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The methods for treating experimental data in the isomor-

phous replacement and anomalous scattering methods of

macromolecular phase determination have undergone consid-

erable evolution since their inception 50 years ago. The

successive formulations used are reviewed, from the most

simplistic viewpoint to the most advanced, including the

exploration of some blind alleys. A new treatment is proposed

and demonstrated for the improved encoding and subsequent

exploitation of phase information in the complex plane. It is

concluded that there is still considerable scope for further

improvements in the statistical analysis of phase information,

which touch upon numerous fundamental issues related to

data processing and experimental design.
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1. Introduction

It is almost exactly 50 years ago that the potential of isomor-

phous replacement (Green et al., 1954) and anomalous scat-

tering (Bijvoet, 1954) to provide experimental phase

information for macromolecules was identi®ed. Since then,

considerable progress has been made in realising that poten-

tial through developments in instrumentation (synchrotron

radiation, area detectors), experimental protocols (crystal

freezing, SeMet MAD, halide soaks) and computational

methodology (solution of large heavy-atom substructures,

maximum-likelihood re®nement and phasing, density modi®-

cation).

This paper gives a fairly informal historical survey of the

successive treatments devised to extract optimal phase infor-

mation from given experimental data and presents recent

developments related to the encoding and further use of that

phase information in the complex plane. Finally, directions for

further developments are indicated.

2. Phase information from small amplitude differences

Phase information is derived from a comparison of several

related sets of amplitude measurements and from the

modelling of the differences between them in terms of a

collection of `heavy atoms' (i.e. additional or anomalous

scatterers) whose number is considerably smaller than the

number of available measurements.

In the ideal situation where no errors of any kind are

present, consistency relations between the structure-factor

contributions FH
j from the heavy atoms, the available ampli-

tude measurements |FPH
j |obs and the phased structure factor FP
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for the macromolecule are expressed by a set of equations for

each unique re¯ection h,

k�j; h�jFP�h� � FH�j; h�j � jFPH�j; h�jobs: �1�
Here, j is a generic label which encodes book-keeping infor-

mation about various isomorphous compounds, distinct

crystals of these compounds, different X-ray wavelengths,

successive time batches and the identity (+ or ÿ) of members

of a Bijvoet or Friedel pair, while the scale factor k(j, h) relates

the scale for observation j at h to the absolute scale. If an

observation is available for the `native' macromolecule, free

from heavy atoms, it is customary to label it as j = 0 (say) and

to put FH(0, h) = 0 for all h: the equations then determine the

phases associated with the observed native amplitudes

|FPH(0, h)|. These equations are traditionally displayed in the

form of Harker's construction (Harker, 1956) and it is well

known from the geometry of circles that a pair (isomorphous

or anomalous) of measurements typically gives a twofold

ambiguous solution for FP, while three or more give a unique

solution.

Equations (1) involve two sets of quantities: ®rstly, the

collection of parameters p involved in calculating the FH(j, h)

and k(j, h), which may be called global parameters since their

in¯uence is felt throughout reciprocal space (i.e. for all unique

re¯ections h), and secondly, the collection of `native' structure

factors {FP(h)}, which may be called local parameters since

they each belong to a single re¯ection h. The very expression

`experimental phasing' highlights the extent to which the small

collection of global parameters p are perceived as determining

(perhaps with some residual twofold ambiguity) the much

larger collection of phases contained in the local parameters

{FP(h)} by the condition that together they should exactly

`explain' all data {|FPH(j, h)|obs} via (1).

3. Treatment of errors: a first glance

In a real situation, several categories of error will come and

spoil the simplicity of equations (1). Firstly, the contributions

FH(j, h) will be in error because the parameters describing the

atoms in the current model do not have ideal values and

possibly because the heavy-atom model for compound j is

incomplete. Next, the contribution FP(h) from the macro-

molecule will not be the same for all j, as it will be affected by

non-isomorphism between crystals, even in the case of an

experiment involving only one crystal, because of the effects

of radiation damage. Finally, the scaling parameters deter-

mining the relative scale factors k(j, h) will not be exactly

known and the observed amplitudes |FPH(j, h)|obs themselves

will be affected by measurement errors of various origins. As a

result, in general no collection of complex numbers {FP(h)}

will exist such that equations (1) are satis®ed. Blow & Crick

(1959) were the ®rst to propose a statistical treatment of this

problem, arguing that if for ®xed values of parameters p an

arbitrary point FP(h) is chosen for each h and substituted into

the left-hand side (LHS) of (1), then all discrepancies between

the LHS and right-hand side (RHS) of (1) can be `explained'

by invoking the sources of error listed above. There are many

such explanations or ways of `apportioning blame' between

the various types of error once p and {FP(h)} have been

speci®ed. Each of these explanations will have a different

degree of plausibility, measured by the ability of the prob-

ability model for all sources of error affecting the LHS of (1)

to account for the actual observations in its RHS within their

own experimental accuracy. Such a measure of plausibility is

called a likelihood: it will be considered in more detail and

with more rigour later, but the term will be used in the

meantime as shorthand for a hitherto unspeci®ed `measure of

plausibility'.

4. The impasse of `phase estimates'

At ®rst sight, therefore, experimental phasing in the presence

of errors seems to lead to a large-scale optimization problem

in which a likelihood criterion should be maximized with

respect to p and all the FP(h) values simultaneously. Such a

problem, however, is quite uninviting: its objective function

can be hopelessly multimodal, since it can be bimodal with

respect to each FP(h) for given p. Furthermore, the parameter-

to-observation ratio is unfavourable since there are two

parameters {<[FP(h)] and =[FP(h)]} per re¯ection h in addi-

tion to the global parameters p. This optimization approach is

therefore unworkable in a general case and the question arises

of how to treat the local parameters {FP(h)} if they cannot be

treated as re®nable parameters.

Historically, the problem ®rst arose with centric projection

data for myoglobin (Dickerson et al., 1960, 1961), for which

two phase values are allowed but where many re¯ections h

showed only one plausible FP(h) value by virtue of a simple

`no-crossover' argument which, it should be noted for later

reference, is a probabilistic argument leading to a quasi-

deterministic conclusion. In such cases, these sole plausible

values could be called `estimates' of FP(h) and substituted as

known constants in (1). Suf®ciently many such cases were

available to allow the relatively few global parameters p to be

re®ned by least squares (Hart, 1961) against the associated

isomorphous differences with a comfortable observations-to-

parameter ratio.

A major blind alley was entered when this protocol was

extended to acentric re¯ections (where the phases now have

unrestricted values) by setting up the least-squares re®nement

of global parameters p via equations (1) involving similar

`estimates' of acentric FP(h) values. The perils inherent in this

approach were realised at the time and it was pointed out that

a satisfactory re®nement method for SIR along these lines

may never be found because the intrinsic bimodality of the

phase indications gave rise to two exactly equivalent candi-

dates for the choice of each FP(h). When these indications

were bimodal but not equivalent, the problem persisted and

two main schools of thought developed: one in favour of the

mode (`most probable phase') and another in favour of the

centroid phase (`best phase') according to Blow & Crick

(1959). In both cases, it was necessary to use only re¯ections

with relatively high ®gures of merit (to avoid choosing a single

mode out of two nearly equivalent ones in the ®rst case and to



avoid using a centroid phase which is locally the least rather

than most plausible phase in the second), so that there was

little practical difference between the two. Successful

computer programs were produced to implement this `phased

re®nement' procedure (Dickerson et al., 1968) and, as pointed

out by Dodson (1976), made irresistible the temptation of

re®ning global parameters p against initial estimates of FP(h),

which would then be `updated' once re®nement had produced

`better' values for these parameters, the rationale being that

better parameters p ought to give better estimates of FP(h),

which in turn should give even better parameters p and so on.

It seemed reasonable to expect that iteration of this procedure

until self-consistency was reached would produce convergence

to optimal parameter values. This hope had to be abandoned

when Blow & Matthews (1973) noticed that the procedure led

to serious bias problems and could even be unstable. Their

analysis could be paraphrased by saying that choosing FP(h)

estimates which were the most favourable to the current

values of parameters p, together with restricting the data

consulted during the re®nement of p to well phased re¯ections

only, amounted to `gerrymandering', as a considerable number

of degrees of freedom (N phases for N acentric re¯ections)

were being continuously adjusted to absorb as much as

possible the inconsistencies between model (LHS) and

observations (RHS) in (1). When parameters re®ned in this

way were subsequently used to phase all available data, the

resulting electron-density maps were corrupted by prominent

artefacts (typically large negative holes with associated series-

termination ripples at heavy-atom sites), bearing witness to

the fact that considerable systematic errors remained in the

re®ned parameter values which were somehow being legit-

imized and hence made uncorrectable by the naõÈve procedure

used.

5. Breaking the deadlock: Bayesian data analysis with
marginalization

Blow and Matthews's alarm call resulted in a variety of

defensive measures being taken against bias in phased

re®nement. Their own recommendation was a `separation of

powers' whereby the subset of parameters associated with

each heavy-atom compound should only be re®ned against

FP(h) estimates obtained from data for other compounds as

unrelated as possible to that compound. Other measures tried

to avoid the use of phase information altogether, such as the

FHLE method (Kartha, 1965; Dodson et al., 1975; Blundell &

Johnson, 1976) and the origin-removed Patterson-correlation

function of Terwilliger & Eisenberg (1983), at the cost of

preventing multiple derivatives from assisting each other's

re®nement through the generation of phase information.

In examining the modern solution to this conundrum, it is

worthwhile going back to the original treatment of the centric

case in Dickerson et al. (1960, 1961) and reinterpreting the use

of an estimate for unambiguous FP(h) values as a single-point

integration rather than the substitution of a de®nite value. The

correct generalization to the acentric case [and to the centric

cases where the alternative value of FP(h) cannot be ruled out]

is therefore an integration over the continuum of possible

values of FP(h), each weighted by its likelihood according to

the error model mentioned earlier, rather than the substitu-

tion of a single `acentric FP(h) estimate' into equations (1).

This integration brings the same bene®ts in the general case as

the use of estimates did in the special case of amenable centric

re¯ections, namely the elimination of all local parameters

from the re®nement and hence the dramatic improvement in

the observations-to-parameter ratio in the re®nement of the

global parameters p alone compared with that for the simul-

taneous re®nement of both local and global parameters

considered at the beginning of x4.

In the terminology of modern Bayesian statistical methods

(see, for instance, the excellent introduction by Sivia, 1996),

the local parameters {FP(h)} are a typical instance of so-called

nuisance parameters, i.e. of quantities which must be intro-

duced in order to relate the parameters of interest p to the

observations in the RHS of (1), but which are in themselves of

no intrinsic interest. The process of integrating over nuisance

parameters to get rid of any direct dependence on them of a

likelihood involving p is called marginalization with respect to

these parameters.

It may seem paradoxical to call the FP(h) values by the

un¯attering name of `nuisance parameters' and declare them

to be `of no intrinsic interest', when they are in fact the desired

end-product of the whole analysis! The crux of the argument is

that for the purpose of determining the optimal values of the

global parameters p (which in turn give rise to the ®nal phase

information), the FP(h) values do have to be integrated out so

as to fully represent, within the re®nement process, the degree

to which they remain ambiguous at any given stage. The use of

`estimates' for these local parameters, by trying to summarize

the probability distribution of each of them by a single value,

was clearly doomed to engender fatal degrees of bias.

To conclude this retrospective sketch of the evolution of

ideas in phase determination, it is also worthwhile noting that

one of the early remedies proposed against phase-mediated

bias is related to marginalization, albeit to a greater degree

than necessary. The method of Terwilliger and Eisenberg does

indeed consist of integrating out the phase difference between

FP(h) and FH(j, h) with a uniform probability distribution in

the expression for the expected squared isomorphous differ-

ence between the native and compound j and then re®ning the

global parameters p against those squared differences. A

similar treatment can be applied to anomalous differences.

When several compounds are available, this approach leads to

separate marginalizations with respect to all such phase

differences, whereas they all involve the same phase for FP(h).

The pattern of interaction between the various compounds

which arises from a more careful marginalization with respect

to the phase of FP(h) simultaneously was derived analytically

by Bricogne (1991a,b) and showed that the bene®ts of the

interactions between different compounds during parameter

re®nement could be recovered while avoiding the pitfalls of

the old `phased re®nement'. Together with the treatment of

non-isomorphism through the model of Luzzati (1952)

proposed by Read (1991) and the implementation by Otwi-
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nowski (1991) of numerical integration over the native phase

in a least-squares program previously used for phased

re®nement, this analysis forms the basis of the modern

maximum-likelihood approach to experimental phasing

embodied in SHARP (de La Fortelle & Bricogne, 1997), which

will now be described in more detail.

6. The mechanics of likelihood functions and
marginalization

Returning to the situation of x3, any given physically reason-

able values of p and {FP(h)} may be considered as an `expla-

nation' of the data in the RHS of (1) to the extent to which the

various sources of errors listed there can account for the

discrepancies between the two sides of equations (1). The

question is to determine to what extent those data contain

`evidence' that privileges some of these explanations over

others. This viewpoint is the standard setting for applying the

Bayesian `calculus of evidence' enshrined in the notion of

likelihood and in Bayes's theorem, for which the reader is

again referred to Sivia (1996).

The ®rst step is to build a probabilistic model of all the

relevant sources of error in the form of the joint probability

distribution of all complex quantities of the form

FPH�j; h�calc � k�j; h��FP�j; h� � FH�j; h�� �2�
for given values of the global parameters p and local para-

meters {FP(h)} under the effect of all these errors. Here, the

quantities FP(h) denote the contribution of the macro-

molecule in the various compounds j, whose distribution in

terms of a common underlying FP
? (h) (the unknown `trial

native structure factor') is obtained by using Luzzati's model

(Luzzati, 1952) separately for each j.

Specifying this joint distribution will call upon new classes

of global parameters, which will be denoted collectively by q,

describing for instance the incompleteness and imperfection

of the current heavy-atom models, the non-isomorphism

between different crystals or the effects of radiation damage

on each crystal. Since the only observations available are

structure-factor amplitudes, this joint distribution of complex

structure factors must be converted into a joint distribution of

measurable amplitudes |FPH(j, h, p)calc| by integration over all

the associated phases. Once this has been performed, substi-

tuting the observed values {|FPH(j, h)obs|} of those amplitudes

for the arguments |FPH(j, h)calc| of that joint distribution of

amplitudes will produce the likelihood

� � ��p;FP
? �h�; qjfjFPH�j; h�jobsg� �3�

for the `explanation' or hypothesis described by p and FP
? (h)

under an error model with parameters q in the light of the

available data. Technically speaking, the transition from the

joint distribution of measurable amplitudes to the likelihood

function is not a simple substitution, but requires an extra

integration over the experimental error model for the obser-

vations. Finally, according to the analysis in x5, all local

parameters FP
? (h) must now be considered as nuisance para-

meters and integrated out to yield the likelihood function best

suited for re®ning the global parameters p and q against the

data,

� � ��p; qjfjFPH�j; h�jobsg�: �4�
Once the optimal values p* and q* have been obtained by

maximization of �, the likelihood function (3) calculated for

p = p* and q = q* as a function of the FP
? (h) gives the ®nal form

of the experimental phase information extracted from the data

by means of the heavy-atom model and error model (for more

details, see de La Fortelle & Bricogne, 1997). The centroid of

that distribution may then be used in the calculation of

electron-density maps in the usual way. More details will be

given in Flensburg et al. (2003).

In practice, various approximations are made in SHARP to

render the construction of the likelihood criteria more tract-

able. The error model used in building the joint distribution of

complex structure factors (2) assumes that the effects of all

sources of non-isomorphism are uncorrelated between

different re¯ections h, so that the likelihoods are products of

factors for the various re¯ections and can be handled through

log-likelihoods which are additive over re¯ections. The

current version of SHARP also assumes independence of non-

isomorphism between the different values of j for each given

h, an assumption which is plainly unjusti®ed in some cases.

This results in the further simpli®cation that the integrations

over the phases of the complex structure factors FPH(j, h, p)calc

can be performed separately for each j. Similarly, the inte-

gration over the observational error distribution for each data

item |FPH(j, h)obs| is carried out separately for each j and h,

thus assuming uncorrelated measurement errors for all data

items. None of these approximations is essential. Expressions

for general likelihood functions capable of accommodating

arbitrary patterns of covariance between the various sources

of error in the FPH(j, h, p)calc values have been published by

Bricogne (2000). These new functions are multivariate

generalizations of the Rice likelihood which has played a

fundamental role in all developments to date and they will

underpin future developments aimed at going beyond the

present approximations.

7. Recent developments in SHARP 2.0

Since the ®rst release of SHARP in 1996, the distinguishing

features of the program have been the full two-dimensional

integration of the likelihood function over the complex local

parameter FP
? (h) (the `trial native structure factor') and the

use of a full Hessian matrix H of partial derivatives along with

the gradient vector g in the maximization of the log-likelihood

L = log�. The integration over FP
? (h) must therefore be

carried out in such a way as to yield accurate values not only

for the values of L, but also for its ®rst- and second-order

derivatives with respect to all the global parameters p and q on

which it depends. This is a computationally demanding

process, requiring on the order of 100 or more integration

points. This made version 1 of SHARP a slow program, which

tended to be used only as a weapon of last resort on dif®cult

problems where all other programs had failed to produce any



useful results. Considerable effort has since been expended to

rewrite the code almost entirely so as to gain speed without

sacri®cing accuracy. Full details will be published elsewhere

(Flensburg et al., 2003), but Tables 1 and 2 give an idea of the

respective speed gains achieved for the single-processor code

and for a parallel version of the code using OpenMP threads.

In the case of KPHMT, for instance, the parallel version of

SHARP 2.0 now runs over 200 times faster on a four-processor

machine than SHARP 1.4.0 did on a single processor of the

same machine. It also produces signi®cantly better results.

8. Representation and transfer of phase information:
beyond ABCDs

The experimental phase information or, more precisely, the

two-dimensional structure-factor information generated in

SHARP is embodied in the posterior probability density

Ppost�FP
? � for each FP

? (h), which according to Bayes's theorem

is proportional to the likelihood (3) for optimal parameter

values (p?, q?) if it is assumed that the maximum of � at that

point is in®nitely sharp,

Ppost�FP
? �h�� / ��p?;FP

? �h�; q?; fjFPH�j; h�jobsg�: �5�
This information is ordinarily not used as such, but is

summarized to various degrees for various purposes. For map

calculation the `best' Fourier coef®cient of Blow & Crick

(1959) is still in universal use, while for phase combination the

ABCD coef®cients of Hendrickson & Lattman (1970) are the

established standard. Both entities are a legacy of the Blow

and Crick treatment of errors in the context of the MIR

method, in the sense that they refer to a native `phase circle'

centred at the origin of the complex plane with a ®xed error-

free radius and to a phase which is a polar angle de®ned from

that same origin. These de®nitions clearly need revising to

accommodate the two-dimensional nature of the structure-

factor probability information contained in Ppost�FP
? �.

The mildest extension of the traditional Blow and Crick

picture would be to replace the error-free radius for the native

structure factor by a sharply peaked distribution for a native

amplitude referred to the origin. This would preserve the key

feature of the ABCD representation, namely that the two-

dimensional probability density for the distribution of FP
?

should be a direct product of an amplitude-dependent part and

a phase-dependent part,

P�F exp�i'�� / Prad�F�Pang�'�: �6�
Unfortunately, this is not the case. Under the current

approximation where the various sources of non-isomorphism

are assumed to be independent, the posterior probability

density for each FP
? (h) according to (3) is a product of radially

symmetric Rice distributions centred at ÿFH(j, h) for each j

(equation 23 in de La Fortelle & Bricogne, 1997). In many

instances, it can be shown that this distribution is concentrated

near an `optimal circle' which does not coincide with the

native circle even if the latter is present. More speci®cally, this

circle is centred at ÿF off(h), a weighted average of the various

ÿFH(j, h), which is called the `offset' in the sequel, and its

radius is the expectation value of |FP
? (h) + F off(h)| under the

distribution Ppost�FP
? �. It is optimal in the sense that it mini-

mizes the cross-talk between radial and angular information

and is therefore the best circle around which to approximate

the true two-dimensional distribution Ppost�FP
? � in direct-

product form (6). For this purpose, a radial integration of the

two-dimensional distribution is carried out along radii

emanating from the offset. The logarithms of the resulting

marginal probabilities are then Fourier analysed with respect

to the polar angle (also referred to the offset) to produce

ABCD coef®cients encoding the phase information around

the optimal circle. A description of that circle must accompany

the ABCD coef®cients to allow the regeneration of the initial

two-dimensional distribution up to the approximation

inherent in the direct-product form (6) of its reconstruction.

An enriched model must therefore be de®ned involving

eight parameters: two coordinates for the offset Foff(h),

de®ning the centre of the optimal circle, the radius of that

circle, a standard deviation describing the dispersion of the

radial distribution of |FP
? (h) + F off(h)| along that radius and

the four ABCD coef®cients encoding the angular dependence

of the marginal probability obtained by integrating the two-

dimensional distribution along radii of the circle. Further

details on the implementation of this enriched model in

SHARP 2.0, including the de®nition of ®gures of merit for

two-dimensional distributions, will be given in Flensburg et al.

(2003).

This eight-parameter representation of two-parameter

structure-factor distributions offers the possibility of trans-

fering a more faithful summary of experimental phase

information to subsequent steps of structure determination,

provided these steps themselves are able to handle it.
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Table 2
Further speed-up factors from OpenMP parallelized code on various
platforms.

Architecture CPUs
Bubble²,
time (s)

Cyanase²,
time (s)

IF3-C³,
time (s) Speed up

ES45 1 GHz 1 28.7 496.1 359.1
2 15.4 257.6 185.9 1.91

ES40 500 MHz 1 57.1 1013.7 717.7
2 30.7 528.6 373.6 1.90
3 21.9 365.4 260.7 2.71
4 17.9 319.1 221.8 3.20

AMD M2000+ 1 22.9 413.7 278.4
2 12.8 229.1 145.8 1.84

PII 333 MHz 1 153.7 2714.7 1934.4
2 80.8 1422.9 998.2 1.92

² One function, gradient and Hessian evaluation. ³ Complete job.

Table 1
Speed-up factor for SHARP 2.0 single-processor code for various tasks.

Task Sites Batches Old (min) New (min) Speed up

14 test jobs 6873 525.4 13
Bubble 8 1 40 3.3 12
Cyanase 40 4 4417 168.6 26
KPHMT² 160 2 1478 24.1 61

² One function, gradient and Hessian evaluation.
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9. Application to an extended density-modification
protocol

It has become customary to process `raw' experimental phase

information in order to improve it before computing an

electron-density map for visual inspection and interpretation.

This is especially necessary in SIR or SAD situations, where

that raw information remains highly bimodal.

The most common form of post-processing consists of phase

improvement and extension through density modi®cation, as

exempli®ed by programs such as DM (Cowtan, 1994) and

SOLOMON (Abrahams & Leslie, 1996). However, the

underlying protocols are still based on `paradigms' inherited

from the MIR era: not only do they use only ABCD coef®-

cients to represent phase information (see x8), but they

implicitly assume that the electron-density map to be modi®ed

is that of the `native' macromolecule, only exceptionally

containing heavy atoms for which no special treatment is

provided. The real-space properties imposed upon this

electron-density map during density modi®cation are based on

this viewpoint, which is clearly not well suited to modern

methods such as MAD or SAD where heavy atoms are

systematically present in the macromolecule, whereas density-

modi®cation procedures are tuned to structures containing

light atoms only.

The eight-parameter representation of two-dimensional

structure-factor distributions offers a natural solution to this

problem, which has been implemented in the density-

modi®cation step (based on SOLOMON) in the current

versions of SUSHI and autoSHARP (Vonrhein, Blanc et al.,

2003).

The main feature of this new treatment is the handling of

the offset, which roughly speaking corresponds to a sort of

average heavy-atom structure taken over all compounds

(further details will be given in Flensburg et al., 2003 and

Vonrhein, Schiltz et al., 2003). It is taken out to compute the

structure factors to which the density-modi®cation procedure

is applied, so that the latter operates only on electron density

for light atoms; it is then re-applied to ensure that phase

combination in SIGMAA (Read, 1986) takes place around the
Figure 1
Haem and Fe atom in Mb: SHARP + DM.

Figure 2
Haem and Fe atom in Mb: SHARP + SOLOMON, standard ABCDs.

Figure 3
Haem and Fe atom in Mb: SHARP + SOLOMON, ABCDs with offsets.



optimal circle, where the direct-product assumption of the

Hendrickson±Lattman model is best ful®lled. In this way, the

heavy atoms do not interfere with the density-modi®cation

process nor suffer as a result of it.

As a ®rst test, SAD data for P6 myoglobin (Mb for short),

collected in-house at Cu K� wavelength to 1.8 AÊ resolution,

were used in SHARP 2.0 to produce a re®ned heavy-atom

model for the single Fe atom and two-dimensional probability

distributions, which were then encoded into the eight-

parameter model described in x8. To resolve the twofold

ambiguity of each acentric phase, this information was then

used to carry out density modi®cation with SOLOMON or

with DM without special treatment of the offset (i.e. leaving

the heavy atoms in the maps subjected to density modi®ca-

tion) and with SOLOMON with proper treatment of the offset

(i.e. taking out the heavy atoms before density modi®cation

and putting them back after). In all cases, the combination of

phase information was carried out on the optimal circle. The

electron density for the haem and the Fe atom is shown in

Figs. 1, 2 and 3. With ABCDs only, the DM map gives a peak

height of 13.3� and the SOLOMON map 13.8�. With ABCDs

and offsets, SOLOMON gives a peak height of 21.7�. The

correct peak height, inferred from a map generated from the

re®ned model for Mb with bulk-solvent correction, is 19.8�.

The extended density-modi®cation protocol using the offset

information together with the ABCDs therefore produces

better density around the heavy atom than does the use of

ABCDs alone. This example may seem rather academic, but

the same extended protocol was responsible for the consid-

erable improvement in the density for the extracellular

domain of the LDL receptor (reported by Rudenko et al.,

2003) near the 12 tungstophosphate clusters used to phase that

structure (see Fig. 6 in that paper).

As a second test, the ToxD data set distributed with CCP4

4.2.2 as an example of a well behaved MIR phase determi-

nation with MLPHARE was used similarly to compare

SHARP and MLPHARE, SOLOMON and DM with ABCDs

only and SOLOMON with ABCDs supplemented with offset

information. When MLPHARE is used as a phasing program,

both DM and SOLOMON use standard ABCDs. When

SHARP is used for phasing, DM uses ABCDs without offsets,

while SOLOMON uses ABCDs with their associated offset

information. The results are summarized in Figs. 4 and 5 and

show that the best results are obtained across the whole

resolution range with SHARP + SOLOMON using the offset

information.

10. Outlook

The quick survey of phasing methodology given here should

by now have made it clear that our ability to extract experi-

mental phase information from isomorphous replacement and

anomalous scattering data had been limited by our ability to

identify the correct statistical framework within which to treat

the problem. The potential `phasing signals' are given by small

differences between data sets, which are affected by numerous

and sometimes highly correlated sources of error, some acting

on complex contributions to overall structure factors and

others on measurements of structure-factor amplitudes

through diffraction intensities.

In order to progress beyond the current `state of the art', as

represented for instance by the present capabilities of SHARP

2.0, a number of further advances are necessary.

(i) We need to build and exploit better models for sources of

error or uncertainty on complex structure factors, such as

heavy-atom model errors, non-isomorphism in the macro-

molecule and the effects of radiation damage on both heavy

atoms and macromolecule, including all possible correlations

between the different copies of these errors affecting the

various compounds available, and to carry out the integrations

over all relevant phases while representing all these correla-

tions: a task for which the multivariate likelihood functions

derived in Bricogne (2000) should prove most valuable.

(ii) We also need to build and exploit better error models

for the observations themselves and especially on the

correction factors and instrumental factors applied to the raw

measurements during data processing. The statistical structure

of these measurement errors will play a crucial role in future

developments. On the one hand, it will depend greatly on the
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Figure 4
Phased correlation coef®cient and weighted mean absolute phase errors.

Figure 5
Real-space correlation coef®cients along the polypeptide chain.
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precise strategy according to which the data were collected; on

the other hand, it will need to be taken into account in the

integration operation through which the data are incorporated

into joint distributions of amplitudes to compute likelihood

functions (equation 3 in x6) and will thus directly in¯uence the

generation of phase information from these data. Through

these dual roles, the observational error model will provide

the natural channel through which to design optimal experi-

ments so as to maximize the expected signal-to-noise ratio of a

given type of phasing signal.

There remains a considerable amount of work to be

performed in formulating and implementing of the necessary

statistical methodology, so that we can look forward to

numerous reconvenings of this CCP4 Study Weekend on

Experimental Phasing for years to come.
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