 4, 1994) produces a

table for acentric and centric re¯ections of the second, third

and fourth moments of I. The expected value of the second

moment for untwinned acentric data is 2.0 and any gross

deviation from this is a probable indication of partial twinning.

The partially twinned data of XAT were detwinned (Fig. 6)

using the DETWIN program (Leslie, 1998), which is now

released as a part of the

CCP4 package. This requires

as input the reciprocal-space

twinning operator, a range of

values of the twin volume

fraction x and the input data

as intensities, and outputs a

list of supposedly detwinned

intensities. It tabulates the

correlation coef®cient

between IH1
and IH2

after

detwinning, which should

have its minimum value for

the best estimate of x.

The detwinned data of

XAT using the twinning ratio

x = 0.1941 was used in MR

and gave the same solution as

that obtained from twinned

data. The detwinned data

were used in re®nement of

the model to see whether

there was an improvement in

the values of Rfree and R. We

found that the values of Rfree

and R were reduced by 4.3

and 4.5%, respectively. There

was a remarkable improve-

ment in the electron density

of the side chains of many of

the lysines and arginines and

also some of the residues

which it was not possible to ®t

into the electron-density map

previously (before detwin-

ning).

Further re®nement of the

XAT structure was subse-

quently carried out with

SHELXL (Sheldrick & Schneider, 1997) using the TWIN

command option available in the program. We found that the

twin volume fraction x was re®ned from 0.194 to 0.191,

showing that the other methods used are remarkably

sensitive.

5. Correct estimation of x

The exact value of the twin volume fraction x can be computed

if the calculated structure-factor amplitudes for the given

model are available. Calculating the correlation coef®cient

[Corr(x)] using the expressions of Gomis-RuÈ th et al. (1995)

gives

Corr�x� �P
H

h
��calc���obs�

i.hP
H

��calc�2
P
H

��obs�2
i1=2

; �8�

where

Figure 5
Representation of the Patterson self-rotation function of the set of structure factors in space group P3 for �-LA
(using a spherical integration radius of 21 AÊ and data between 8 and 4.5 AÊ resolution) was produced using
GLRF (Tong & Rossmann, 1990). The diagram indicates the presence of a strong twofold along the
crystallographic c axis ( = 90, ' = 90, � = 180�), as is usually expected for a crystallographic sixfold axis.
Additionally, twofold peaks occur every 30� in the ab plane. The total number of peaks is 12 and this would
suggest an erroneously high space group of the P6/mmm Laue family with 12 copies of the asymmetric unit in
the unit cell (for a nice discussion on the interpretation of peaks in the Patterson self-rotation function in the
case of human lactoferrin, see Breyer et al., 1999).



�cal �
���Icalc-twin

tH1
�x� ÿ hIcalc-twin

tH1
�x�i

���; �9�

�obs �
���Iobs

tH1
�x� ÿ hIobs
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hIi is the mean intensity and

Icalc-twin
tH1

�x� � �1ÿ x�Icalc
H1
� xIcalc

H2
: �11�

The correlation coef®cient Corr(x) attains a unique maximum

as a function of x, and the optimum value of x may be accu-

rately determined by setting the derivative in (8):

dCorr(x)/dx = 0. Therefore, the optimal value of x is calculated

from

� � f�hCcalc
tH1

Ccalc
tH1
i ÿ �Ccalc

tH1
Scalc

tH12
ihCobs

tH1
Ccalc

tH1
�i�

� �Ccalc
tH1
�Ccalc

tH1
ÿ Ccalc

tH2
��g; �12�

x � �=�hCobs
tH1

Scalc
tH12
i�; �13�

where

Scalc
tH12
� Ccalc

tH1
� Ccalc

tH2
�14�

and Ccalc
tHi

represents the calculated structure factors.

However, the accurate value of x, which is quite different

from 0.5 and is independent of resolution, can be evaluated

from (12) and (13). Then, the intensities of the twin-related

re¯ections are detwinned using (3) and (4). In the case of

XAT, we did not try to obtain the accurate value of the twin

volume fraction x using (13), since the SHELXL program is

being used and takes care of the re®nement of the twin factor.

The structural results and other details of the XAT structure

will be published elsewhere (N. Chandra, J. Snidwongse, W. V.

Shaw, I. A. Murray & P. C. E. Moody, manuscript in

preparation).

6. Troubleshooting

It is always better to avoid twinning altogether so that many

dif®culties can be eliminated. Growing the crystals under

different crystallization conditions may be one way of over-

coming the problem. A new crystal form in an entirely

different space group may be obtained. For example, for

phosphopantetheine adenylyltransferase (PPAT) from

Escherichia coli, the data collected from PPAT crystals were

reduced in P3, P31, P6 and P63 space groups (unit-cell para-

meters: a = 65.15, b = 65.15, c = 119.06 AÊ , � = � = 90,  = 120�)
and exhibit an apparent Laue symmetry of 6/m. The N(z) plots

indicated that twinning was likely and thus that the true Laue

symmetry is probably 3 (Fig. 7). However, by changing the

crystallization conditions, the crystals of the same protein were

regrown in an entirely different space group I23 free from

twinning. The structure of this protein has been solved using

MAD data (Izard & Geerlof, 1999).

Cephalosporin synthase protein structure was solved by

MIR using several data sets collected from different crystals

which exhibited different values of twin volume fraction

(Valegard et al., 1998). This demonstrates the accuracy with

which the twinning fraction can be determined and used to

deconvolute the data.

7. Summary

We have discussed the general strategy regarding the identi-

®cation, analysis, characterization and correction of the data

collected from twinned crystals based on the X-ray diffraction

pattern, intensity statistics, packing density and re®nement

statistics. Some suggestions have been given for overcoming

merohedral twinning.
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Figure 6
Differences observed between partial merohedral and perfect merohe-
dral twinning. A HKLVIEW (Collaborative Computational Project,
Number 4, 1994) of the pseudo-precession photograph of the diffraction
pattern of the crystals of XAT. The diffraction pattern indicates no
apparent symmetry. The observed diffraction appears to be normal with a
threefold symmetry. Because the observed intensities of the twin-related
re¯ections are not equal, the diffraction pattern does not acquire an
additional symmetry unlike in the case of perfect twinning. Therefore, it is
very dif®cult to recognize partial merohedral twinning from the observed
diffraction pattern.
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Figure 7
Representation of the Patterson self-rotation function of the set of structure factors in space group P63 for
PPAT (using a spherical integration radius of 30 AÊ and diffraction data between 10 and 3.0 AÊ resolution) was
produced using GLRF (Tong & Rossmann, 1990). The diagram shows the presence of a strong twofold along
the crystallographic c axis ( = 90, ' = 90, � = 180�) as is usually expected for a crystallographic sixfold axis.
Additionally, there are twofold peaks occurring every 30� in the ab plane. The total number of peaks is 12 and
this suggests an erroneously high space group of the P6/mmm Laue family.


