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Analytical expressions are derived and computer simulations

are presented to assess the accuracy of procedures commonly

used to estimate the resolution of three-dimensional (3D)

structures derived from images of single protein molecules or

complexes. It is shown that in the case of a low signal-to-noise

ratio in the images, the Fourier ring correlation between two

structures, each calculated using one half of the data,

signi®cantly overestimates the resolution when the two half

data sets were aligned against the same reference structure.

The overestimate arises because of a correlation between the

noise components present in the images. The correlation is

introduced by the alignment and becomes more serious as the

signal-to-noise ratio is reduced. A reliable resolution measure

is only obtained when the two half data sets are aligned against

two independent reference structures. It is further shown that

the noise correlation also signi®cantly affects the spectral

signal-to-noise ratio and the Q factor, making them unreliable

measures of signal present in a 3D structure and in the original

images, respectively. It is concluded that the alignment of

images is always accompanied by a correlation of the noise

and that this correlation is indistinguishable from a correlation

arising from a signal.
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1. Introduction

Electron microscopy of biological macromolecules has

become a powerful technique for determining the three-

dimensional (3D) structure of proteins and protein complexes.

The development of crystallographic methods and their

application to two-dimensional (2D) crystals produce 3D

density maps at 3±4 AÊ resolution which can be interpreted by

atomic models (Henderson et al., 1990; KuÈ hlbrandt et al., 1994;

Nogales et al., 1998). At the same time, electron microscopy of

isolated protein molecules and complexes (single particles)

continues to progress to higher resolution and has yielded 3D

maps at 7 AÊ resolution in the case of highly symmetrical

viruses (BoÈ ttcher et al., 1997; Conway et al., 1997) and 11.5 AÊ

resolution for the asymmetrical ribosome (Gabashvili et al.,

2000).

The physical limits of structure determination using single

particles have been discussed (Henderson, 1995) and it

appears possible to obtain a density map at 3 AÊ resolution if

the particle mass is suf®ciently large (300±4000 kDa,

depending on the attainable contrast in the electron micro-

scope) and given a suf®ciently large number of images to

average over (104±106 images). It is essential to use a reliable

resolution measure to judge the progress in resolution made

with larger amounts of data and new techniques. Commonly, a



correlation coef®cient is used to measure the resolution of a

3D map calculated from single-particle images. For this

purpose, the set of images is divided into two subsets, each

containing one half of the images of the complete set. The

distribution of images between the two sets should be random,

but in practice they are usually divided into odd and even-

numbered particles. Two 3D maps are calculated from the

subsets and their Fourier transformations, F1 and F2, are

computed. The resolution of the two maps is then estimated by

the Fourier shell correlation (FSC; Harauz & van Heel, 1986),

FSC�k;�k� �

P
�k;�k�

F1�k�Fy2 �k�

P
�k;�k�
jF1�k�j2

P
�k;�k�
jF2�k�j2

" #1=2
; �1�

which is evaluated for each resolution shell (k,�k). Here, ²

denotes the complex conjugate. For pure noise the expectation

value for the FSC is 1/[N(k,�k)]
1/2, where N(k,�k) is the number

of terms in the shell. The resolution cutoff is then often taken

at the point where FSC < 2/[N(k,�k)]
1/2 (Frank, 1996). It is

important to note that the assumption made with the above

correlation analysis is that the two subsets are independent of

each other. However, this is usually not true for reasons

outlined in the following.

When working with images of single particles, the main task

is to determine the orientation (three angles) and position

(two coordinates) of each particle as accurately as possible.

These parameters can be determined, for example, using a 3D

map of the particle as a reference. Projections from such a 3D

reference map can be generated in directions uniformly

sampling all possible orientations and the closest match for

each particle image can then be found (Penczek et al., 1994).

Such an approach represents a parameter search and is limited

in accuracy to half the step width used. A problem arises at the

beginning, when no 3D map of the particle is available.

Usually, a ®rst map is generated using multivariate statistical

analysis and classi®cation of the image set, which results in

class averages representing common views of the particle. The

relative orientation of these views can then be determined

using, for example, the angular reconstitution method (van

Heel, 1987).

Once the orientation and position of each particle is

approximately determined and a ®rst 3D map has been

calculated, the parameters are re®ned. Re®nement differs

from a parameter search in that the accuracy of the deter-

mined parameters is not limited by a step width. Instead, a

function is maximized or minimized depending on the function

used. For example, one could maximize a cross-correlation

coef®cient between an image and a projection of the reference

map by varying the angles determining the direction of

projection. With the new parameters, a better 3D map can be

calculated and used in the next re®nement cycle. The iteration

is terminated when the parameters stop changing signi®cantly

between cycles.

Since in this iterative procedure the parameters for each

particle are re®ned against the same reference, the two subsets

of images used in the correlation analysis to obtain a resolu-

tion estimate are not independent. As will be shown, this can

lead to completely false resolution estimates.

2. False correlation of sums of images aligned to a
common reference

Given is a set of M images of particles, each with N = n � n

pixels, and each image is normalized to have an average of

zero and a variance of one. For simplicity, we assume that (i)

we are only interested in a 2D projection map of our particle,

(ii) that the images all show the same view of our particle and

(iii) that the particles are rotationally aligned with each other

and only need to be aligned in their two positional coordi-

nates. We would like to monitor the progress of our parameter

re®nement by means of a correlation coef®cient CC with

CC�X;Y� �PN
i�1

xiyi

� PN
i�1

x2
i

PN
i�1

y2
i

� �1=2

: �2�

X and Y are two images with pixel values xi and yi, respec-

tively. In (2) we used the fact that the pixel averages of xi and

yi are zero. Again, for the sake of simplicity, we calculate a

correlation coef®cient in real space between the averages of

two subsets of images. This correlation coef®cient equals the

spectral average of the Fourier ring correlation (FRC; Saxton

& Baumeister, 1982; van Heel et al., 1982), which is the two-

dimensional equivalent of the FSC.

What happens when images contain pure noise? We know

that if we calculate the correlation coef®cient between two of

the noise images, the expectation value of the correlation

coef®cient is zero. However, if we align the two images to each

other to maximize the correlation coef®cient, the expectation

value of the maximum will be greater than zero. The variance

of the correlation coef®cient for pure noise is �2 = 1/N and for

large N its distribution is approximately normal. If we allow

shifts in the two positional coordinates to be applied to either

of the two images, we can calculate N0 = N different correla-

tion coef®cients. For large N0, the asymptotic expectation

value of the maximum of N0 normally distributed correlation

coef®cients with a variance 1/N is (Grigorieff & Grigorieff,

1999)

hCCiN � ��2=N� ln�N0��1=2: �3�
(3) gives the correlation coef®cient if we align two pure noise

images, each having N = n � n pixels, in their two positional

coordinates. For large N, the expectation value approaches

zero, as expected.

Now we expand the equations for the case of M images. We

assume we have all M images aligned to each other and we

indicate an aligned image or image coordinate by *. We note

that as a consequence of the alignment the covariance � of

pixel values is the same for any two images X* and Y*:

� = cov(X*, Y*) > 0. We select an image X�n and calculate the

correlation coef®cient between the sum of the remaining Mÿ 1

images and image X�n . The expectation value of the correlation
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coef®cient will be the same as that between two single aligned

noise images, since the sum of M ÿ 1 images is again a noise

image. We write for the correlation coef®cient

CC
PM
i 6�n

Xi;Xn

 !
�

PN
j�1

PM
i6�n

x
�i�
j x
�n�
j

PN
j�1

PM
i6�n

�x�i�j �2
PN
j�1

�x�n�j �2
( )1=2

: �4�

To calculate the expectation value of the correlation coef®-

cient we use the property of the expectation value of the

quotient of two random variables x and y, which can be

approximated as

x

y

� �
' hxihyi ÿ

1

hyi2 cov�x; y� � hxihyi3 var�y� �5�

(Mood et al., 1974). We observe that for large N the variance

of the denominator in (4) and its covariance with the

numerator are small compared with the mean of the

denominator. Thus,
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In (6) we have observed again that all images are normalized

with zero mean and a variance of one. Also, to calculate the

expectation value of the denominator we again used the fact

that the variance of the double sum under the square root is

small compared with its mean.

When we split the data set into two, each containing M/2 of

the aligned images, the expectation value hCCiN,M of the

correlation coef®cient between the two sums is given by

hCCiN;M � CC
PM=2

i�1

X�i ;
PM=2

j�1

Y�j

 !* +

' PM=2

i�1

PM=2

j�1

cov�X�i ;Y�j �

� PM=2

i�1

var�X�i � �
PM=2

i6�i0

PM=2

i0�1

cov�X�i ;X�i0 �
" #(

� PM=2

j�1

var�Y�j � �
PM=2

j 6�j0

PM=2

j0�1

cov�Y�j ;Y�j0 �
" #)1=2

� M

�2=�� �M ÿ 2

' M

�2=hCCi2N� �M ÿ 2
for large M: �7�

Here and in (6) we used the relations
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(Mood et al., 1974). We note that as the number of images M

approaches in®nity we expect a correlation coef®cient of 1.

Therefore, if all images are aligned against a common refer-

ence, the correlation coef®cient is not a reliable measure for

the signal present in the average. For example, if we have 1000

images of size N = 64 � 64 pixels we will ®nd a correlation of

0.67; for 5000 images we ®nd a correlation of 0.91. If we allow

rotational alignment of the images in addition to the alignment

in their two positional coordinates we expect the situation to

become worse; the number of independent correlation co-

ef®cients N0 in (3) will be larger and hence hCCiN will increase,

leading in turn to an increase in hCCiN,M.

Similar arguments can be made for images that are used to

calculate a 3D reconstruction of a particle. The correlation

coef®cient for testing the resolution will be calculated between

two 3D maps, each containing a number of voxels which is

larger than the number of pixels in the two-dimensional case.

However, the number of degrees of freedom in the alignment

is also larger and includes the two positional coordinates as

well as the three angles.

3. Other measures of resolution

3.1. Spectral signal-to-noise ratio

The spectral signal-to-noise ratio (SSNR) has been

suggested as another resolution measure (Unser et al., 1987,

1989). It is de®ned as

SSNRR �
FR ÿ 1 FR > 1

0 FR � 1;

�
�10�

with the spectral variance ratio
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where Fi is the Fourier transform of image Xi and R is the

region in Fourier space for which the SSNR is evaluated. The

expectation value of FR is one for images containing pure

uncorrelated noise (Unser et al., 1987). We note that for

images containing pure noise the probability distribution is the

same for all Fourier coef®cients. The expectation value of each

Fourier coef®cient is zero, the variance of the Fourier coef®-

cients is related to the variance in the image by

var(Fi) = Nvar(Xi) and the covariance of coef®cients of two

Fourier transforms is cov(Fi, F
y
j ) = Ncov(Xi, Xj). When

calculating the expectation value of FR for a series of M

aligned images, we observe that for large M the numerator and

denominator can be treated independently as before,

hFRi ' �M ÿ 1�P
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and hence

hSSNRRi '
MhCCi2N

1ÿ hCCi2N
for large M: �13�

(13) gives an average for the SSNR over the entire spectrum.

For large M, we expect the SSNR to be signi®cantly larger

than one. Hence, the SSNR shows the same effect of spur-

iously high values. For example, if we have 1000 images of size

N = 64� 64 pixels, we will ®nd a SSNR of 4.1; for 5000 images,

we ®nd a SSNR of 20.4. The relation between the correlation

coef®cient and the SSNR is

SSNR ' 2CC=�1ÿ CC�: �14�

(14) is identical to the relation given by Frank & Al-Ali (1975)

except for a factor of 2, which accounts for the fact that the

SSNR in (14) describes the signal-to-noise ratio of the ®nal

average of all images rather than that of the averages of the

two half sets that are being compared by the correlation

coef®cient.

3.2. Q factor

Another measure of resolution is given by the Q factor (van

Heel & Hollenberg, 1980; Kessel et al., 1985), de®ned as

QF�k� �
PM
i�1

Fi�k�
���� ����PM
i�1

jFi�k�j
: �15�

k is a particular location (pixel) in the Fourier transform for

which the Q factor is calculated. The Q factor is zero for pure

uncorrelated noise and one for a noise-free signal. As before,

the expectation value of QF can be approximated by calcu-

lating the expectation values for the numerator and denomi-

nator separately. We note that the denominator obeys Wilson

statistics (Wilson, 1949) and write

hQF�k�i '
2
PM
i�1

var�Fi� �
PM
i 6�j

PM
j�1

cov�Fi;F
y
j �

" #1=2

�1=2
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� 2�1� �M ÿ 1�hCCi2N�1=2

��M�1=2
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(16) gives an average for the Q factor over the entire spec-

trum. For large M, the Q factor approaches the value of

(2/�1/2)hCCiN. This means that the Q factor remains small

even for aligned noise images. For example, for images of size

N = 64� 64 pixels we have a Q factor of 0.072 in the limit of an

in®nite number of images. (16) shows that the Q factor is

essentially independent of the number of images in the data

set and only depends on their mutual correlation. Thus, it

measured the signal present in the original images and not in

the ®nal average. Since we have a non-zero correlation of pure

noise images after their alignment, the Q factor is also not zero

and suffers from the same false indication of signal as the

quantities discussed before.

4. Simulations on the computer

4.1. Pure noise

To validate the expressions for the FRC, SSNR and

Q-factor simulations were carried out on a computer using the

image-processing package SPIDER (Frank et al., 1996). Three

data sets consisting of 1000, 5000 and 10 000 images containing

64� 64 pixels of normally distributed noise (unit variance and

zero average) were generated. 30 cycles of translational
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Table 1
Comparison of simulations and calculations.

Spectral average values for the FRC, SSNR and Q factor for three different
data sets and calculated values using the equations derived in the text.

FRC SSNR Q factor

Data set Simulation Eq. (7) Simulation Eq. (13) Simulation Eq. (16)

N = 1000 0.67 0.67 3.89 4.06 0.070 0.080
N = 5000 0.89 0.91 18.4 20.4 0.063 0.074
N = 10000 0.95 0.95 35.6 40.8 0.061 0.073
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alignment were executed for each data set. One cycle

consisted of calculation of the average of all images using the

alignment parameters from the previous cycle and subsequent

alignment of all images to the new average using a cross-

correlation function. For the ®rst cycle, the original noise

images were used to calculate the ®rst average. Fig. 1 shows

plots of the FRC, SSNR and Q-factor values in resolution

zones for all data sets; Table 1 gives values averaged over the

entire spectrum. The calculated averages agree well with those

found in the simulations. Fig. 1 shows that the values for the

FRC, SSNR and Q factor are approximately constant across

the spectrum and that the noise in the curves increases for

smaller data sets.

4.2. The presence of signal

When signal is present in the images the expectation values

of the resolution measures change. This is the result of a

reduced degree of freedom in the alignment: the signal will

place constraints on the alignment of individual images by

favoring de®ned positions which are independent of the noise.

If the magnitude of the signal is not constant across the

Fourier spectrum, the statistics of the expectation values will

also vary across the spectrum. The ®nal alignment will depend

on both the signal-to-noise ratio and the spectral distribution

of the signal. A test pattern was generated (Fig. 2a) and

normalized (unit variance and zero mean). The average

amplitude in resolution zones of the Fourier spectrum of the

test pattern is shown in Fig. 2(b). Six more test data sets were

produced by adding normally distributed noise to the test

pattern. The ®rst three data sets consisted of 1000, 5000 and

10 000 images (64 � 64 pixels) with a signal-to-noise ratio

(ratio of the signal variance to the noise variance) of 1/25; the

Figure 1
(a) FRC, (b) SSNR and (c) Q factor in resolution zones for aligned data
sets with images containing only normally distributed noise. The data sets
contained M = 1000 (dashed lines), 5000 (dotted lines) and 10 000 images
(unbroken lines). The noise in the plots is highest for the smallest data set.
All plots show approximately constant values across the spectrum. The
resolution is given in units of pixelÿ1.

Figure 2
(a) Test pattern with 64 � 64 pixels used in the computer simulations. (b)
Amplitude spectrum of the test pattern showing oscillations arising from
the particular shape of the test pattern. The resolution is given in units of
pixelÿ1.

Figure 3
Test patterns with 64� 64 pixels and signal-to-noise ratios of 1/25 and 1/4
and data-set averages after 30 cycles of translational alignment for data
sets containing M = 1000, 5000 and 10 000 images.



second three data sets contained 1000, 5000 and 10 000 images

with a signal-to-noise ratio of 1/4 (sample images are shown in

Fig. 3). Experimentally observed signal-to-noise ratios range

between 1/10 and 1/2 depending on the size of the complex

examined and the contrast obtained in the electron micro-

scope. The images in each simulated data set were again

normalized. 30 alignment cycles were performed as before,

generating six ®nal averages (Fig. 3). Plots of the FRC, SSNR

and Q factor in resolution zones are shown in Figs. 4(a)±4(f).

In addition, FRC plots between the ®nal averages and the

original test pattern were calculated (Figs. 4g and 4h). The

Fourier spectrum of the test pattern shows that the signal is

highest at low resolution. Furthermore, owing to the shape of

the test pattern, an oscillation is visible in the spectrum. This

oscillation is reproduced in all plots and is most visible with

the largest data set and highest signal-to-noise ratio. When

comparing plots for data sets of

the same size but with different

signal-to-noise ratios (0, 1/25 and

1/4; Figs. 3 and 4), a common

pattern becomes apparent. In

resolution zones where the

signal is strong, the FRC, SSNR

and Q factor increase with the

signal-to-noise ratio of the data

set. In resolution zones where

the signal is weakest, we ®nd the

reverse order: the FRC, SSNR

and Q factor assume their

highest values when the signal-

to-noise ratio of the data set is

lowest, i.e. when no signal is

present. This ®nding demon-

strates two points. The ®rst is

that all the resolution measures

considered have a complex

dependence on the power of the

signal present in the data, its

distribution and the size of the

data set. The second point is that

for a weak signal, the FRC,

SSNR and Q factor are not reli-

able indicators of signal present

in the data. This is particularly

well illustrated when comparing

the FRC plots in Figs. 4(a) and

4(b) with those in Figs. 4(g) and

4(h). For the data set with a

signal-to-noise ratio of 1/4, the

FRC between the averages of

the two half sets corresponds

well with that between the ®nal

average and the test pattern. For

the data set with a signal-to-

noise ratio of 1/25, there is good

agreement only at low resolu-

tion. At high resolution the FRC

between averages of the two half

sets indicates a strong signal (Fig.

4a; the FRC is about 0.8 for the

data set containing 10 000

images), even though there is

hardly any correspondence

between the ®nal average and

the original test pattern (Fig. 4g).
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Figure 4
FRC, SSNR and Q factor in resolution zones for aligned data sets of images with a signal (test pattern) and
normally distributed noise. The data sets contained M = 1000 (dashed lines), 5000 (dotted lines) and 10 000
images (unbroken lines). The left column shows plots for data sets with a signal-to-noise ratio of 1/25,
whereas the signal-to-noise ratio is 1/4 in the right column. Panels (g) and (h) show the FRC between the
®nal data set averages and the original test pattern shown in Fig. 2(a), together with a plot of twice the FRC
expected for pure noise (Frank, 1996). The resolution is given in units of pixelÿ1.
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4.3. The Fourier ring correlation of two independent data sets

To complete the analysis two data sets were generated each

containing 5000 images of the test pattern in Fig. 2(a) and

added noise with a signal-to-noise ratio of 1/4. The data sets

were aligned as before, but against two separate references. In

each alignment cycle, the two references were recalculated as

the averages of their respective aligned data sets. An align-

ment with two separate references differs from the simulations

in the previous section in that the images in the ®rst data set

are never aligned against the reference generated from the

second data set and vice versa, thus keeping the references

completely uncorrelated. The ®nal averages were compared

using the FRC (FRC1/2 in Fig. 5). The ®nal average of the ®rst

data set was also compared to the original test pattern

(FRCorig in Fig. 5; this is the same curve as in Fig. 4h for

M = 5000). The FRC plots in Fig. 5 show the same oscillations

as seen previously. FRC1/2 is smaller than FRCorig because the

former compares two noisy representations of the original test

pattern whereas the latter compares a noisy representation

with the noise-free test pattern. The expected variance

between the two noisy averages is twice the variance between

one of the noisy averages and the original test pattern. For the

FRC this means

FRCorig ' 2FRC1=2=�1� FRC1=2�: �17�

A third plot (FRCestim) showing the estimated FRCorig

according to (17) is also included in Fig. 5 and agrees well with

FRCorig except where the FRC is small (at a resolution of

about 0.43) and therefore subject to increased statistical

uncertainty.

5. Discussion

The aim of this study is to review common measures of

resolution of structures derived by averaging images of single

protein molecules or complexes. The preceding calculations

and computer simulations show that depending on the reso-

lution measure used, the indicated signal present in the ®nal

structure or in the images used to derive the structure can be

fortuitous. The present study deals with the simpler case of 2D

averages, but the results also apply to 3D reconstructions. The

simulations in Fig. 4 show that for data with a signal-to-noise

ratio of 1/4 the FRC and SSNR are good indicators for the

signal present in the ®nal average. When the signal-to-noise

ratio drops to 1/25 both the FRC and the SSNR still indicate a

strong signal, even though comparison of the ®nal average

with the original test pattern (Fig. 4g) shows there is no signal

present beyond a resolution of about 0.25. For example, for

the data set containing M = 10 000 images and at a resolution

of 0.3, the FRC is 0.82 (Fig. 4a) and the SSNR is 10, whereas

comparison of the ®nal average with the original test pattern

in Fig. 4(g) indicates a FRC below the noise level.

Fig. 5 shows that the FRC between averages of two half data

sets is a true indicator of the signal present in the ®nal average

if the alignment of the two half data sets was carried out

separately. However, it is common practice to combine the two

half data sets to calculate a single new reference for the next

alignment cycle because this doubles the signal-to-noise ratio

in the reference. It is then assumed that one would still obtain

a reliable resolution measurement when dividing the data into

two halves (see, for example, Saxton & Baumeister, 1982). As

shown in this study, this is not the case. It is therefore

important to align the two half data sets against two separate

references.

In the original de®nition of the SSNR (Unser et al., 1987),

the assumption was made that the noise present in the images

to be aligned is uncorrelated. This assumption is critical for the

properties of the SSNR derived in the original work. If the

noise in the images is uncorrelated, the effect of the fortui-

tously increased SSNR described here does not apply.

However, it is important to note that with the alignment

methods presently used in single-particle averaging, a corre-

lation of the noise in the images cannot be avoided. Thus,

using the SSNR with the current alignment methods, it is likely

that the calculated signal-to-noise ratios are signi®cantly

higher than the actual signal-to-noise ratios of the averaged

structure. The effect is strongest when the signal in the images

is weak, a situation typically encountered in low-dose electron

microscopy of frozen-hydrated specimens (Henderson, 1992).

The Q factor suffers from the same problem in that it indicates

a signal in the images which can be much stronger than the

actual signal if the noise present in the images is correlated.

Although the expectation values for the FRC, SSNR and Q

factor can be estimated fairly accurately for pure noise images

(Table 1), these values show a more complex behavior when a

signal is present (Fig. 4). If the structure (signal) were accu-

rately known, one could estimate the error arising from

correlated noise and correct for it in a resolution plot.

However, it is the very same structure one usually seeks to

determine and hence a correction of the fortuitously high

FRC, SSNR and Q factor is usually not possible. It follows that

a non-zero correlation coef®cient between a pair of noise

images in a set of aligned images cannot be distinguished from

a non-zero correlation coef®cient arising from a real signal.

Figure 5
FRC in resolution zones between averages of two data sets containing
5000 images each (FRC1/2), between the average of one data set and the
original test pattern (FRCorig) and the estimated FRCorig (FRCestim),
based on (17). The resolution is given in units of pixelÿ1.



6. Conclusions

An important goal in modern electron microscopy of

biological samples is the study of the 3D structure of non-

crystalline samples to high resolution. Accurate measurement

of the resolution of the 3D reconstruction calculated from

images of single protein molecules or complexes is an essential

quality assessment for the images recorded in the electron

microscope, as well as for new methods to be developed to

push single-particle methods to near-atomic resolution. The

present study shows that commonly used measures of

resolution, such as the Fourier ring correlation, the spectral

signal-to-noise ratio or the Q factor, can yield unrealistic

results. The Fourier ring correlation is a reliable indicator of a

signal present in a 3D reconstruction only if the alignment of

the images in the two half data sets was performed with two

independent reference structures.
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