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A method to extend low-resolution phases is presented which

uses histogram matching not only of the electron density, but

also of histograms obtained from the different levels of detail

provided by the wavelet transform of the electron density.

Statistical values for the wavelet coef®cients can be predicted

and depend only on the resolution and solvent content.

Therefore, new details can be added to an electron-density

map by matching the values of the wavelet coef®cients to

those predicted for an increased resolution. The positions of

the new details are also guided by the diffraction pattern. In

this way, the resolution can be increased gradually; on a

number of trial structures of different size, solvent percentage

and space group, it has been possible to extend the phasing

from 10 AÊ to around 6±7 AÊ .

Received 25 April 2000

Accepted 27 July 2000

1. Introduction

An electron-density map which can be interpreted in terms of

an atomic model requires both the phases and amplitudes of

the structure factors. However, only the diffraction amplitudes

can be measured experimentally, giving rise to the so-called

`phase problem' in crystallography. The standard methods of

multiple isomorphous replacement (MIR) and multiple-

wavelength anomalous dispersion (MAD) can provide the

required phases, although isomorphous derivatives or anom-

alous scatterers are not always easily obtained. Similarly, there

is often no suitable starting model for structure solution by

molecular replacement and a phasing scheme is required

which does not depend upon any special circumstances or

conditions. A method for the complete ab initio determination

of macromolecular crystal structures using X-ray diffraction

data from a single crystal may be divided into the following

three stages.

(i) Determine an initial image of the molecule at about

10±15 AÊ resolution to show the molecular envelope.

(ii) Increase the resolution of this image to about 4 or 5 AÊ to

resolve the tertiary structure.

(iii) Use image-processing techniques to improve the

electron-density map and increase the resolution to that of the

X-ray data.

The ®nal stage is now well developed. Image-processing

techniques as well as established small-molecule direct

methods have been extremely successful in improving and

extending the experimental phases of protein structures. The

work was started by Zhang & Main (1990) who produced the

computer program SQUASH and was then further developed

by Cowtan & Main (1993). This has resulted in the program

DM, now part of the CCP4 program library. Normally used

with MIR, MAD or molecular replacement, DM can increase



the resolution of the electron-density maps to that of the

X-ray data prior to interpretation. Methods have already been

developed which can determine the molecular envelope of

macromolecular structures, providing low-resolution phases in

the most general case. The problem then is how to extend

these phases to a resolution at which DM can be used, typi-

cally around 3±4 AÊ . In the next section, we show how wavelet

analysis effectively decomposes an image into different levels

of detail. This allows control over the position of new details

added to the map and forms the basis for a method to extend

the low-resolution phases, as increasing the resolution is a

matter of adding the right amount of detail to the right place in

a map.

2. Wavelet analysis

Suppose we have the one-dimensional electron density �(x),

shown in Fig. 1(a). Then, as we are only dealing with the values

at grid points, we lose nothing by assuming that �(x) is

constant between the grid points, as in Fig. 1(b).

De®ne the function '(x), shown in Fig. 2, by

'�x� � 1 if 0 � x < 1

0 otherwise.

n
Then, since '(x ÿ k) is only non-zero for k � x < k + 1, we

can write �(x) as a linear combination of these functions, i.e.

we have

��x� � Pnÿ1

k�0

A0;k'�xÿ k�; �1�

where n is the number of grid points and A0,k is just the value

of � at the kth grid point. If we now scale the function '(x) by

a factor of 2, then we can only obtain the approximation to the

electron density given by

��x� ' Pn=2ÿ1

k�0

A1;k'�x=2ÿ k� �2�

as shown in the left-hand side of Fig. 3.

However, the differences between the approximation in (2)

and the exact representation in (1) can be expressed in terms

of the function  (x), shown in Fig. 4, de®ned by

 �x� �
1 if 0 � x < 1=2

ÿ1 if 1=2 � x < 1

0 otherwise,

(

so that

��x� � Pn=2ÿ1

k�0

A1;k'�x=2ÿ k� � Pn=2ÿ1

k�0

B1;k �x=2ÿ k�: �3�

Thus, if we add the two parts of Fig. 3, we again have an

exact representation of our electron density (up to the

sampling precision). We can now repeat the process on the

`smoothed' density in Fig. 3 to obtain an even smoother

version in terms of the functions '(x/4 ± k). Now, if we add two

different levels of details we can again recreate our original

density exactly, i.e. we have
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Figure 1
(a) One-dimensional electron density and (b) its discrete version.

Figure 2
Graph of the function, '(x).

Figure 3
The `smoothed' electron density and the differences between this and the
original density.

Figure 4
Graph of the function,  (x).
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��x� � Pn=4ÿ1

k�0

A2;k'�x=4ÿ k� � Pn=4ÿ1

k�0

B2;k �x=4ÿ k�

� Pn=2ÿ1

k�0

B1;k �x=2ÿ k� �4�

(see Fig. 5).

The function  (x) is the simplest wavelet function, known

as the Haar wavelet. The function '(x) is known as the Haar

scaling function as it satis®es the equation

'�x=2� � Pnÿ1

j�0

cj'�xÿ k� �5�

(with c0 = c1 = 1), which tells us the relationship between the

functions on one scale and those which are twice as wide. This

may seem too obvious to express in this way, but the scaling

equation in (5) holds for more complicated wavelet systems. In

all cases, we represent our density as a linear combination of

some wavelet-scaling function ' and its integer translates as in

(1). The scaling equation (5) then allows approximations of

the original density by functions scaled by a factor of 2. At

each level, the differences between the approximations are

stored in terms of wavelet functions  , related to ' through

 �x=2� � Pnÿ1

j�0

�ÿ1� jcj'�xÿ k�: �6�

In the usual Fourier representation, we express the electron

density in terms of sines and cosines and each one contributes

to every point in the map. In a wavelet representation, the

functions ' and  are compactly supported; that is, each

function is non-zero for a ®nite number of grid points. For

example, the Haar scaling function is non-zero for a single grid

point at the original scale. The number of coef®cients cj in (5)

is twice the number of non-zero grid points at the original

scale. (The equation changes the scale by a factor of 2.) A set

of wavelet functions is completely characterized by these

coef®cients, called ®lter coef®cients to distinguish them from

the wavelet coef®cients Ai,k and Bi,k above. In fact, certain

families of wavelet functions devised by Daubechies (1992)

are referred to by the number of these coef®cients. Daube-

chies' wavelets cannot be expressed as analytical formulae but

are instead formed by an iterative procedure via (5). Daube-

chies' six-coef®cient wavelet function, used in the phase-

extension method, is shown in Fig. 6.

We have described the multi-resolution approach to

wavelet analysis of Mallat (1989). In this case, the wavelet

functions are specically constructed to give an exact repre-

sentation at any level of the transform in terms of the func-

tions ' and  associated with that level. Wavelet-type

functions have also been considered in the crystallographic

context by Lunin (2000) to provide an approximation to the

electron-density distribution requiring few parameters.

3. Histogram matching

Histogram matching is a standard technique in image

processing and has been used with success in X-ray

crystallography. A histogram of density values can be calcu-

lated from any discrete image and compared with the histo-

gram expected from a `good' image. In the ab initio

determination of molecular envelopes, this is used as a selec-

Figure 6
A single wavelet function from the Daubechies' family. This six-
coef®cient wavelet function is the one currently used in the phase-
extension method.

Figure 5
The density after two levels of smoothing which would require two
different scales of detail (as indicated) to be added in order to reconstruct
the original density.

Figure 7
Electron-density histograms at 9, 8, 7 and 6 AÊ (a) calculated from a
typical protein after smoothing with a Gaussian kernel and (b) calculated
from a two-Gaussian model.



tion criteria in choosing phase sets from a large population of

random starting phase sets (Lunin & Skovoroda, 1991).

Furthermore, an image may be improved by systematically

changing the density values to match the expected histogram;

electron-density histogram matching plays an important role

in density modi®cation at high resolution (Zhang & Main,

1990). The technique depends on the availability of expected

histograms and it has been shown that these can be predicted

for unknown protein structures. At high resolution, the

protein and solvent regions are easily identi®ed and the

histogram matching is only performed over the protein region.

In this case the histograms depend only on resolution (Zhang,

1993). At very low resolution, the electron density from the

entire unit cell must be used and molecular packing as well as

the percentage of solvent play a part in determining the

histogram. However, it has been found that only considering

the asymmetric unit reduces the dependence on packing

arrangements suf®ciently and only resolution and solvent

content need to be addressed (Main, 1998).

Mathematical models can be used to describe the histo-

grams and Main (1990) provided a formula for calculating

electron-density histograms at high resolution. Similarly,

Lunin & Skovoroda (1991) suggested a two-component

histogram model, calculated empirically to correspond with

the histograms of known protein structures. At low resolution,

the electron density from the entire cell must be

included in the histogram, giving a bimodal distribu-

tion as shown in Fig. 7(a). Fig. 7(b) shows that the

histograms can be described as a sum of two Gaussian

functions, one which corresponds roughly to the

solvent and one to the protein region.

The different levels of detail provided by the

wavelet transform provides additional constraints on

the electron density and allows histogram matching to

be exploited further. For each of the x, y and z

directions, two levels of a wavelet transform are

performed, giving sets of wavelet coef®cients A2,k, B2,k

and B1,k as in (4). The A2,k are the coef®cients of the

scaling functions and relate to the smooth version of

the electron density. It is not surprising then that the

histograms calculated from these coef®cients look like

low-resolution electron-density histograms. The

histograms calculated from the detail coef®cients B2,k

and B1,k, however, look very similar to detail histo-

grams obtained by Mallat (1989) for two-dimensional

images. Mallat showed that these histograms can be

described by the mathematical model

h�u� � K exp�ÿ�juj=����:
The parameters � and � can be determined from the

®rst and second moments of the histogram (see Wilson

& Main, 2000). Fig. 8 shows typical examples of detail

histograms together with histograms calculated from

Mallat's model; the histogram labelled D1 is calculated

from the coef®cients B1,k and the histogram labelled

D2 from the coef®cients B2,k. As the parameters

depend only on resolution and percentage of solvent,

we have been able to predict values for � and � as

functions of resolution for different solvent contents.

These histograms have been shown to work as ef®-
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Figure 8
Detail histograms from a two-level transform; D1 is calculated from the
coef®cients corresponding to the smallest details and D2 from the next
level of detail. The thick lines show the actual histograms calculated from
a typical protein after smoothing with a Gaussian kernel and the thin lines
show the histograms predicted from Mallat's mathematical model.

Figure 9
Flowchart showing the various stages in the phase-extension procedure.
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ciently as histograms calculated using the actual values of the

coef®cients.

4. Extending low-resolution phases

To form a starting point for the method, we have assumed that

phases to 10 AÊ are available; an electron-density map is

calculated with these. A two-level wavelet transform is then

performed along the x direction to obtain sets of wavelet

coef®cients A2,k, B2,k and B1,k. The detail coef®cients are then

matched to values predicted for a slightly higher resolution,

but the coef®cients of the scaling functions A2,k are left

unchanged. These coef®cients provide the smoothed electron

density to which the details are added and it has been found

that not matching these coef®cients allows them to keep their

position and stabilizes the procedure. The inverse wavelet

transform is then performed using the new coef®cients and the

electron density obtained is matched

to the histogram predicted for it at

the new resolution. As the wavelet

transform is applied to the entire cell,

the symmetry is destroyed and this

is now reimposed and the difference

between symmetry-related pixels is

used to check the correctness of the

map. The process is repeated until

this difference is within pre-set

limits. Wavelet transforms are also

performed along the y and z direc-

tions (on the electron-density map

from the start of the cycle) in the

same manner to obtain three maps at

the new resolution to be averaged.

The Fourier magnitudes calculated

from this averaged map are then

compared with the observed magni-

tudes and an R factor is computed.

The calculated magnitudes are

replaced by the observed magnitudes

and a new map calculated on which

the whole process is repeated until

the R factor shows convergence. This

completes a single cycle of the phase

extension as shown in the ¯owchart

of Fig. 9. At this point, the resolution

is increased and the procedure is

repeated on the electron density

calculated using the original 10 AÊ

phases together with the new phases

obtained in the previous cycle.

The two-Gaussian model used to

describe the electron-density histo-

grams allows systematic changes and

improves the results. Decreasing the

variance of the solvent distribution

effectively leads to solvent ¯attening

without the need to predesignate an

area as solvent. Similarly, it has been found that sharpening

the electron density in the protein region can be achieved by

increasing the variance associated with the protein distribu-

tion.

5. Results

The method has been shown to work on a large number of

model structures varying in size, solvent content and space

group. Table 1 shows the cumulative phase errors for a variety

of proteins selected from the Protein Data Bank (Berman et

al., 2000) for which structure factors were calculated from the

atomic coordinates. There is a gradual build-up of phase errors

as the calculation proceeds, but when calculated phases to

10 AÊ resolution are used we are currently able to extend these

to a resolution of around 6±7 AÊ . In most cases, the 10 AÊ

electron-density map is little more than a mask roughly

Figure 10
Stereoviews showing electron-density maps for myoglobin (PDB code 1myg) with the C� trace shown
in thick lines. (a) 10 AÊ starting map calculated from the ®nal model. (b) 6 AÊ map with phases between
10 and 6 AÊ given by our method.



covering the molecule (Fig. 10a),

whereas in a 6 AÊ map it is often

possible to identify secondary struc-

ture. Fig. 10(b) shows the 6 AÊ map

after phase extension from 10 AÊ ,

where the mean error on the new

phases is 73�. This can be compared

with Fig. 10(c) which shows the 6 AÊ

map calculated from the atomic

coordinates.

The method has also been used

with experimentally measured

magnitudes and we have found that

the method works equally well if the

data are complete. Fig. 11 compares

the results from calculated and

experimental magnitudes and it can

be seen that missing low-resolution

data causes major problems. If,

however, the experimental magni-

tudes are used where available and

the missing data are replaced by

appropriately scaled calculated

magnitudes, the results are compar-

able to those obtained using only

calculated magnitudes. All the graphs

in Fig. 11 show the results after phase

extension where the 10 AÊ starting

phases were calculated from the

atomic coordinates. However, the

method has also been shown to work

when the starting phases have errors.

A polyalanine model was created

from an �-subunit of human haemo-

globin and positioned in the

myoglobin unit cell using the mole-

cular-replacement program AMoRe

(Navaza, 1990). The 10 AÊ starting

phases calculated from this model

have a mean phase error of 46� with

respect to those calculated from the

atomic coordinates of myoglobin.

Again, the experimental magnitudes

were used where available and

calculated magnitudes were used for

the missing re¯ections. Fig. 12 shows

the mean phase errors for the new

phases in comparison with those

obtained from perfect starting phases

(i.e. those calculated from the ®nal

model).

6. Phase refinement

As well as constraining the density by

histogram matching and wavelet

analysis, we are experimenting with
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Figure 10 (continued)
(c) 6 AÊ map calculated from the ®nal model. (d) 6 AÊ map calculated after phase extension from starting
phases with 46� mean error. All electron-density maps are calculated at 1.25�, where � is the r.m.s.
deviation from the mean density of the map.

Table 1
Cumulative mean phase errors (MPE) for new phases.

The resolution levels shown are representative and do not indicate the increments used.

PDB
code

Solvent
(%) Symmetry

MPE on phases (�)
Starting
phases²

New
phases³10±9.0 AÊ 10±8.0 AÊ 10±7.0 AÊ 10±6.0 AÊ

1an8 75 P43212 60.2 60.6 68.8 72.4 356 1062
1cbf 69 P3121 48.9 58.0 68.7 77.8 273 901
1myg 65 I21 46.7 57.5 66.6 73.8 608 2019
1wsy 65 C2 54.0 65.0 73.0 79.5 890 3079
3gly 55 P212121 52.4 65.9 71.4 73.9 406 1211
2aai 54 P212121 48.9 60.3 70.1 76.8 440 1394
1olb 52 P212121 58.9 63.4 73.8 76.8 412 1271
1aac 51 P212121 54.5 63.7 70.9 76.4 504 1619
1ajg 50 P3121 53.5 66.6 72.8 78.2 311 1069
1alu 49 P3121 62.4 62.9 70.0 72.2 134 410
1an9 47 P212121 48.5 64.8 72.9 77.8 477 1546
1ako 47 P3121 57.9 58.2 70.3 79.8 187 598
1aqb 46 P212121 48.9 62.7 68.3 77.4 135 409
1al3 45 P21212 66.6 69.8 69.2 75.6 179 537
1am7 43 P212121 65.1 64.2 72.2 77.2 326 1024

² Number of independent starting re¯ections at 10 AÊ . ³ Number of independent new re¯ections, 10±6 AÊ .
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applying constraints to the structure-factor phases. Some

constraints are more easily applied in real space than reci-

procal space and vice versa. We intend to exploit both. The

assumption that the structure consists of randomly positioned

atoms leads to the phase probability distribution

P�'�h; k�� � expf��h; k� cos�'�h; k��g
2�I0���h; k�� �7�

where

'�h; k� � '�ÿh� � '�hÿ k� � '�k�

and

��h; k� � 2Nÿ1=2jE�ÿh�E�hÿ k�E�k�j

with N equal atoms in the unit cell. This formula is the basis of

the highly successful direct methods of crystal structure

determination, which are successful at least when N is not too

large and atomic resolution data are available.

For most proteins at less than atomic resolution, the

formula gives little useful information. However, if more is

known about the structure, it is possible to obtain new phase

probability formulae that could be useful. For example, if the

molecular envelope is known, the atoms can be assumed to be

randomly distributed within the envelope instead of over the

complete cell. This leads to the phase probability formula

P�'�h; k�� � expf��h; k� cos�'�h; k� ÿ��h; k��g
2�I0���h; k�� ; �8�

where

��h; k� � 2Nÿ1=2jE�ÿh�E�hÿ k�E�k�j

� �1� N
P jF j2 � N2

PF�h; k��
�1� N

P jF j2 � N2
P jFFj2�

��h; k� � ��ÿh� ���hÿ k� ���k�P jF j2 � jF�ÿh�j2 � jF�hÿ k�j2 � jF�k�j2P jFFj2 � jF�ÿh�F�hÿ k�j2 � jF�hÿ k�F�k�j2
� jF�k�F �ÿh�j2

F�h; k� � jF�ÿh�F�hÿ k�F�k�j exp�i��h; k��

with F (h) { = |F (h)|exp[i�(h)]} being the Fourier coef®cients

of the volume containing the random atom distribution

normalized to F (0) = 1. Note that (8) indicates a most prob-

able value for '(h, k) of �(h, k), which is given by the phases

of the appropriate F s. A combination of phase distributions

gives a modi®ed tangent formula which can express one phase

in terms of a large number of others,

'�h� � phase of

�P
k

w�h; k���h; k�

� expfi�'�hÿ k� � '�k� ÿ��h; k��g
�
; �9�

where the weight w(h, k) takes account of the expected errors

in the phases '(h ÿ k) and '(k). With a small enough volume

for the random atoms, this formula can give useful phase

information for proteins, even at low resolution. Preliminary

tests have achieved a phase improvement at 7 AÊ resolution

from 62 to 53� for 480 strong re¯ections, using only a know-

ledge of the molecular envelope at 10 AÊ resolution.

If part of the secondary structure has been recognized from

previous maps or a model for part of the structure is available,

this can be included in a phase probability formula very

similar to (8), but with

Figure 11
Cumulative mean phase errors for myoglobin. The phase errors are
shown when calculated magnitudes are used (thick line), when
experimentally measured magnitudes are used where available and
missing data are replaced with scaled calculated magnitudes (thin line)
and when only the experimentally measured magnitudes are used
(medium line). In this case �11% of the data below 10 AÊ were missing
and the effect is dramatic. The phase errors given are for all new phases
between 10 AÊ and the resolution shown.

Figure 12
Cumulative phase errors for myoglobin when starting phases have a mean
phase error of 46� (thin line) in comparison to those when correct starting
phases are used (thick line). In both cases the experimental magnitudes
were used where available and missing data were replaced by scaled
calculated magnitudes.



��h; k� � 2jE�h; k�j�n�G�h; k��
Nÿ3=2 n3 � n2

P jGj2 � n
P jGGj2 ÿ n

ÿ � ; �10�

where

G�h� �Pm
j�1

exp�2�ih � xj�

and the same notation as given for (7) is used. There are m

atoms in known positions, n randomly distributed (unknown)

atoms and a total of N atoms in the cell. All atoms are assumed

to be equal.

7. Discussion

In order to test the method when the starting phases have

errors, we have used models which were suitable for molecular

replacement; for example, the �-subunit of haemoglobin was

used to provide phases for myoglobin. Although the phase

error is as high as 46�, the models used are of suf®cient quality

for structure solution by the normal molecular-replacement

method. However, since we only require phases to 10 AÊ , the

method could be used in cases where the model is much

poorer and the usual procedure fails. In particular, starting

phases may be obtained from electron-microscopy images and

work is in progress on an as yet unsolved protein for which

10 AÊ phases have been obtained by molecular replacement of

such an image.

By 6±7 AÊ resolution, the build-up of phase errors is

becoming too great and further information needs to be added

to extend the phases further. At this stage, it is often possible

to recognize secondary structure in the maps and it is hoped

that this information can be recycled and the power of the

method extended. Furthermore, the method should be

improved signi®cantly if an effective weighting scheme can be

found, as none is used at present. The formulae given in the

last section are currently being tested, but no results are yet

available for publication. In addition, a formula has been

developed which includes both known atomic positions and a

restricted volume for the unknown atoms. It is intended that

phase re®nement using the above formulae will become part

of the overall phase-determination procedure described in this

paper.
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