
Acta Cryst. (2002). D58, 1955±1957 Potterton et al. � CCP4 molecular-graphics project 1955

research papers

Acta Crystallographica Section D

Biological
Crystallography

ISSN 0907-4449

The CCP4 molecular-graphics project

Elizabeth Potterton,a* Stuart

McNicholas,a Eugene Krissinel,b

Kevin Cowtana and Martin

Noblec

aStructural Biology Laboratory, Department of

Chemistry, University of York, Heslington, York

YO10 5DD, England, bEuropean Bioinformatics

Institute, Hinxton, Cambridge CB10 1SD,

England, and cUniversity of Oxford, England

Correspondence e-mail: lizp@ysbl.york.ac.uk

2002 International Union of Crystallography

Printed in Denmark ± all rights reserved

This new package will provide easy-to-use access to crystallo-

graphic structure solution, model building and structure

analysis. It will be possible for any developer to integrate

scienti®c software into the system.

Received 29 May 2002

Accepted 28 August 2002

1. Introduction

The Collaborative Computational Project, Number 4 (CCP4)

is a collaboration for developing and distributing software for

macromolecular crystallography (Collaborative Computa-

tional Project, Number 4, 1994). The products of the colla-

boration cover the full range of crystallographic procedures

from initial data analysis to structure re®nement, but

excluding any molecular-graphics-based model building.

Programs such as O (Jones et al., 1991), Xtalview (McRee,

1999) and QUANTA (Accelerys) provide this functionality.

In the context of a meeting on high-throughput crystallo-

graphy, is molecular graphics, which assumes a non-automated

user, relevant? Molecular graphics does have its uses:

appropriate visualization tools can occasionally help dif®cult

structure solutions, suitable visual tools certainly help in

model building and model correction, visualization of analysis

and comparison information is essential for any biological

interpretation of a structure and presentation of results is

greatly aided by graphics.

CCP4 distributes a library of basic software tools to assist

scienti®c developers with reading and writing the common ®le

formats, parsing command input and handling symmetry.

These software libraries are currently being revised and

extended (Winn et al., 2002). One view of the molecular-

graphics project is that it will be a library to assist developers

who wish to present their functionality to users via a mole-

cular-graphics interface. Access to a graphics system can also

be helpful in the process of developing more automated

procedures, as it enables developers to visualize test systems

even if they do not use the graphics in the same way in their

®nal released software.

Our objective is to provide an open-source package which

integrates well with CCP4 and other crystallographic software.

Tools for analysis and comparison of the resultant structures

will be incorporated and smooth interfacing with popular web-

based tools and databases will be essential. The package

should also be useful for dissemination of information,

providing for generation of pictures and presentations, and it

should be easy to use for those outside the crystallographic

®eld. It should be possible for any programmer to integrate

their scienti®c functionality into the molecular-graphics

system.

research papers

1956 Potterton et al. � CCP4 molecular-graphics project Acta Cryst. (2002). D58, 1955±1957

2. Program design

There are several key principles for the program design.

Firstly, modularity of the software, which simpli®es writing and

maintaining the software and makes it feasible to make major

revisions to individual modules when necessary. Secondly,

provision of libraries of commonly used functionality. Thirdly,

object-oriented programming languages can simplify handling

complex hierarchical data such as a protein structure, the full

results of a crystallographic data collection or the range of

graphical objects displayed in molecular graphics. Finally,

scripting languages can be more appropriate than compiled

languages for some areas of the code.

2.1. The data-handling libraries

The core of the molecular-graphics package handles two

key types of data: crystallographic experimental data and

macromolecular structure data. There have been major

initiatives within CCP4 to develop libraries to hold these data

and provide basic tools to manipulate and analyse the data.

These libraries will simplify and speed up development of

scienti®c software. They have been written in C++ and the

object-oriented programming approach has simpli®ed the

handling of the complex hierarchical data. The libraries are

already available to developers and have extensive docu-

mentation and examples. The libraries are being used to

develop the molecular-graphics package and the molecular-

structure library is being used within the European Bioinfor-

matics Institute to support their macromolecular-structure

database.

The Clipper library (Cowtan, 2002) is designed to handle

consistently all experimental data including multicrystal and

multiwavelength data and to handle maps and interconversion

between real and reciprocal space. It also provides sophisti-

cated data-analysis tools and mechanisms to import and

export data from external ®les.

The Macromolecular Database (MMDB; Krissinel, 2002)

holds structure data and provides tools to perform common

tasks. MMDB can read and write data ®les in PDB or mmCIF

format and stores the data in a hierarchical structure with four

levels for the model, chain, residue and atom. The model level

is necessary to handle the multiple models derived from NMR

experiments. MMDB has tools to select subsets of atoms (or

any other object in the hierarchy) based on geometric criteria

such as closeness to a de®ned atom or based on a selection

command speci®ed by the user. The selection language

supported by MMDB is terse but very ¯exible; for example, a

Ca atom in residue 27 of chain A is written as `A/27/CA'. The

idea of using a forward-slash ®eld separator is based on

computer-®le systems which should be familiar to most crys-

tallographers. Further examples of the syntax are given in

Table 1. Atom selection is very important within a molecular-

graphics system and ideally the user should be able to control

what is displayed via simple options on a GUI. The MMDB

selection tools provide a powerful generic mechanism to

support the popular options presented by the GUI and the

user only needs to use this syntax for entering speci®c

customized selections.

In order to re®ne macromolecular structures, programs such

as REFMAC (Murshudov et al., 1997) need to have constraints

on the internal geometry of the structure. The ideal internal

geometry (bond lengths, bond angles, torsion angles, atoms

constrained to a plane) and estimated standard deviations are

saved in a reference ®le which contains data for amino acids,

nucleic acids, sugar monomers and ligands. The same infor-

mation can also be useful in molecular graphics; for example,

the de®nition of ideal bond lengths tells you which atoms are

bonded and this knowledge can be used to derive and display

the correct bonds. This is more reliable than the alternative

approach, which is to assume that atoms closer than some

cutoff distance are bonded. The MMDB library maintains the

ideal internal geometry information and provides tools for the

application programmer to query: for example, the ideal bond

lengths within a given residue in an imported structure. In

order to use the internal geometry data, the residues and

ligands within an imported structure must be recognized and

cross-referenced to the database; this is straightforward for

commonly occurring amino acids and nucleic acids which have

standard residue names. Identifying non-standard amino acids

or non-standard nucleic acids or any ligands within an

imported structure is harder, but an ef®cient mechanism is

being developed. The method uses graph-theory techniques

which represent each residue or ligand as a graph with nodes

representing atoms (with the property of element type) and

edges representing bonds. There is a very ef®cient fast algo-

rithm to match this representation of an unknown residue or

ligand in an imported structure against a database of known

residues and ligands.

2.2. The scripting language component

The data-handling libraries in the molecular-graphics

system are written in C++, but the framework of the system is

written in the scripting language Python which is generally

faster to code and provides easy access to operating-system

tools such as threads and sockets. The overall management of

the loaded data and the derived graphical objects is imple-

mented in Python and uses an object-oriented approach. The

de®nition of the content of the graphical user interface (GUI)

and handling of all user input is performed in the Python layer.

It is possible to access all of the functionality of the C++

libraries from Python, but this requires a thin layer of interface

code which can be generated automatically by packages such

as SWIG. Possibly the main bene®t of Python will be in

enabling faster prototyping of scienti®c functionality.

Table 1
Examples of atom-selection syntax supported by MMDB.

A speci®c atom A/27/CA
A range of residues A/27-30
All atoms in a speci®ed residue type A/(GLY)/*
A list of atom names A/27/CA,N,C,O
All atoms of a given element type [N]

2.3. The graphics and graphical user interface

The molecular-graphics package uses two major external

tools: the OpenGL graphics library for three-dimensional

graphics and Tcl/Tk for the GUI. The interface to both of

these tools is intentionally minimal and via an abstract

representation of the objects to be drawn. This approach will

mean that the package is not strongly tied to either OpenGL

or Tcl/Tk. In the case of the three-dimensional graphics the

object to be drawn is ®rst de®ned in terms of graphical

primitives such as vectors, spheres and cylinders. An inter-

preter, which only needs to be a relatively small piece of code,

converts this abstract representation to the appropriate

OpenGL library calls to display the object. With this

approach, it will be relatively straightforward to provide

alternative interpreters to other graphics libraries such as the

Mac OS X native library or to a Postscript library to generate

Postscript output.

Similarly the de®nition of the GUI content is independent

of the underlying graphical toolkit. The GUI interpreter uses

Tcl/Tk and is based partly upon CCP4i, the graphical user

interface to the CCP4 package. The GUI interpreter runs as a

separate process connected to the main process via sockets.

The actual content of each interface window is de®ned in

general terms which are independent of Tcl/Tk, in the format

of nested lists within the Python language. The de®nition of

the window is sent to the GUI interpreter, which transforms

the generic de®nition into Tcl/Tk commands and displays the

window. User input to the GUI triggers sending a command in

Python format to the main process.

3. Current status

The present early version of the graphics program will read in

and display multiple PDB ®les. By default, one graphical

object is created and displayed for one imported molecule.

The three key properties of the graphical object are the atom

selection, the colour scheme and the display style. By default

the atom selection is `all atoms', the colour scheme is to colour

according to `atom type' and the display style is `bonds'. The

imported molecules and its child graphical objects are listed in

the GUI display table. The display table enables the user to

quickly change the properties of the graphical object via

menus, or the user can create new objects with different

properties, so the display table shown in Fig. 1 will give the

display shown in Fig. 2.

The content of the imported PDB ®le has been analysed

and the information on peptide chains, nucleic acid strands,

solvent and small molecules used to customize the display

table options to be appropriate for this molecule.

It is intended in the short term to add display of electron-

density maps and some simple functionality to show the result

of analysis after a cycle of structure re®nement using

REFMAC, particularly to highlight poorly ®tted regions.

Following on from this, tools to correct the poorly ®tted

regions will be developed and the ultimate objective is to

automate the whole re®ne, analyse and rebuild cycle.

References

Collaborative Computational Project, Number 4 (1994). Acta Cryst.
D50, 760±763.

Cowtan, K. D. (2002). Clipper Libraries, http://www.ysbl.york.ac.uk/
~cowtan/clipper/clipper.html.

Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. (1991). Acta
Cryst. A47, 110±119.

Krissinel, E. (2002). CCP4 Coordinate Library Project. http://
www.ebi.ac.uk/~keb/cldoc/.

McRee, D. E. (1999). J. Struct. Biol. 125, 156±165.
Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997). Acta Cryst.

D53, 240±255.
Winn, M., Ashton, A. W., Briggs, P. J., Ballard, C. C. & Patel, P. (2002).

Acta Cryst. D58, 1929±1936.

Acta Cryst. (2002). D58, 1955±1957 Potterton et al. � CCP4 molecular-graphics project 1957

research papers

Figure 1
The display table after the user has read data from the ®le 1df7.pdb and
set up a display with three graphical objects: the peptide, coloured by
secondary structure and displayed as a ribbon, the ligand MTZ, coloured
by atom type and displayed as space-®lling spheres, and the cofactor NDP,
coloured green and displayed as ball-and-stick.

Figure 2
The molecule-viewer display corresponding to the display-table de®nition
given in Fig. 1.

