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Diffraction intensities can be evaluated by two distinct

procedures: summation integration and pro®le ®tting. Equa-

tions are derived for evaluating the intensities and their

standard errors for both cases, based on Poisson statistics.

These equations highlight the importance of the contribution

of the X-ray background to the standard error and give an

estimate of the improvement which can be achieved by pro®le

®tting. Pro®le ®tting offers additional advantages in allowing

estimation of saturated re¯ections and in dealing with

incompletely resolved diffraction spots.
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1. Introduction

Data integration refers to the process of obtaining estimates of

diffracted intensities (and their standard errors) from the raw

images recorded by an X-ray detector. As two-dimensional

area detectors are almost universally used to collect macro-

molecular diffraction data, only this type of detector will be

considered in the following analysis.

When collecting data with a two-dimensional area detector,

a decision has to be taken about the magnitude of the angular

rotation of the crystal during the recording of each image. Two

distinct modes of operation are possible: the rotation per

image can be comparable to or greater than the angular

re¯ection range of a typical re¯ection (coarse ' slicing), or it

can be much less than the re¯ection width (®ne ' slicing). The

latter approach allows the use of three-dimensional pro®le

®tting and, providing the detector is relatively noise-free, will

improve the quality of the resulting data by minimizing the

contribution of the X-ray background to the total measured

intensity. However, there are signi®cant overheads associated

with recording, storing and processing the relatively large

number of images that are required. Three-dimensional

pro®le ®tting is described in the article by P¯ugrath (1999) and

will not be discussed here.

2. Prerequisites for accurate integration

2.1. Crystal parameters

Only the integration procedure itself will be described in

detail in this article. However, in order to obtain the highest

quality data possible from a given set of images, there are a

number of parameters which need to be determined in

advance of or during the integration. The most important of

these are the unit-cell parameters, which should be deter-

mined to an accuracy of a few parts in a thousand (or better).

Post-re®nement procedures (Winkler et al., 1979; Rossmann et

al., 1979), which make use of the estimated ' centroids of

observed spots rather than their detector coordinates, gener-



ally provide more accurate estimates than methods based on

the spot positions. This is because spot positions are affected

by residual spatial distortions (after applying appropriate

corrections) and, additionally, the unit-cell parameters are

correlated with the crystal-to-detector distance, which is not

always accurately known. For either method, it is necessary to

include data from widely separated regions of reciprocal space

(ideally ' values 90� apart) in order to determine all unit-cell

parameters accurately. This is particularly important for lower

symmetry space groups.

The crystal orientation also needs to be known to an

accuracy which corresponds to a few percent of the re¯ection

width. For crystals with low mosaicity (e.g. 0.1�), this corre-

sponds to a hundredth of a degree or better. Fortunately, it is a

feature of post-re®nement that the error in determining the

orientation is typically a few percent of the re¯ection width,

and so this condition can generally be met. It is important to

allow for movement of the crystal by continuously updating

the crystal orientation during integration. This is even true

when using cryocooled crystals, as the magnetic couplings

which attach the pin (holding the crystal) to the goniometer

head are not strong enough to prevent small movements,

particularly with the high angular rotation rates employed on

intense synchrotron beamlines. Non-orthogonality of the

incident X-ray beam and the rotation axis (if not allowed for)

or an off-centred crystal will also give rise to apparent changes

in crystal orientation with spindle rotation.

The crystal mosaicity can be estimated by visual inspection

and re®ned by post-re®nement. Re®ned values are quite

reliable when the mosaic spread is less than about 0.5�, but

becomes more dependent on the rocking curve model for the

high mosaicities which are often associated with frozen crys-

tals. The presence of diffuse scatter, which appears as haloes

around the Bragg diffraction spots, presents further dif®culties

in determining the correct mosaic spread. When processing

coarse-sliced images, it is preferable to slightly overestimate

the mosaic spread (rather than underestimate it). This will

result in an increase in random errors (by adding in the X-ray

background from an image on which the spot is not actually

present), whereas using too small a value can give systematic

errors (by underestimating the number of images on which the

spot lies).

2.2. Detector parameters

Detector calibration is essential for high data quality. Both

the spatial distortion and the non-uniformity of response of

the detector must be known accurately, and it is equally

important that these corrections are stable over the time scale

of the experiment (and preferably for much longer).

Finally, the crystal-to-detector distance, the detector

orientation and the direct-beam position must be re®ned and

continuously updated during integration, using observed spot

positions. The crystal-to-detector distance can vary during

data collection if the crystal is not exactly centred on the

rotation axis, and the direct-beam position can move after a

beam re®ll at a synchrotron. For image-plate detectors with

two (or more) plates, the direct-beam position and detector

distance often differ slightly for different plates.

With appropriate care, it is normally possible to predict

re¯ection positions on the detector to an accuracy of

20±30 mm, or a fraction of the pixel size, particularly for highly

collimated X-ray beams available at synchrotron sources. This

level of accuracy is necessary to minimize possible systematic

errors, particularly in the case of pro®le ®tting.

3. Methods of integration

There are two quite distinct procedures available for deter-

mining the integrated intensities: summation integration and

pro®le ®tting. Summation integration involves simply adding

the pixel values for all pixels lying within the area of a spot and

then subtracting the estimated background contribution to the

same pixels. Pro®le ®tting (Diamond, 1969; Ford, 1974;

Rossmann, 1979) assumes that the actual spot shape or pro®le

is known (in two or three dimensions), and the intensity is

derived by ®nding the scale factor which, when applied to the

known (or standard) pro®le, gives the best ®t to the observed

spot pro®le. In practice, pro®le ®tting requires two separate

steps: determination of the standard pro®les and evaluation of

the pro®le-®tting intensities. As will be shown later, pro®le

®tting results in a reduction in the random error associated

with weak intensities, but offers no improvement for very high

intensities.

4. X-ray background

In the complete absence of X-ray background and detector

noise, the integration of the diffraction images becomes very

straightforward. Using the geometry of the Ewald sphere

construction, it is possible to map every pixel on the detector

into reciprocal space and assign to each pixel the indices of the

nearest reciprocal-lattice point. The diffracted intensity could

then be found by summing the pixel values for all pixels which

have been assigned to that particular reciprocal-lattice point.

In the absence of background and detector noise, these

intensities are as accurate an estimate as it is possible to

obtain, and methods like pro®le ®tting offer no advantage. The

inclusion of pixels which lie outside the physical extent of the

spot on the detector does not compromise the signal-to-noise

ratio. In practice, it is extremely rare for the background to be

negligible, even for the relatively strong low-resolution

diffraction spots.

4.1. The measurement box

X-ray scattering from air, the sample holder and the

specimen itself give rise to a general background in the images

which has to be subtracted in order to obtain the Bragg

intensities. Ideally, the background should be measured for the

same pixels used to record the Bragg diffraction spot, but this

is not usually practical and the background is determined

using pixels immediately adjacent to the spot. In practice, the

pixels to be used for the determination of the background
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(background pixels) and those to be used for evaluating the

intensity (peak pixels) are de®ned using a `measurement box'.

This is a rectangular box of pixels which is centred on the

predicted spot position. Each pixel within the box is classi®ed

as being a background or a peak pixel (or neither). This mask

can either be de®ned by the user or the classi®cation can be

made automatically by the program. An example of a possible

measurement-box de®nition is given in Fig. 1. The background

parameters NRX, NRY and NC can be optimized auto-

matically by maximizing the ratio of the intensity divided by its

standard error, in a manner analogous to that described by

Lehmann & Larsen (1974). It is generally assumed that the

background can be adequately modelled as a plane, and the

plane constants are determined using the background pixels.

This allows the background to be estimated for the peak

pixels, so that the background-corrected intensity can be

calculated.

5. Integration by simple summation

5.1. Determination of the best background plane

The background-plane constants a, b and c are determined

by minimizing

R1 �
Pn
i�1

wi��i ÿ api ÿ bqi ÿ c�2; �1�

where �i is the total number of counts at the pixel with co-

ordinates (pi, qi) with respect to the centre of the measure-

ment box and the summation is over the n background pixels.

wi is a weight which should ideally be the inverse of the

variance of �i. Assuming that the variance is determined by

counting statistics, this gives

wi � 1=GE��i�; �2�
where G is the detector gain, which converts pixel counts to

equivalent X-ray photons, and E(�i) is the expectation value

of the background counts �i. In practice, the variation in

background across the measurement box is usually suf®ciently

small that all weights can be considered to be equal.

This gives the following equations for a, b and c, as given in

Rossmann (1979)P
p2

P
pq

P
pP

pq
P

q2
P

qP
p

P
q n

0@ 1A a

b

c

0@ 1A �
P

p�P
q�P
�

0@ 1A; �3�

where all summations are over the n background pixels.

5.1.1. Outlier rejection. It is not unusual for the diffraction

pattern to display features other than the Bragg diffraction

spots from the crystal of interest. Possible causes are the

presence of a satellite crystal or twin component, white-

radiation streaks, cosmic rays or zingers. In order to minimize

their effect on the determination of the background-plane

constants, the following outlier-rejection algorithm is

employed.

(i) Determine the background-plane constants using a

fraction (say 80%) of the background pixels selecting those

with the lowest pixel values.

(ii) Evaluate the ®t of all background pixels to this plane,

rejecting those which deviate by more than three standard

errors.

(iii) Re-determine the background plane using all accepted

pixels.

(iv) Re-evaluate the ®t of all accepted pixels and reject

outliers. If any new outliers are found, re-determine the plane

constants.

The rationale for using a subset of the pixels with the lowest

pixel values in step (i) is that the presence of zingers or cosmic

rays or a strongly diffracting satellite crystal can distort the

initial calculation of the background plane so much that it

becomes dif®cult to identify the true outliers. Such features

will normally only affect a small percentage of the background

pixels and will invariably give higher than expected pixel

counts. Selecting a subset with the lowest pixel values will

facilitate identi®cation of the true outliers. The initial bias in

the resulting plane constant c owing to this procedure will be

corrected in step (iii). Poisson statistics are used to evaluate

the standard errors used in outlier rejection, and the standard

error used in step (ii) is increased to allow for the choice of

background pixels in step (i).

5.2. Evaluating the integrated intensity and standard error

The summation integration intensity Is is given by

Is �
Pm
i�1

��i ÿ api ÿ bqi ÿ c�; �4�

where the summation is over the m pixels in the peak region of

the measurement box. If the peak region has mm symmetry,

this simpli®es to

Is �
Pm
i�1

��i ÿ c�: �5�

To evaluate the standard error, this can be written

Figure 1
The measurement-box de®nition used in MOSFLM. The measurement
box has overall dimensions NXS by NYS pixels (both odd integers). The
separation between peak and background pixels is de®ned by the widths
of the background rims (NRX and NRY) and the corner cutoff (NC). The
size of the peak region is optimized separately for each of the standard
pro®les.



Is �
Pm
i�1

�i ÿ �m=n�Pn
j�1

�j; �6�

where the second summation is over the n background pixels.

The variance in Is is

�2
Is
�Pm

i�1

�2
i � �m=n�2 Pn

j�1

�2
j : �7�

From Poisson statistics, this becomes

�2
Is
�Pm

i�1

G�i � �m=n�2 Pn
j�1

G�j �8�

� G Is � Ibg � �m=n��m=n�Pn
j�1

�j

" #
; �9�

where Ibg is the background summed over all peak pixels. We

can also write

Ibg ' �m=n�Pn
j�1

�j �10�

(this is only strictly true if the background region has mm

symmetry). Then,

�2
Is
� G�Is � Ibg � �m=n�Ibg�: �11�

This expression shows the importance of the background (Ibg)

in determining the standard error in the intensity. For weak

re¯ections, the Bragg intensity (Is) is often much smaller than

the background (Ibg) and the error in the intensity is deter-

mined entirely by the background contribution.

5.3. The effect of instrument or detector errors

Standard error estimates calculated using (11) are generally

in quite good agreement with observed differences between

the intensities of symmetry-related re¯ections for weak or

medium intensities. This is particularly true if other sources of

systematic error are minimized by measuring the same

re¯ections ®ve or more times by taking multiple exposures of

the same small oscillation range and then processing the data

in space group P1. However, even in this case, the agreement

between strong intensities is signi®cantly worse than that

predicted using (11). This is consistent with the observation

that it is very unusual to obtain merging R factors lower than

1%, even for very strong re¯ections where Poisson statistics

would suggest merging R factors should be in the range

0.2±0.3%.

An experiment in which a diffraction spot recorded on

photographic ®lm was scanned many times on an optical

microdensitometer showed that the r.m.s. variation in indivi-

dual pixel values between the scans was greatest for those

pixels immediately surrounding the centre of the spot, where

the gradient of the optical density was greatest. One expla-

nation for this observation is that these optical densities will

be most sensitive to small errors in positioning the reading

head, owing to vibration or other mechanical defects. A simple

model for the instrumental contribution to the standard error

of the spot intensity is obtained by introducing an additional

term for each pixel in the spot peak,

�ins � K���=�x�; �12�
where ��/�x is the average gradient and K is a proportionality

constant. Taking a triangular-shaped re¯ection pro®le, the

gradient and integrated intensity are related by the equation

Is � �1=12��x3 � 3x2 � 5x� 3����=�x�; �13�
where x is the half-width of the re¯ection (in pixels). Writing

A � �1=12��x3 � 3x2 � 5x� 3�; �14�
this gives

�ins � �K=A�Is; �15�
where the factor A allows for differences in spot size and K is

ideally a constant for a given instrument.

The total variance in the integrated intensity is then

�2
tot � �2

Is
�m�2

ins �16�
� G�Is � Ibg � �m=n�Ibg� �m�K=A�2I2

s : �17�
A value for K can be determined by comparing the goodness-

of-®t of the standard pro®les to individual re¯ection pro®les

(of fully recorded re¯ections) with that calculated from

combined Poisson statistics and the instrument-error term.

Standard errors estimated using (17) give much more realistic

estimates than those based on (11), even for data collected

with CCD detectors, where the physical model for the source

of the error is clearly not appropriate.

6. Integration by pro®le ®tting

Providing the background and peak regions are correctly

de®ned, summation integration provides a method for evalu-

ating integrated intensities which is both robust and free from

systematic error. For weak re¯ections, however, many of the

pixels in the peak region will contain very little signal (Bragg

intensity), but will contribute signi®cantly to the noise because

of the Poissonian variation in the background [as shown by the

Ibg term in (11)]. Pro®le ®tting provides a means of improving

the signal-to-noise ratio for this class of re¯ection (but will

provide no improvement for re¯ections where the background

level is negligible).

6.1. Forming the standard pro®les

In order to apply pro®le-®tting methods, the ®rst require-

ment is to derive a `standard' pro®le which accurately repre-

sents the true re¯ection pro®le. Although analytical functions

can be used, it is dif®cult to de®ne a simple function which will

cope adequately with the wide variation in spot shapes which

can arise in practice. Most programs therefore rely on an

empirical pro®le derived by summing many different spots.

The optimum pro®le is that which provides the best ®t to all

the contributing re¯ections, i.e. that which minimizes

R2 �
P

h

wj�h��KhPj ÿ �j�h�corr�2; �18�

where Pj is the pro®le value for the jth pixel, �j(h)corr is the

observed background-corrected counts at that pixel for
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re¯ection h, Kh is a scale factor and wj(h) is a weight for the jth

pixel of re¯ection h. The summation extends over all re¯ec-

tions contributing to the pro®le. The weight wj(h) is given by

wj�h� � 1=�2
hj �19�

and, from Poisson statistics, the expectation value of the

counts at pixel j is given by

�2
hj � KhPj � �ahpj � bhqj � ch�: �20�

After Rossmann (1979), the summation-integration intensity

Is(h) can be used to derive a value for Kh,

Is�h� � Kh

Pm
j�1

Pj: �21�

In (20) and (21), as the pro®le values Pj are not yet deter-

mined, a preliminary pro®le derived, for example, from simple

summation of strong re¯ections used in the detector-para-

meter re®nement can be used, which will give acceptable

weights for use in (18).

This method of deriving the standard pro®le is only

appropriate for fully recorded re¯ections. However, in many

cases there will be very few or no fully recorded re¯ections on

each image. In such cases, the pro®le is determined by simply

adding together the background-corrected pixel counts from

all contributing re¯ections. In the program MOSFLM (Leslie,

1992), the pro®les are determined using re¯ections on, typi-

cally, ten or more successive images, so that partials will be

summed to give the correct fully recorded pro®le for the

majority of the contributing re¯ections. Tests carried out using

standard pro®les derived using only fully recorded re¯ections

and (18), or using both fully recorded and partially recorded

re¯ections and simple summation, give data of the same

quality as judged by the merging statistics.

The re¯ection pro®le changes across the face of the

detector, owing to obliquity of incidence, changes in the

projected diffracting volume and geometric factors. In the

MOSFLM program, this variation is accommodated by

determining several standard pro®les (typically 9 or 25) for

different regions of the detector. When evaluating the pro®le-

®tted intensity for a given re¯ection, a weighted sum of the

nearest standard pro®les is calculated to provide the best

estimate of the true pro®le at that position on the detector. For

the central regions of the detector, there will be four contri-

buting pro®les, while at the edges there will be between one

and three. The weights assigned to each pro®le vary linearly

with the distance from the re¯ection to the centres of the

regions used in determining the standard pro®les. An alter-

native procedure, used in DENZO (Otwinowski & Minor,

1997), is to evaluate a new pro®le for each re¯ection based on

spots lying within a pre-speci®ed radius.

6.2. Evaluation of the pro®le-®tted intensity

Given an appropriate standard pro®le, the re¯ection

intensity for fully recorded re¯ections is evaluated by deter-

mining the scale factor K and background-plane constants a, b

and c which minimize

R3 �
P

wi�KPi � api � bqi � cÿ �i�2; �22�
where the summation is over all valid pixels in the measure-

ment box. As before,

wi � 1=�2
i �23�

and the expectation value of the counts at pixel i is given by

�2
i � api � bqi � c� JPi: �24�

In order to calculate the weights, the background plane

constants and summation-integration intensity Is are eval-

uated as described in x5, at the same time identifying any

outliers in the background. The summation-integration

intensity is used to evaluate the scale factor J in (24) using

Is � J
P

i

Pi: �25�

In (22), the summation is over all valid pixels within the

measurement box. This excludes pixels which are overlapped

by neighbouring spots (if any) and any outliers identi®ed in

the background region.

Minimizing R3 with respect to K, a, b and c leads to four

linear equations from which K, a, b and c can be determined:P
wP2

P
wpP

P
wqP

P
wPP

wpP
P

wp2
P

wpq
P

wpP
wqP

P
wpq

P
wq2

P
wqP

wP
P

wp
P

wq
P

w

0BB@
1CCA

K

a

b

c

0BB@
1CCA �

P
wP�P
wp�P
wq�P
w�

0BB@
1CCA
�26�

and the pro®le-®tted intensity Ip is then given by

Ip � K
P

i

Pi: �27�

The standard error in the pro®le-®tted intensity is given by

�2
Ip
� �2

K�
P

i

Pi�2 �28�

�
PN

i

wi�
2
i

N ÿ 4
Aÿ1

KK�
P

i

Pi�2; �29�

where

�i � KPi � api � bqi � cÿ �i; �30�
N is the number of pixels in the summation and Aÿ1

KK is the

diagonal element for the scale factor K of the inverse normal

matrix (used to minimize R3).

In the case of partially recorded re¯ections, it is no longer

valid to ®t the sum of the scaled standard pro®le and a

background plane to all pixels in the measurement box.

Partially recorded re¯ections can have a pro®le which differs

signi®cantly from the standard pro®le, with the result that the

background plane constants take on physically unreasonable

values in an attempt to compensate for this difference.

Therefore, for partially recorded re¯ections, the summation in

(22) is restricted to pixels in the peak region of the

measurement box. Minimizing R3 with respect to the scale

factor K then gives



Ip � K
P

Pi �31�
� P

wiPi�i ÿ a
P

wiPipi ÿ b
P

wiPi qi

ÿ
ÿ c

P
wiPi

� P
Pi=
P

wiP
2
i

ÿ �
; �32�

where all summations are over the peak region only.

It is not possible to derive a standard error for partially

recorded re¯ections based on the ®t of the scaled standard

pro®le (because partially recorded re¯ections have a different

spot pro®le). For these re¯ections, the standard error can be

calculated using (17).

6.3. Modi®cations for very close spots

In order to apply (22), it is necessary to exclude all pixels in

the measurement box which are overlapped by a neighbouring

spot. This applies not only to the pixels of the re¯ection being

integrated, but also to the pixels of all the re¯ections used to

form the standard pro®le. Consequently, a pixel should be

excluded even if it is only overlapped by a neighbouring spot

for one of the re¯ections used in forming the standard pro®le.

When processing data from large unit cells, this can lead to a

very high percentage of the background pixels being rejected

and, therefore, a poor determination of the background plane

parameters. In these circumstances, the background plane is

determined using only background pixels and excluding only

those pixels which are overlapped by neighbours for the

re¯ection actually being integrated. The pro®le-®tted intensity

for both fully recorded and partially recorded re¯ections is

then evaluated in the way described for partially recorded

re¯ections in the previous section, with the summation in (32)

extending only over peak pixels. The standard error in the

intensity for partially recorded re¯ections is derived from (17)

as before. For fully recorded re¯ections, the standard error has

two components; the ®rst is based on the ®t of the scaled

standard pro®le to the re¯ection pro®le and the second on the

contribution from the background:

�2
I � �2

prof � �2
bg �33�

�
Pm
i�1

wi�
2
i

�mÿ 1�
�Pm

i�1

Pi�2Pm
i�1

wiP
2
i

� �m=n�Pn
i�1

��i ÿ api ÿ bqi ÿ c�2;

�34�

where m and n are the number of pixels in the peak and

background, respectively.

6.4. Pro®le ®tting very strong re¯ections

For very strong re¯ections, the background level is very

small, and (32) reduces to

Ip '
P

wiPi�i�
P

Pi=
P

wiP
2
i �; �35�

the weights are given by

wi ' 1=JPi: �36�
Substituting for wi in (35) gives

Ip '
P
�i: �37�

As pointed out by Otwinowski (personal communication), this

shows that for correctly weighted pro®le ®tting, the pro®le-

®tted intensity reduces to the summation-integration intensity

for very strong intensities.

6.5. Pro®le ®tting very weak re¯ections

For very weak re¯ections, all pixels will have very similar

counts and, therefore, all the weights will be the same. For

simplicity, consider the case where the pro®le ®t is evaluated

only for the peak pixels; (32) then reduces to

Ip �
P

pi��i ÿ api ÿ bqi ÿ c��PPi=
P

P2
i �: �38�

The last term in this equation depends only on the shape of the

standard pro®le. This shows that the intensity is a weighted

sum of the individual background-corrected pixel counts

(rather than a simple unweighted sum, as is the case for

summation integration). Because the values of Pi are a

maximum in the centre of the spot, this will place a higher

weight on those pixels where the contribution of the Bragg

diffraction is greatest and a very low weight on the peripheral

pixels where the Bragg diffraction is weakest. In this way,

pro®le ®tting improves the signal-to-noise ratio without the

risk of introducing any systematic error which may result from

simply reducing the size of the peak region for weak spots.

6.6. Improvement provided by pro®le ®tting weak re¯ections

For very weak re¯ections, where all the weights wi are

approximately the same, the variance in Ip using (38) is given

by

�2
Ip
�PVar��i ÿ api ÿ bqi ÿ c�P2

i �
P

Pi=
P

P2
i �2: �39�

Assuring a ¯at background and very weak intensity, from

Poisson statistics

Var��i ÿ api ÿ bqi ÿ c� ' G�i �40�
and, as �i has approximately the same value (�) for all pixels,

�2
Ip
� G�

P
P2

i �
P

Pi=
P

P2
i �2 �41�

� G���PPi�2�=
P

P2
i : �42�

The variance in the summation-integration intensity is simply

�2
Is
� Gm�: �43�

The ratio of the variances is thus

�2
Is
=�2

Ip
� m

P
P2

i =�
P

Pi�2: �44�
For a typical spot pro®le, the right-hand side (which depends

only on the shape of the standard pro®le) has a value of 2,

showing that pro®le ®tting can reduce the standard error in

the integrated intensity by a factor of 21=2.

6.7. Other bene®ts of pro®le ®tting

6.7.1. Incompletely resolved spots. If adjacent spots are not

fully resolved, there will be a systematic error in the integrated

intensity which will be largest for weak spots which are adja-
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cent to very strong spots. However, the pro®le-®tted intensity

will be affected less than the summation-integration intensity

because the peripheral pixels (where the in¯uence of neigh-

bouring spots is greatest) are down-weighted relative to the

central pixels (where the neighbours will have least in¯uence).

Further steps can be taken to minimize the errors caused by

overlapping spots. Firstly, when forming the standard pro®les,

re¯ections are only included if they are signi®cantly stronger

than their nearest neighbours. This will minimize the errors in

the standard pro®les. Secondly, when evaluating the pro®le-

®tted intensity of a particular re¯ection, pixels can be omitted

if they are adjacent to a pixel which is part of a neighbouring

spot (rather than having to be part of that spot).

A more satisfactory approach is to deconvolute spatially

overlapping spots as described, for example, by Bourgeois et

al. (1998).

6.7.2. Elimination of peak pixel outliers. In the same way

that outliers in the background region can be identi®ed and

rejected (see x5.1.1), it is possible, in principle, to identify

outliers in the peak region of fully recorded re¯ections as

those pixels whose deviation from the scaled standard pro®le

is signi®cantly greater than that expected from counting

statistics. This approach works well if the feature which gives

rise to the outliers affects only a small fraction of the peak

pixels and gives rise to large deviations; this is the case for

some zingers, dead pixels and for diffraction from small ice

crystals when collecting data from cryo-cooled samples.

Another source of outliers is the encroachment of a strong

neighbouring spot into the peak region, as discussed in the

previous section. When dealing with peripheral pixels, the

outlier test can be applied to both fully recorded and partially

recorded re¯ections, but a high � cutoff (e.g. 10±20) must be

used to avoid rejecting pixels which do not ®t the pro®le

simply because it is a partially recorded spot.

6.7.3. Estimation of overloaded re¯ections. Because of the

limited dynamic range of current detectors, it is common for

many low-resolution spots to contain saturated pixels.

Providing the saturation level of the detector is known, such

pixels can simply be excluded from the pro®le ®tting, allowing

a reasonable estimate of the true intensity (except when the

majority of the pixels are saturated). A knowledge of the

strong intensities is essential for structure solution based on

molecular-replacement techniques, and so this is a very useful

additional feature of pro®le ®tting.

6.8. Pro®le ®tting partially recorded re¯ections

Greenhough & Suddath (1986) have shown that when

pro®le ®tting is applied to partially recorded re¯ections this

leads to a systematic error in the individual intensities, but

there is no systematic error in the total summed intensity.

Although their analysis is strictly only applicable to the case of

unweighted pro®le ®tting, experience has shown that even

when using weighted pro®le ®tting there is no evidence of

systematic errors in the summed pro®le-®tted intensities of

partially recorded re¯ections. This is particularly important, as

many data sets collected from frozen crystals have few, if any,

fully recorded re¯ections.

6.9. Systematic errors in pro®le-®tted intensities

The fundamental assumption in pro®le ®tting is that the

standard pro®les accurately re¯ect the true pro®le of the

re¯ection being integrated. Errors in the standard pro®le will

result in systematic errors in the pro®le-®tted intensities.

While these errors will often be small compared with the

random (Poissonian) error for weak re¯ections, this is not

necessarily the case for strong re¯ections, as the systematic

error is typically a small percentage of the total intensity.

Because the standard pro®les are derived from the summation

of many contributing re¯ections, small positional errors in spot

prediction will lead to a broadening of the standard pro®le

relative to the pro®le of an individual spot. The same broad-

ening can occur because of the ®nite sampling interval in the

image, which means that a predicted spot position can lie up to

half a pixel away from the centre of the measurement box.

This error can be minimized by interpolating the pixel values

in the image onto a grid which is centred exactly on the

predicted position, but the interpolation step itself will inevi-

tably distort the re¯ection pro®le. In spite of these dif®culties,

providing adequate care is taken to determine the crystal and

detector parameters accurately (as mentioned in x2) so that

the spot positions are predicted to within a small fraction of

the overall spot width, then there is no suggestion (from

merging statistics at least) for signi®cant systematic error even

in the stronger intensities.

I would like to thank Dr A. J. Wonacott, Dr P. Brick and Dr

P. R. Evans for many stimulating and critical discussions on all

aspects of data integration.
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