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The present paper describes the SSM algorithm of protein

structure comparison in three dimensions, which includes an

original procedure of matching graphs built on the protein's

secondary-structure elements, followed by an iterative three-

dimensional alignment of protein backbone C� atoms. The

SSM results are compared with those obtained from other

protein comparison servers, and the advantages and disad-

vantages of different scores that are used for structure

recognition are discussed. A new score, balancing the

r.m.s.d. and alignment length Nalign, is proposed. It is found

that different servers agree reasonably well on the new score,

while showing considerable differences in r.m.s.d. and Nalign.
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1. Introduction

Protein function is in signi®cant part determined by spatial

structure. It is commonly believed that the three-dimensional

fold has a major impact on the ability of a protein to bind

other proteins or ligands (drugs), stability and purely

mechanical aspects of protein behaviour. The similarity

analysis of protein structure is therefore a vital step in

understanding that protein's role in the machinery of life.

Comparison of protein structures is also essential for esti-

mating the evolutionary distances between proteins and

protein families.

Currently, there are more than 28 000 structures in the

Protein Data Bank (PDB) (Berman et al., 2000), 10±20

structures being deposited on a daily basis. Analysis of the

ever-growing number of known structures requires ef®cient

tools for protein structure alignment in three dimensions. In

contrast to commonly known sequence alignment (Smith &

Waterman, 1981), three-dimensional alignment is based on the

comparison of geometrical positions, rather than biochemical

properties, of amino-acid residues. Two residues are consid-

ered as aligned if they satisfy certain distance and orientation

criteria at the best mutual superposition of the structures.

While high sequence similarity almost always implies struc-

tural similarity, the opposite is not true. It is therefore

expected that three-dimensional alignment will provide more

signi®cant clues to protein function and properties than

sequence alignment alone.

Several approaches to protein structure alignment have

been explored over the past decade. The techniques used

include comparison of distance matrices (DALI; Holm &

Sander, 1993), analysis of differences in vector distance plots

(Orengo & Taylor, 1996), minimization of the soap-bubble

surface area between two protein backbones (Falicov &

Cohen, 1996), dynamic programming on pairwise distances



between the proteins' residues (Subbiah et al., 1993; Gerstein

& Levitt, 1996, 1998) and secondary-structure elements

(SSEs) (Singh & Brutlag, 1997), three-dimensional clustering

(Vriend & Sander, 1991; Mizuguchi & Go, 1995), graph theory

(Mitchell et al., 1990; Alexandrov, 1996; Grindley et al., 1993),

combinatorial extension of alignment path (CE; Shindyalov &

Bourne, 1998), vector alignment of SSEs (VAST; Gibrat et al.,

1996), depth-®rst recursive search on SSE (DEJAVU; Kley-

wegt & Jones, 1997) and many others (Zuker & Somorjai,

1989; Taylor & Orengo, 1989; Godzik & Skolnick, 1994;

Russell & Barton, 1992; Sali & Blundell, 1990; Barakat &

Dean, 1991; Leluk et al., 2003; Jung & Lee, 2000; Kato &

Takahashi, 2001).

None of the existing methods gives an exact solution to the

problem. Typically, all the methods agree relatively well on the

alignment of highly similar structures but often disagree over

details if the similarity is low. Partially, this discrepancy is due

to the absence of a commonly accepted measure for structural

similarity. Most similarity measures are based on the evalua-

tion of the size of common substructures, for example the

length of alignment (the longer, the better), and a measure of

the distance between them, such as r.m.s.d. (the lower, the

better). However, except for the case of highly similar struc-

tures, it is always possible to enlarge the common substruc-

tures at the expense of the distance measure between them.

Therefore, algorithms of three-dimensional alignment typi-

cally involve a number of heuristic elements and empirical

parameters, which naturally causes differences in results. The

effect of employed heuristics or choice of empirical para-

meters are rarely, if ever, published as systematic studies.

There are few data on the comparison of three-dimensional

alignments produced by different algorithms.

Structural alignment of proteins is known to be a compu-

tationally expensive procedure. Alignment of a new structure

of a few hundred residues to the whole of the PDB with

publicly available web servers (DALI, VAST, CE, DEJAVU

and some others) may take several hours, with response time

growing sharply as the size of the query structure increases.

Our aim was to provide the community with an interactive

web server, which would be capable of delivering protein

structure alignments and database searches in less than a

minute, with high quality of alignments. The goal was achieved

with the help of an advanced graph-matching algorithm,

recently developed for serving structural queries in the EBI-

MSD database (Krissinel & Henrick, 2004). The new tool,

SSM, has been available for public use from June 2002 at

http://www.ebi.ac.uk/msd-srv/ssm. The ef®ciency of the

structure-alignment algorithm, described below in this paper,

was found suf®cient for serving all queries in real time, and

therefore, in contrast to most of the other similar servers, SSM

does not maintain a database of pre-aligned structures.

Furthermore in this paper, we compare SSM with some

publicly available web servers in order to examine the quality

of alignments and to demonstrate the range of difference

between the servers. Finally, we discuss the problem of

measuring the quality of three-dimensional alignments for

more reliable identi®cation of potentially signi®cant matches.

2. Graph-theoretical approach to matching protein
structures

Problems of structure comparison and recognition are

conveniently addressed by the graph-theoretical approach

(see e.g. Rouvray et al., 1979, and references therein). The

approach typically includes three major steps: (a) graph

representation of the objects in question, (b) matching the

graphs representing the objects and (c) evaluating the

common subgraphs found in order to form conclusions about

similarity.

Traditionally, three-dimensional graphs of chemical struc-

tures connect all atoms with distance-labelled edges (see e.g.

Gardiner et al., 2000) and should have special labels for atoms

representing chiral centres in order to distinguish between

mirror-re¯ected structures. The graphs are then matched with

a tolerance to the difference in edge lengths using one of many

algorithms available [see the review by Raymond & Willett

(2002)]. This approach, however, is not applicable to protein

structures because of the prohibitively high cost of graph

matching. One of the most frequently used optimal graph-

matching algorithms, based on maximal clique detection (Levi,

1972; Bron & Kerbosch, 1973), has time complexity of the

order of O �mn�n� �, where n and m (n � m) denote the size of

input graphs. This limits the application of this algorithm to

graphs having 20±30 unlabelled vertices. Non-optimal algo-

rithms give an approximation to the optimal (exact) solution

at a lower cost; however, the quality of approximation is not

well controllable. The fastest optimal algorithm, based on the

decision-tree approach, has been reported by Shearer et al.

(2001). This algorithm shows time complexity of only O 2nn3� �.
However, the algorithm is not applicable to the matching of

three-dimensional graphs because of its space complexity,

depending exponentially on the number of vertex and/or edge

labels involved (edge labels of three-dimensional graphs are

derived from the edge length and thus form a nearly contin-

uous label space). Recently we have described a new optimal

bactracking algorithm for common subgraph isomorphism

(Krissinel & Henrick, 2004), CSIA, which represents an

advancement of the widely known algorithm of Ullman (1976)

for exact subgraph isomorphism. The time complexity of CSIA

is bounded by O mn�1n
ÿ �

, which makes it applicable to graphs

having up to n;m ' 70 unlabelled vertices. It follows from the

above that even in the case of a simpli®ed representation of

proteins by their backbone C� atoms, the traditional approach

can be applied only to the shortest protein chains.

Size limitations of the graph-theoretical approach may be

overcome if less elementary objects are used as graph vertices

(Bessonov, 1985; Raymond et al., 2002). Thus, protein

secondary-structure elements represent a natural and conve-

nient set of objects for building three-dimensional graphs,

partly because secondary structure provides most of the

protein functionality and is often conserved through the

evolution of the molecule. The idea of using SSEs as

elementary motifs for the identi®cation of protein folds was

exploited in many studies (Mitchell et al., 1990; Grindley et al.,

1993; Gibrat et al., 1996; Singh & Brutlag, 1997; Kleywegt &
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Jones, 1997). The largest proteins contain up to 100 SSEs per

chain, which form a very big graph for optimal graph-matching

algorithms. However, as we shall see, using SSEs as graph

vertices results in a variety of vertex and edge labels, which

considerably speeds up most graph-matching algorithms,

including CSIA. We calculated SSEs with the help of the

algorithm PROMOTIF (Hutchinson & Thornton, 1996).

Most details of protein fold may be expressed in terms of

just two types of SSEs, namely helices and strands. SSEs may

be used as graph vertices, vi, with composite labels fTi;Lig,
where Ti denotes the type of vertex (helix or strand, and if it is

a helix then what type of helix) and Li speci®es the number of

residues in the ith SSE. Any two vertices, vi and vj, in the

graph are connected by an edge eij. Edge labels are composed

so as to describe the geometry of mutual position and orien-

tation of the connected SSEs, as shown in Fig. 1.

The SSEs are represented by the vectors rSSE � rb ÿ re

where

rb � 0:74rp � rp�1 � rp�2 � 0:74rp�3

ÿ �
=3:48;

re � 0:74rqÿ3 � rqÿ2 � rqÿ1 � 0:74rq

ÿ �
=3:48; �1�

for helices and

rb � rp � rp�1

ÿ �
=2;

re � rqÿ1 � rq

ÿ �
=2; �2�

for strands (Singh & Brutlag, 1997). In (1) and (2), indices p

and q denote the serial numbers of the ®rst and last residues in

the SSE, and we neglect strands shorter than three residues

and helices shorter than ®ve residues. Each edge, eij, is then

labelled with a property vector f�ij; �
ij
1; �

ij
2; �

ij
3; �

ij
4;Ni;Nj;

Ci;Cjg, where �ij is the edge length (in AÊ ), �ij
1=2 is the angle

between the edge and vertices vi=vj, and �ij
3=4 is the torsion

angle between vi and vj. Ni=j is the serial number of vi=vj in

their protein chains (as counted from N to C termini), Ci=j is

the vertex chain identi®er. Both Ni=j and Ci=j are used for

controlling the SSE connectivity along the chains (see below).

The set of vertices, edges and their labels gives a full de®-

nition of a graph. In order to compare (match) the graphs, a

graph-matching algorithm should also be provided with a set

of rules for the comparison of individual vertices and edges.

Obviously, these rules may be formulated in a number of

different ways, each of which would involve a number of

empirical parameters to be chosen in the course of multiple

trials. In our de®nition, vertices vi and vj compare if

Ti � Tj and Li ÿ Lj

�� ��<"L�Li � Lj�=2� �L: �3�
Two edges, eij and ekl, are considered as comparable if all of

the following hold true:

�ij ÿ �kl

�� ��<"���ij � �kl�=2� ��; �4�

�ij
1;2 ÿ �kl

1;2

�� ��<�1 and �ij
3 ÿ �kl

3

�� ��<�2; �5�

sign �ij
4

ÿ � � sign �kl
4

ÿ �
at �ij;kl

s � n�
�� ��>�3; s � 1; 2; 4; �6�

Connect�eij; ekl� �see below� returns true: �7�
The tolerances "L, �L, "�, ��, �1, �2 and �3, used in (3)±(7), are

chosen empirically. In our implementation, they are tabulated

for ®ve levels of match speci®city, as listed in Table 1. Para-

meters for the `Normal' level were de®ned so as to maximize

the number of correct fold identi®cations at cross-matching

the SCOP (Murzin et al., 1995) domains. Levels of higher and

lower speci®city were chosen more arbitrarily, in order to

provide a facility for widening or narrowing the search when

necessary.

As seen from expressions (3) and (4), we use both relative

and absolute differences in vertex and edge lengths for the

comparison (thus allowing for larger absolute differences for

longer vertices and edges), while only absolute differences in

angles [cf. equation (5)] are analysed.

Comparison of torsion angles �i;j
4 allows one to distinguish

between mirror-symmetry mates. Apparently, this differ-

entiation was not made by Singh & Brutlag (1997) and

Mitchell et al. (1990), although it was taken into account in

other studies (Mizuguchi & Go, 1995; Grindley et al., 1993). It

should be realized, however, that if edge±vertex angles �i;j
1;2 are

small even a slight difference between them in the compared

structures may cause a signi®cant disagreement in torsion

angles. We therefore compare only signs of torsion angles,

which is suf®cient for distinguishing between the symmetry

mates, and only if both vertex vectors and the edge are far

from collinearity [cf. equation (6)].

Until now we considered three-dimensional arrangements

of SSEs regardless of their ordering along the protein chain.

Usually the connectivity of SSEs is signi®cant; however, there
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Table 1
Empirical parameters for the comparison of vertices and edges [equations
(3)±(7)].

Speci®city "L �L "� �� (AÊ ) �1 (�) �2 (�) �3 (�)

Highest 0:125 1 0:10 0:5 15 12 12
High 0:150 2 0:15 1:0 20 15 15
Normal 0:200 4 0:20 1:5 30 22 20
Low 0:300 4 0:30 2:0 36 30 30
Lowest 0:350 6 0:50 2:5 45 36 36

Figure 1
Properties of vertices and edges of the SSE graph. Vertices vi and vj are
represented by vectors rSSE [cf. equations (1) and (2)]; edge eij connects
their centres. Edge length �ij and angles �ij

k, k = 1, . . . ,4, de®ne mutual
positions and orientations of all vertices in the graph. See text for more
details.



are situations where it may or should be neglected (e.g.

comparison of mutated or engineered proteins, or geometry of

active sites). In previous studies, the SSE connectivity was

either preserved (Singh & Brutlag, 1997) or, apparently,

neglected (Mitchell et al., 1990; Grindley et al., 1993; Mizu-

guchi & Go, 1995). In order to handle the connectivity in a

more ¯exible way, we have introduced a special function,

Connect�eij; ekl� [cf. equation (7)], providing for the following

three options:

(i) Connectivity of SSEs is neglected. Connect�eij; ekl�
always returns true. Motifs A and B, shown in Fig. 2, would

then match fully as fH; S1; S2; S3jH; S1; S2; S3g.
(ii) `Soft' connectivity. The general order of matched SSEs

along their protein chains is the same in both structures, but

any number of missing or unmatched SSEs between the

matched ones is allowed. In this case, Connect�eij; ekl� returns

false if

Ci � Cj; Ck � Cl and sign Ni ÿ Nj

ÿ � 6� sign Nk ÿ Nl� �:

Matching motifs A and B from Fig. 2 then yields ®ve maximal

common sub-motifs of size 2: fH; S2jH; S2g, fH; S3jH; S3g,
fS1; S2jS1; S2g, fS1; S3jS1; S3g and fS2; S3jS3; S2g.

(iii) `Strict' connectivity. Matched SSEs follow the same

order along their protein chains and may be separated only by

an equal number of matched or unmatched SSEs in both

structures. Connect�eij; ekl� returns false if

Ci � Cj; Ck � Cl and Ni ÿ Nj

ÿ � 6� Nk ÿ Nl� �:
Matching motifs A and B from Fig. 2 then yields the only

maximal common sub-motif of size 2: fS2; S3jS3; S2g.
Matching three-dimensional graphs built on secondary-

structure elements gives a correspondence between groups of

residues of the compared proteins, which allows for preli-

minary identi®cation of protein folds and rough estimation of

structural similarity. Fine comparative analysis requires

information on the correspondence between individual resi-

dues, including those not found in SSEs. In order to obtain

three-dimensional alignment of individual residues, we

represent them by their C� atoms and apply an additional

procedure of aligning the latter in three dimensions, using the

results of graph matching as a starting point. The alignment

procedure is described in the next section.

3. Ca alignment in three dimensions

Alignment problems are traditionally approached by the

technique of dynamic programming (Smith & Waterman,

1981), which may also be applied to structure alignment

(Subbiah et al., 1993; Gerstein & Levitt, 1996 1998; Singh &

Brutlag, 1997). This technique, however, is not applicable if

SSE connectivity is neglected and best alignment is achieved

at misconnected SSEs (cf. the discussion above). We therefore

employ a different procedure, which optimizes a quality

function calculated at best superposition of aligned structures.

The procedure is generally similar to those used in other

studies (see e.g. Singh & Brutlag, 1997; Kleywegt & Jones,

1997); however, it involves a number of empirical elements,

which are introduced and adjusted in the course of analysis of

thousands of alignments. We therefore describe our algorithm

`as is', without discussion of its differences from similar tech-

niques and exhaustive justi®cation.

Our procedure is based on fast optimal superposition (FOS)

of two sets of points in three-dimensional space (in our case,

the positions of the C� atoms of the two structures to be

aligned), provided that correspondence between them is

known. Several FOS techniques are available (McLachlan,

1972; Kabsch, 1976, 1978). We used a singular value decom-

position of the correlation matrix, following the method

described by Lesk (1986). The rotoinversion, if detected, is

eliminated by changing the sign of the singular vector corre-

sponding to the minimal singular value. The procedure is

described in Appendix A.

Once the structures are superposed, their C� atoms may be

mapped onto each other using the procedure described below.

The initial superposition of the structures is obtained by

applying FOS to the representing vectors of matched SSEs

[equations (1) and (2)]. This approach, however, does not

work well if the SSE vectors rSSE, forming a common SSE

subgraph, are collinear. Applied to a set of collinear vectors,

FOS yields a rotation matrix with arbitrary rotation about the

vectors. We therefore add the edge-representing vectors to the

sets of matched rSSE if the minimal absolute value of the cosine

between any two of them exceeds 0:8. If addition of edge-

representing vectors does not decrease the minimal cosine or

if, in the case of structures with low similarity, the maximal

common SSE subgraph includes only one SSE, we explore the

whole rotation about the ambiguous axis in order to achieve a

maximal overlap of other (type- and direction-compatible)

SSEs or individual C� atoms.

The mutual correspondence (mapping) between C� atoms

of superposed structures is found through analysis of the

distances between them. While the simplest contact-seeking

approach would suf®ce in many cases, we found that for the

best quality of alignment one should employ a more sophis-
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Figure 2
Example of SSE motifs (helix H and three strands, S1, S2 and S3), each
having different SSE connectivity. Motifs A and B form three-
dimensional SSE graphs that are geometrically identical; however, the
difference in connectivity may be also expressed in graphical terms (see
text for details).



ticated technique. We suggest that the following steps are

performed in order of their numbering.

(i) Mapping C� atoms of matched SSEs. For each pair of

matched SSEs, we ®nd na (na � 3 for strands and na � 4 for

helices) neighbouring pairs of C� atoms with minimal

separation, mark them as mapped and then expand the

mapping to the ends of the SSEs, leaving no unmapped atoms

between the mapped ones (see Fig. 3). The value of na � 4 for

helices ensures that full helix turns are always mapped prop-

erly, even if there is only a partial overlap between the helices.

(ii) Mapping C� atoms of non-matched SSEs. All pairs of

non-matched SSEs. v1
i and v2

j , which are of the same type and

collinear with cosine greater than 0:7, are ranged in order of

increasing r.m.s.d. of their closest na C� atoms (dark atoms in

Fig. 3), and only pairs with the lowest r.m.s.d. (<Rc) are left in

the list. If the r.m.s.d. of the two pairs �v1
i ; v2

j � and �v1
i ; v2

k� is less

than Rc, only one pair with the lowest r.m.s.d. is left (the

superscripts stand for structure ID). Then the C� atoms of all

SSE pairs in the list are mapped as described above, starting

from the pair with the lowest r.m.s.d. Before mapping an SSE

pair, it is necessary to check that the mapping will not violate

the connectivity of already mapped atoms (as explained in

Fig. 4), if connectivity should be preserved (cf. x2). The

preliminary ranging of SSE pairs on increasing r.m.s.d. ensures

that only the best-overlapping SSEs will be mapped in the case

of a connectivity con¯ict.

(iii) Expansion of contacts. If atom A of structure 1 and

atom B of structure 2 form a contact, the distance between A

and B is less than the distance between A and any atom of

chain 2, except B, and less then distance between B and any

atom of chain 1, except A. Finding contacts is an expensive

procedure, unless a bricking algorithm is employed [see for

example the program CONTACT by Tadeusz Skarzynski in

the CCP4 suite (Collaborative Computational Project,

Number 4, 1994)]. Contacts are calculated for all yet

unmapped but mappable pairs of atoms and are ranged by

increasing contact distance, and only contacts with contact

distances shorter than Rc are left in the list. We consider a pair

of atoms as unmappable if one atom belongs to a helix (unless

closer than three residues to the helix ends) and another one

belongs to a non-helical part of the protein chain. Starting with

the shortest contact, contacting C� atoms are mapped onto

each other, provided that such mappings do not violate the

chain connectivity (cf. Fig. 4). After consideration of all

contacts, the procedure tries to map all remained mappable

pairs of atoms, starting from pairs that adjoin the contacts, as

shown in Fig. 5.

(iv) Quality ®lter. The previous steps result in the mapping

of up to min�N1;N2� C� atoms, where N1 and N2 are the

number of residues in the aligned structures. In general, such

mapping includes both similar and less similar substructures.

Quite often, the quality of alignment may be improved by

unmapping C� atoms of less similar parts. Usually this is

achieved by introducing a cut-off distance of about 2±4 AÊ .

Such an approach, however, does not work well in many

instances where one structure is a distorted (by a few AÊ )

replica of another, and therefore the r.m.s.d. is not a good

measure of the alignment quality. An intuitive understanding

of structural similarity suggests contradictory requirements of

achieving a lower r.m.s.d. and a higher number of mapped

(aligned) residues Nalign. This contradiction may be eliminated,

in the ®rst approximation, by a score that represents a ratio of

Nalign and the r.m.s.d. We therefore suggest the function

Q � N2
align= 1� RMSD=R0� �2� �

N1N2

� 	 �8�
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Figure 3
Mapping C� atoms of superposed SSEs v1

i and v2
j (superscripts 1 and 2

stand for structure ID). Atoms are put into correspondence in order of
their numbering in the ®gure. First, three dark atoms of vi are mapped
onto three dark atoms of vj as having the least interatomic distances.
Next, grey atoms are mapped in the direction from the dark atoms toward
the SSE ends. White atoms remain unmapped.

Figure 4
Schematic diagram of a connectivity con¯ict in the course of three-
dimensional alignment. If SSE pairs �v1

1; v2
1� and �v1

4; v2
4� are matched by

the three-dimensional graph-matching procedure then they are properly
connected. If superposition of the structures shows that the C� atoms of
SSE pairs �v1

2; v2
3� and �v1

3; v2
2� may also be mapped, the algorithm ®rst

tries to map atoms of a pair with minimal RMSD of na closest atoms (cf.
text), �v1

3; v2
2� in the ®gure. These atoms may be mapped without a con¯ict.

However, then atoms of SSE pair �v1
2; v2

3� cannot be mapped without
breaking the connectivity (dashed line in the ®gure), and therefore these
atoms remain unmapped.

Figure 5
Expansion of C� contacts. Found contacts (dark atoms, see text for
details) are expanded in both directions gradually, starting from the
shortest contact, such that the distance between newly mapped atoms
(shown in grey) undergoes the minimal possible increase. For the
example in the ®gure, pairs of C� atoms are mapped in order of their
numbering. If the procedure encounters unmappable pair of atoms (as
de®ned in the text) it stops advancing in that direction from the contact.
The procedure ensures that unmapped atoms (shown in white) are always
the most distant ones in the region between two contacts.



as a measure of quality of alignment. In (8), R0 is an empirical

parameter (chosen at 3 AÊ ) that measures the relative signi®-

cance of RMSD and Nalign. Computer experiments have shown

that a square dependence on Nalign=RMSD is as good as a

cubic or linear one, and the second power was ®nally chosen

only for technical convenience.

As seen from (8), Q reaches 1 only for identical structures

(Nalign � N1 � N2 and RMSD � 0), and decreases to zero

with decreasing similarity (increasing RMSD or/and

decreasing Nalign). Therefore, the higher Q, the `better', in

general, the alignment. Despite the fact that the Q score

represents a very basic measure that does not take into

account many factors related to the quality of alignment (the

number of gaps and their size, sequence identity etc.), we

found that maximization of the Q score produces good results.

In order to maximize the Q score of alignment, we ®rst

range all aligned pairs of C� atoms by increasing interatomic

distances: R�iÿ 1� � R�i�, i � 2; ;Nalign. Unmapping of the

most separated C� pair decreases both the alignment length

Nalign and RMSD. As may be found from the analysis of (8),

such unmapping results in increasing Q at superlinear

dependence R�i� and in decreasing Q at sublinear R�i�. We

therefore unmap C� pairs one by one in order of decreasing

interatomic distances until Q reaches a maximum (Q may

change non-monotonically). Owing to empirical considera-

tions, we do not unmap inner atoms of mapped SSEs without

®rst unmapping their outmost atoms, and, in matched SSEs,

we never unmap na atom pairs with minimal separation (dark

atoms in Fig. 3).

(v) Unmapping short fragments. Pairs of C� atoms, which

form short (1 or 2 pairs) closures between gaps, most often

correspond to purely incidental intersections of protein chains.

However, they may effectively lock the structures in a parti-

cular orientation and thus prevent further optimization. We

therefore unmap such pairs even if doing so decreases Q.

The mapping obtained may be used for the calculation of

best structure superposition by applying FOS to the pairs of

mapped C� atoms. Since a change in orientation may affect the

mapping, the cycle mapping FOS is repeated until the Q score

of alignment ceases to increase over a suf®ciently large

number of successive iterations (ten by our choice). The

contact distance Rc, used for mapping atoms of non-matched

SSEs and in looking for contacts (cf. above) was found to be a

very important parameter, which signi®cantly affects the

quality of results. In our implementation, Rc increases linearly

from 3 to 5 AÊ during the ®rst ten iterations.

The presented algorithm of C� alignment converges to a

local maximum of score function (8). Therefore, the results are

highly dependent on the quality of the initial guess, which is

provided by the identi®cation of common subsets of SSE

through the three-dimensional graph-matching procedure. In

the course of analysis of many individual matches, we have

found that a larger common subgraph is not an absolute

indication of a better-quality match. Therefore, for each pair

of structures, SSM performs C� alignment starting from all

common subgraphs that are larger than Nmax
SSE ÿ 3, where Nmax

SSE

is the size of maximal common subgraph, and the alignment

with the highest Q is accepted as a result. In our comparative

study, presented below, we found that the overall procedure

works very well if the structures show a reasonable degree of

similarity. If structural similarity is very low (such that only

one or two common SSEs may be identi®ed), the procedure

may result in a less accurate solution. In such cases, however,

many imperfect alignments are usually possible, and choosing

the best one is never self-evident.

4. Scoring the results

The score function Q [equation (8)] was found to be a good

geometrical measure of structural similarity. As mentioned

above, this function offers a compromise between contra-

dicting requirements of achieving a lower r.m.s.d. and a higher

number of aligned residues and, therefore, Q is expected to be

a more objective indicator of quality of alignment than RMSD

and Nalign alone.

However, higher structural similarity does not necessarily

imply higher signi®cance of alignment. For example, a helix

may be perfectly aligned with most of the PDB entries, but the

signi®cance of such alignments is very low because they are

likely to be obtained simply by chance, by choosing the

structures randomly from the database.

Our estimation of statistical signi®cance is based on the

same ideas as those employed by VAST (Gibrat et al., 1996).

The probability that matching two structures A and B is scored

at value S or higher merely by chance may be estimated as the

P value:

Pv�S� � 1ÿ
Y

k

1ÿ Pk S� �� �Mk : �9�

In this expression, Pk�S� is the probability of achieving the

score S in the event when matching two structures, picked

randomly from the database, yields a common substructure

containing k SSEs. Mk stands for the redundancy number,

showing how many common substructures of size k may be

formed from proteins A and B. We de®ne score S as a sum of

quality scores Q [cf. equation (8)] for the matched SSEs:

S �
X

i

Qi �
X

i

N2
i = 1� RMSDi=R0� �2� �

N
�i�
A N

�i�
B

n o
; �10�

where index i numbers the matched SSE pairs, N
�i�
A=B is the

number of residues in the ith matched SSE of protein A=B, Ni

is the number of aligned residues in the ith SSE pair, and

RMSDi is the r.m.s.d. of the ith pair. Thus, for common

substructures of size k, score S may vary from 0 (poorest

alignment) to k (ideal alignment). De®nition (10) allows one

to calculate Pk�S� as

Pk�S� �
Rk
S

�k�y� dy � Rk
S

dy
R1
0

�1�x��kÿ1�yÿ x� dx; �11�

under a reasonable assumption that scores Qi do not correlate.

In (11), �k�x� is the density of the probability of ®nding a

common substructure containing k SSEs with score x by

randomly choosing the structures from the database. The

functions �k�x� may be calculated for any k through their
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recurrent relation given by (11). This recurrence starts from

the function �1�x�, which is calculated empirically by running

SSM on all pairs of non-redundant protein structures [we used

SCOP folds as found in SCOP Version 1.61 (Murzin et al.,

1995)].

The value of Pk�S�, corresponding to the actual alignment,

may also be of interest. SSM reports it as a Z score, de®ned by

the following equation,

Pk�S� � �2=��
R1
Z

exp�ÿt2=2� dt �12�

5. Implementation

The procedure described above for protein alignment in three

dimensions has been implemented as a standalone application

and as a web server, available for public use at http://

www.ebi.ac.uk/msd-srv/ssm. The standalone application and

the web server have identical functionality. The development

is based on the new CCP4 Coordinate Library (Krissinel et al.,

2004) and runs on all Unix platforms. SSM allows for a number

of different tasks, including three-dimensional alignment of

protein pairs (uploaded or given as PDB/SCOP ID codes),

alignment of a structure to all entries of the PDB/SCOP

archives or any subset of SCOP, or alignment to an uploaded

set of structures. For faster processing, SSM precompiles SSE

graphs of all PDB and SCOP entries in fast-access ®les, which

are updated automatically on a weekly basis. Serial alignments

(a structure to a set of structures) are automatically scheduled

on a number of CPUs depending on the anticipated task

complexity. Unlike many other protein comparison services,

SSM does not keep a database of precalculated three-

dimensional alignments, because its performance was found to

be suf®cient for serving queries in real time.

A distinguishable feature of SSM is that its performance

depends rather sharply on the minimal desired level of

structural similarity set in advance. This feature follows from

the properties of the original graph-matching algorithm that

we employed (Krissinel & Henrick, 2004). The level of

structural similarity is measured by the percentage of to-be-

matched SSEs pSSE. The higher pSSE, the quicker is SSM.

Typically, alignment of a few-hundred-residue protein to all

PDB entries at pSSE � 50ÿ70% takes much less than a

minute.

6. Results and discussion

Fig. 6 shows a comparison of SSM with other publicly avail-

able web servers that deliver three-dimensional alignment of

protein structures, namely VAST (Gibrat et al., 1996),

combinatorial extension (CE) (Shindyalov & Bourne, 1998)

and DALI (Holm & Sander, 1993). The comparison is

presented for the example of protein chain 1sar:A (ribo-

nuclease SA; Sevcik et al., 1991). As seen from Fig. 6, all the

servers reveal fairly distinctive subsets of highly similar

structural neighbours (from the whole PDB) and structures

with intermediate similarity. VAST also returns some dissim-

ilar structures (as identi®ed by the alignment length Nalign).

The number of returned hits differs from server to server,

which probably re¯ects the different criteria used for the

identi®cation of insigni®cant matches. In SSM, we have chosen

not to dispose of any hits found with similarity level higher

than the requested pSSE. Instead, SSM provides a facility to

sort the results by a variety of scores [Q score (default), P

value, Z score, RMSD, Nalign, number of matched SSEs,

number of gaps etc.] and tools for navigation through the

matches. This approach was motivated by the consideration

that none of the scores provides an absolutely reliable

measure of structural similarity or statistical signi®cance, and

therefore the ®nal decision of accepting a match should be

reserved for the user.

For the calculations presented in Fig. 6, we used pSSE � 0;

therefore, SSM produced tens of thousands of matches, from

which we present only those also returned by VAST, CE and

DALI in Fig. 6. It appeared that SSM has found all the

structural neighbours found by the other servers, with the

exception of a few structures represented by C� atoms only.

Such structures do not allow for the determination of

hydrogen-bond patterns and, consequently, for a reliable

calculation of secondary structure. Many (from tens to

hundreds) hits in the similarity range of Fig. 6, returned by

SSM, are not found in other servers' outputs. Although it is

dif®cult to explain this result without knowing all details of the

algorithms and their implementations, a higher fraction of

newer structures in SSM results suggests that the difference is

partially due to outdated databases. Other reasons may

include narrowing of the search by different similarity criteria

and use of representative structures instead of actual

screening of the whole PDB.

Fig. 6 suggests that SSM fully agrees with the other servers

in the identi®cation of highly similar, less similar and dissim-

ilar structures. The alignment length shows clear stepwise

`transitions' between the subsets of structures with different

structural similarity to 1sar:A. In this particular comparison,

SSM alignments are longer than those given by VAST,

somewhat shorter than those from CE and of approximately

the same length as those of DALI. A thorough examination of

plots for RMSD and Nalign reveals that longer alignments

always come at the expense of higher r.m.s. deviations, and

therefore the observed differences between the servers should

be mostly due to the different criteria employed to balance

these characteristics. This conclusion is corroborated by the

observation that all servers agree on the r.m.s.d. for highly

similar structures, when all residues of 1sar:A are aligned to

targets.

The balance of RMSD and Nalign is indicated by the Q score

[equation (8)]. As seen from the Q score plots in Fig. 6, all

servers deliver three-dimensional alignments with very close

values of Q. Although the Q scores differ in value (with the

largest difference found between SSM and VAST, while Q

scores from SSM and DALI nearly coincide), they show a very

good correlation, which is seen in that the Q curves are much
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smoother than the corresponding curves of RMSD and Nalign.

Fig. 6 also suggests that the Q score allows for a clearer

identi®cation of highly similar and less similar structural

neighbours than do RMSD and Nalign alone. A particular

example can be found in the SSM±CE comparison (column b

in Fig. 6). Judging by the alignment lengths obtained from CE,

PDB entries numbered 120±220 may be quali®ed as closer

structural neighbours to 1sar:A than entries numbered 30±119,

which contradicts the SSM ®ndings. Analysis of the corre-

sponding RMSD plot suggests that the above conclusions may

be incorrect. If, however, the Q score is taken as a measure of

structural similarity, SSM and CE agree on rating the entries

numbered 120±220 below those numbered 30±119. Since the Q

score takes both RMSD and Nalign into account, the last

conclusion seems to be more justi®ed. Another example of

this kind may be found in the VAST results for structural

neighbours numbered 220±265, showing a decrease in both

Nalign and RMSD, which therefore may be interpreted as

either a decrease or an increase in structural similarity. At the

same time, Nalign and RMSD obtained from SSM unambigu-

ously suggest decreasing similarity for these structures. A clear

fall of Q scores obtained from both servers implies that the

structures are, indeed, ordered by the decrease of their simi-

larity to 1sar:A.

We performed a comparative study, similar to that

described above, for a number of structures belonging to

different protein folds. The results shown in Fig. 6 were found

to be of a common nature. More results are published on the

SSM web site.

The results obtained suggest that different similarity scores

perform equally well if structure similarity is high. The situa-

tion, however, changes drastically as the similarity decreases.

For example, PDB entry 1kn0:A (human RAD52 protein;

Kagawa et al., 2002) does not have an exact match in SCOP

Version 1.61. All potential matches to 1kn0:A from SCOP 1.61

domains represent relatively remote structural neighbours,

and therefore SSM should be run with a low similarity

threshold. Choosing pSSE � 15% results in a total of 33 588

hits returned, none of which represents a perfect match. Fig. 7

shows superpositions of 1kn0:A with best-matching SCOP
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Figure 6
Comparison of SSM and VAST (a), combinatorial extension (CE) (b) and DALI (c). PDB chain 1sar:A (Sevcik et al., 1991) was used as a query for
screening the whole PDB. Results for all of the structural neighbours identi®ed by VAST, CE and DALI were selected from SSM's output and ordered
by decreasing SSM's Q score [equation (8)]. Thick lines: SSM results; thin lines: results obtained from VAST, CE and DALI as indicated in the ®gure.



domains, as suggested by Q score, RMSD, Nalign and Z score.

The achieved scores are presented in Table 2.

As seen from Fig. 7, the highest Q score indicates a match

(Fig. 7a; d1di2a_; double-stranded RNA binding protein A;

Ryter & Schultz, 1998) that is (geometrically) best according

to common intuition. Although the overlap is not perfect, the

common substructures are compact and form most of the

target structure. The matches with the lowest r.m.s.d. (Fig. 7b)

and highest Z score (Fig. 7d) represent alignments that are too

short to be rated high. The match with the maximal number of

aligned residues (Fig. 7c) shows a poor superposition of

common substructures with high r.m.s.d.; the alignment is

fragmented and the overall overlap seems to be incidental.

The results show that using an appropriate score is crucial

for the similarity search. An idea of what it would take to ®nd

d1di2a_ as the best match to 1kn0:A without using the Q score

may be obtained from Table 3. The table lists the ten best

matches, all of a comparable quality, rated by different scores.

As may be seen from Table 3, d1di2a_ is 1575th by RMSD,

3079th by Z score, 818th by P value and 872nd by alignment

length (since Nalign is an integer number, the last ®gure is

subject to the sorting procedure). Thus, d1di2a_ does not

appear on top of result lists sorted by any of the traditionally

used similarity scores, and it would take many hours, if not

days, to ®nd this match manually from the results.

It is commonly assumed that protein chains with similar

sequences tend to fold into similar three-dimensional struc-

tures. This assumption is often used for narrowing the simi-

larity search or for the selection of representative structures.

Although using the assumption makes the search faster, a

known side effect is that the results may be biased toward

sequence similarity. Because our alignment procedure is

completely indifferent to chain composition, we used SSM for

studying the relationship between sequence and structure

similarity. Fig. 8 shows correlations between sequence identity

(SI), Q score, RMSD and the normalized alignment length Nm:

Nm � Nalign=min�N1;N2�: �13�
The sequence identity is de®ned as a fraction of identical

residues in the total number of (structurally) aligned residues:

SI � Nident=Nalign: �14�
The score correlations are represented by contour maps of the

reduced density of the probability, �r x; y� �, of obtaining three-

dimensional alignment with particular values of scores x and y:

�r x; y� � � � x; y� � Rxmax

0

� x; y� � dx
Rymax

0

� x; y� � dy

� �ÿ1=2

; �15�

where probability density � x; y� � is calculated in the course of

all-to-all alignment of all chains found in the PDB.

As seen from Figs. 8(a)±8(c), 100% sequence identity does

not necessarily mean a perfect three-dimensional alignment in

terms of either Q score, RMSD or alignment length. Values of

0:93 � Nm < 1 at SI � 1 (Fig. 8b) indicate pairs of chains with

sequence-identical common subchains. Despite the absolute

sequence identity, these chains show structure differences with

an r.m.s.d. of up to 1 AÊ (cf. Fig. 8c). Most of these differences

are caused by the interaction between residues of matched

and unmatched parts of the chains, and therefore 1 AÊ of

research papers

2264 Krissinel & Henrick � Secondary-structure matching Acta Cryst. (2004). D60, 2256±2268

Table 3
Ten SCOP domains closest to 1kn0:A, as suggested by their Q scores.

Other scores (P value, Z score, RMSD and Nalign) rate the hits as shown by the
®gures in brackets (see discussion in the text).

Domain Q ÿ log�Pv� Z RMSD Nalign

d1di2a_ 0:2130 0:29�818� 2:53�3079� 2:431�1575� 67�872�
d1di2b_ 0:1810 0:12�1135� 2:30�4384� 2:487�1801� 58�3720�
d1stu__ 0:1490 0:00�2262� 1:44�12028� 3:086�6359� 62�2000�
d1ekza_ 0:1310 0:00�3028� 0:84�20850� 3:143�7012� 62�2003�
d1fx3d_ 0:1040 0:00�3304� 1:79�8121� 3:642�13866� 80�71�
d1hnwe2 0:0924 1:70�75� 3:88�245� 1:569�91� 57�4380�
d1ibke_ 0:0898 0:00�4169� 3:61�380� 2:228�936� 62�2167�
d1hr0e2 0:0897 1:42�110� 3:61�379� 2:229�937� 62�2168�
d1ible_ 0:0887 0:04�1473� 3:80�281� 1:950�403� 59�3129�
d1avza_ 0:0875 0:00�14052� 0:77�21987� 3:823�16901� 65�1304�

Table 2
Scores of four matches to PDB entry 1kn0:A (184 residues) from SCOP
161, shown in Fig. 7, with best scores in bold (RMSD given in AÊ ).

The last column shows the number and type of matched SSEs (`H' for helices,
`S' for strands). SI is the sequence identity [equation (7)], in %. See discussion
in the text.

Domain Nres Q RMSD Nalign Z SI SSEs

d1di2a_ 69 0:213 2:43 67 2:53 16 HS
d1emn_1 43 0:019 0:90 13 2:93 15 S
d1elxb_ 449 0:020 5:82 89 0:01 7 HHS
d1qmca_ 52 0:028 1:37 18 5:09 6 S

Figure 7
Superposition of PDB chain 1kn0:A (Kagawa et al., 2002) with best-
matching SCOP domains, as suggested by (a) Q score (d1di2a_) (b)
RMSD (d1emn_1) (c) Nalign (d1elxb_) (d ) Z score (d1qmca_). Khaki/
orange: unmatched/matched parts of 1kn0:A; dark green/green:
unmatched/matched parts of the SCOP domains. The achieved scores
are presented in Table 2. The hits are chosen from a total of 33 588 found
by SSM in the course of matching with pSSE � 15% SSE similarity
threshold. The pictures were obtained using MOLSCRIPT (Kraulis,
1991) and Raster3d (Merritt & Bacon, 1997) software.



deviation per 1ÿ Nm � 7% of difference in chain length may

be considered as a measure of that interaction or as an effect

of chain length. In order to estimate the effect of chain

composition on its three-dimensional structure, consider

matches with Nm � 1. The value of Nm � 1 corresponds to

full-chain alignment and therefore indicates highly similar

three-dimensional structures. As seen from Fig. 8(b), having as

few as 20% of identical residues is already enough for chains

to fold into highly similar structures. This conclusion generally

agrees with previous ®ndings (Chotia, 1992; Chotia & Lesk,

1986; Hubbard & Blundell, 1987). Comparison with Fig. 8(c)

suggests that the difference in structure increases quite regu-

larly with decrease in sequence identity, reaching 1±2.5 AÊ at

SI ' 20%. The decrease in structure similarity is seen as an

exponential-like increase in RMSD, which has also been found

in other studies (Chotia & Lesk, 1986; Hubbard & Blundell,

1987; Flores et al., 1993; Russell & Barton, 1994; Russell et al.,

1997). Thus, the well de®ned ridge of the RMSD plot at

0:2 � SI � 1 in Fig. 8(c) represents the effect of chain

composition on the three-dimensional structure of similar

chains.

Structures with less than 20% sequence identity show a

wide range of RMSDs and alignment lengths, while Q does not

re¯ect this effect (with the exception of a few `islands' at

intermediate Q and SI). Fig. 8(d) demonstrates a clear

reduction of the correlation between RMSD and Nm at

RMSD> 2 AÊ and Nm < 0:8, which region, as may be derived

from comparison with Figs. 8(b) and 8(c), corresponds to

SI< 20%. These results lead to the conclusion that SI< 20%

is a solid indication of low structural similarity, when reliable

detection of common submotifs is not feasible. Usually, more

than one common substructure with very close values of Q

may be identi®ed between remote structural neighbours.

Then, alignment of structure A to its remote neighbours B and

C is likely to lead to the result that the best common

substructure for A and B is not the same as that for A and C,

even if B and C are highly similar (but not identical). This

uncertainty in the detection of common substructures arises

due to small variations of Q at small variations of SI, and

therefore the correlation between Q and SI should not be

affected. However, close values of Q for different common

substructures do not imply closeness of the corresponding

values of RMSD and Nalign. Simple considerations show that at

lower structural similarity, the RMSD and Nalign values of

common substructures with close values of Q (and, conse-

quently, SI), may show a wider range of variations. Therefore,

with decreasing structural similarity, the correlation between

RMSD, Nalign and SI should vanish. This is exactly the picture

seen in Fig. 8 at SI< 20%.

As shown by the obtained results, RMSD is a good score if

the structure similarity is suf®ciently high that more than 80±

90% of residues are aligned. This situation corresponds to

structures with obvious similarity, for which RMSD gives

merely a measure of distortion. The alignment length does not

perform well at any degree of similarity, and allows only for a

rough indication that 80±90% of aligned residues correspond

to highly similar structural neighbours. The Q score performs

more or less uniformly in the whole similarity range, except for

a few islands aside of the main ridge in Fig. 8(a). It is therefore

expected that the Q score should be particularly useful if

structural similarity is not obvious. This assumption is fully

con®rmed by the above example of 1kn0:A, which falls into

the `non-obvious' category, judging by the values of SI shown

in Table 2. We have performed a series of experiments on the

comparison of remote structural neighbours, which have

convinced us of the above conclusion.

Consider now the relationship between the structure/

sequence similarity and the statistical signi®cance of the

matches (Fig. 9). Since statistical signi®cance depends on both

the similarity of matched structures and the composition of the

database, a perfect match does not necessarily correspond to

the lowest Pv and highest Z. As may be seen from the ®gures,

this is, indeed, the case, and at Q ' 1, SI ' 1, a wide range of

Pv and Z values are attained. Although, on average, statistical

signi®cance increases with increasing structure/sequence

similarity, the correlation decreases signi®cantly at higher Q

and SI [note that the effect of Z should be estimated through

integral (12), and the signi®cance of a hit changes in inverse

proportion to Pv]. Therefore, statistical signi®cance scores are

very sensitive to small structural variations between close

structural neighbours, being nearly indiscriminative if struc-

tural similarity is low. These ®ndings agree with intuition.

Indeed, one expects to ®nd no more than one structure,

identical to the query (Q � 1), in the whole PDB, which
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Figure 8
Correlations between (a) Q score [equation (8)] and sequence identity
[SI; equation (14)], (b) SI and normalized alignment length [Nm; equation
(13)], (c) RMSD and SI, and (d ) RMSD and Nm, represented as contour
maps of the reduced density of probability [equation (15)] of obtaining
three-dimensional alignments with the corresponding scores in `all-to-all'
alignment of all chains found in PDB. The outermost contours correspond
to the level of 0.05 of the maximum.



®nding is then a highly signi®cant event. However, that

structure's fold or family will normally have a considerable

number of highly similar structural neighbours, even with Q

just slightly lower than 1. These matches will not be very

surprising in statistical terms. Hence the difference in statis-

tical signi®cance of hits to similar structures with Q ' 1 should

be high. Conversely, detection of low similarity is statistically

insigni®cant, no matter how exactly dissimilar, in one of many

million ways, the structures are. Therefore, small differences in

Q� 1 correspond to relatively small differences in log�Pv�
and Z.

Values of Pv ' 1 and Z ' 0 indicate hits that are comple-

tely expectable, for example, ®nding a structure containing a

helix or a strand. The Q score of such hits does not exceed 0.3

at SI � 0:26, which corresponds to low structural similarity.

As seen from Fig. 9, the region of low similarity is bounded by

Pv > 10ÿ3. This fact has a simple explanation as the non-

redundant database, which we used for the calibration of P

values [that is, the calculation of �1�x�, cf. equation (11)], was

composed of 765 ' 102:8 folds of SCOP 1.61. Therefore, non-

trivial matches are expected to emerge with probability lower

than 10ÿ2:8.

Comparison of Figs. 9(a) and 9(b) with Figs. 9(c) and 9(d)

shows that the Q score correlates with statistical signi®cance

better than with sequence identity. The overal difference in

the landscapes is explained by the relationship between Q and

SI in Fig. 8(a), which shows that Q is not sensitive to SI at

SI> 0:5. At the same time, it is curious enough to see that,

with the exception of a few islands in Fig. 9(c), the P value

does not show any evident dependence on chain composition

at 0:5< SI< 0:95.

7. Conclusion

More than two years of working with SSM and studying the

feedback from its users worldwide has convinced us that SSM

represents a powerful, ¯exible and accurate tool for protein

structure comparison in three dimensions. It is particularly

ef®cient, as compared with other similar resources available,

when applied to large protein structures (more than a few

hundred amino-acid residues) and for matching a structure to

a precompiled database of structures (PDB, SCOP or user-

de®ned).

The competitive performance of SSM is mostly a result of

the original graph-matching algorithm employed (Krissinel &

Henrick, 2004). In the present study, we did not compare the

ef®ciency of SSM with that of similar algorithms, although, in

our experience, SSM is at least an order of magnitude faster.

However, a direct and objective comparison is hardly

obtainable. Many other services are not interactive, which

prevents direct time measurements. Most of the existing

services maintain a database of precalculated alignments or

use sets of representative structures, so that the number of

actual alignments is never the same. Finally, SSM runs on a

CPU cluster, employing different numbers of CPUs depending

of the task complexity, while little is known about the imple-

mentation and hardware basis of other developments.

The iterative procedure of C� alignment as described in this

paper includes a number of empirical elements and para-

meters. These elements were introduced and the corre-

sponding parameters tuned in the course of analysing of

thousands of alignments. As a result, comparison of SSM with

other similar servers shows a good overall agreement, to the

degree of difference between all of them.

Because of the ever-growing number of solved protein

structures, automatic recognition of their structural motifs

becomes an increasingly important task. The very de®nition of

structural similarity remains, however, a vague issue in

general. Unless the similarity is self-evident, there is no perfect

quantitative measure for drawing a line between similar and

dissimilar structures, and even for ranging structure pairs in

order of their similarity. Because of this circumstance, any test

on true/false positives/negatives is never fully convincing, and

therefore such a test was omitted in the present study. In the

numerical study presented in this paper, we considered a few

scores applicable to measuring the structural similarity. As

shown, the most obvious scores of RMSD and alignment

length do not provide a suf®cient level of con®dence in

structure recognition. The best quality of structure recognition

is achieved by using the introduced Q score [equation (8)],

which combines both RMSD and the alignment length. The Q

score represents a measure of quality of three-dimensional

alignment and is maximized by the SSM's C� alignment

algorithm. Although the Q score should be viewed only as a

model simpli®cation of an intuitive understanding of the

alignment quality, we found that in practice it works very well.
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Figure 9
The same data as in Fig. 8, but for the correlations between the structure
and sequence similarity, as measured by (a) and (b) Q score [equation
(8)] and (c) and (d ) sequence identity [SI; equation (14)], and statistical
signi®cance of matches represented by P value [equation (9)] and Z score
[equation (12)]. The outermost contours correspond to the level of 0.05 of
the maximum.



It should be noted that there are other scores combining the

alignment length and relative remoteness of aligned residues

(see e.g. Russell & Barton, 1992; Kleywegt & Jones, 1994),

which we did not investigate in this study.

APPENDIX A
Fast optimal superposition in three dimensions

A number of methods have been reported for the calculation

of the rotation matrix R̂, which optimally superposes two sets

of points in three-dimensional space, xi and yi, i � 1; . . . ;N,

such that (both sets are brought into their centres of mass)

D �PN
i�1

wi xi ÿ R̂yi

ÿ �2 �16�

(wi are weights) is minimal (see e.g. McLachlan, 1972; Kabsch,

1976, 1978; Lesk, 1986). The methods involve converging

iterations, diagonalization or orthogonal decomposition of the

correlation matrix Â (Lesk, 1986),

Ajk �
PN
i�1

wixijyik; j; k � 1; 2; 3: �17�

We found that the best results are obtained using singular

value decomposition (SVD), which is a very stable numerical

procedure applicable even to singular correlation matrices.

According to Lesk (1986), Â � R̂TĤ, where Ĥ is a (unique)

Hermitian positive de®nite matrix. Applying SVD to matrix

Â, we obtain

Â � Û�̂V̂T � �ÛV̂T� �V̂�̂V̂T�; �18�
where Û and V̂ are orthonormal matrices and �̂ is a diagonal

matrix of (always non-negative) singular values. Considering

that V̂�̂V̂T represents a Hermitian positive de®nite matrix, we

obtain

R̂T � ÛV̂T: �19�
This procedure, however, does not guarantee that R̂ will

represent a proper rotation. If det�R̂�< 0 then the superposed

set fyig is inverted (rotoinversion) (Kabsch, 1978). There is no

way out of this problem other than to make an appropriate

correction to the correlation matrix Â. As follows from

equation (19), changing the sign of any of the vectors Ui or Vi

will change the sign of det�R̂� and thus make R̂ the matrix of

proper rotation. Such a change of sign is equivalent to a

distortion of Â. Since (Lesk, 1986)

D �PN
i�1

jxij2 � jyij2
ÿ �ÿ trace�R̂Â�; �20�

such a distortion may result in increasing D. As may be

derived from equations (18) and (20), this increase is least

(and therefore the resulting proper rotation is the best

possible one) if changing the sign is applied to the vector Ui or

Vi that corresponds to the minimal singular value �i.

It is important to note that the calculation of the rotation

matrix using SVD gives a meaningful result even if the

correlation matrix Â is degenerate, which fact was taken into

account in our choice of method. The optimal superposition is

achieved by applying the rotation matrix R̂ to structures fxig,
fyig brought into their centres of mass.
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