
research papers

2276 doi:10.1107/S0907444904025491 Acta Cryst. (2004). D60, 2276±2279

Acta Crystallographica Section D

Biological
Crystallography

ISSN 0907-4449

Differential evolution for protein crystallographic
optimizations

Duncan E. McRee

ActiveSight and Molecular Images,

4045 Sorrento Valley Boulevard, San Diego,

CA 92121, USA

Correspondence e-mail:

dmcree@active-sight.com

2004 International Union of Crystallography

Printed in Denmark ± all rights reserved

Genetic algorithms are powerful optimizers that have been

underutilized in protein crystallography, given that many

crystallographic problems have characteristics that would

bene®t from these algorithms: non-linearity, interdependent

parameters and a complex function landscape. These functions

have been implemented for real-space optimizations in a new

®tting program, MI®t, for real-space re®nement of protein

models and heavy-atom searches. Some programming tips and

examples will be presented here to aid others who might want

to use genetic algorithms in their own work.

Received 26 January 2004

Accepted 8 October 2004

1. Introduction

Genetic algorithms (GA) include a broad class of optimizers

that share several characteristics. A vector of the variables

(analogous to genes in natural evolution) of the problem to be

optimized is constructed and a randomized population of

these vectors is created. The vectors are then scored by the

means of a ®tness function and the ®tter vectors selected to

form the next generation. The next generation is formed by

mutation and crossover of the parent vectors and if the

daughter thus formed is more ®t than the parent then the

parent is replaced. The whole process is repeated for several

generations. After a number of generations the population as

a whole becomes more ®t (that is, it scores higher in the ®tness

function) and in a successful outcome individuals appear that

will solve the problem. Generally, the best scoring individuals

from the last generation are returned as solutions. Genetic

algorithms can be differentiated from each other by the means

by which they perform the mutation and crossover steps and

by the manner in which the variables or `genes' are encoded.

In experimenting with genetic algorithms, we have found that

the choice of algorithm and the tuning of the algorithm

parameters make large differences in the speed and success in

solving the problem.

Several previous examples exist of the use of genetic algo-

rithms in protein crystallography. Perhaps the best known and

most widely used has been the program EPMR written by

Kissinger et al. (1999). EPMR is a molecular-replacement

program that optimizes the best values of three translational

and three rotational parameters simultaneously using a GA.

Our success with this program was responsible for our looking

further into using GA for our problems. After much experi-

mentation, we found that a particular GA method termed

differential evolution (DE) was the most successful and ¯ex-

ible optimizer for our problems, which included rigid-body

®tting in real-space and ®nding the optimum side-chain rota-

mers. We have implemented these in the program MI®t, which

is available from Molecular Images (San Diego, CA, USA;

http://www.molimage.com).

2. Differential evolution

Here, we will discuss issues relevant to using DE in common

crystallographic applications; a detailed description of DE,

other example uses and code samples can be found in the

existing literature (Price, 1999; Storm, 1999; Lampinen &

Zelinka, 1999; Chisholm, 1999). In DE, the genes are ¯oating-

point numbers and this has advantages in scaling and dynamic

range over the more traditional bits or integers used in some

other GAs. A common dif®culty in GA optimization is the

determination of the proper size of the mutation step, the

amount by which a variable (or gene) is changed between

generations. If the steps are too large the solution may be

missed and if they are too small it will take many generations

to converge. In DE, the size of the mutation step is determined

by taking differences between two individuals in the popula-

tion [and multiplying it by a mutation factor, F (Price, 1999),

which is used as an overall control variable]. This method has

the advantage of providing an adaptive scaling of the mutation

as the population matures. In the early stages, the population

is diverse and the mutation sizes can be large. If a variable

contributes to the score produced by the ®tness function, its

values within the population will converge towards the best

value and the variance in that variable will decrease. If the

variable contributes very little or nothing to the score, its

range of values will increase with time as mutations are made.

This can either continue until values of the variable are found

that make signi®cant contributions, or when the maximum

generation limit is reached the variable will have a large

variance in the population with no dominant values. This

information can be very valuable in assessing the ®nal solution

reached at the end of a run.

3. Restraints and constraints

Interestingly, the difference method of scaling means that a

variable can be constrained to a value by constructing an

initial population with no variance in that variable; that is,

where all of the members of the population have the same

value. In this case, the differences between individuals will

always be zero and the mutation size will thus also be zero.

Similarly, a variable can have integer values by seeding the

population with only whole numbers; all of the differences

between those variables will also be whole numbers. Many

variables are bounded and can have values only in a speci®ed

range. In this case, a function can be supplied to impose these

bounds between generations. Restraints, where a variable is

restrained to be near a value with a given distribution, are very

common in crystallographic re®nement of models. For

example, bonds and angles are restrained to target values but

allowed to vary, a scenario which is more dif®cult to set up in

DE. One strategy is to include this expected variance as part

of the ®tness function. The best score would be obtained by an

individual that has the best ®t of positional values to the data

and the best geometry. Weighting could also be incorporated

into the ®tness function by setting an overall weight for

geometric restraints versus positional values. Another strategy

is to impose a direct selection process in between generations

where the outliers would be pruned and replaced with new

individuals. This has been likened to a predator±prey rela-

tionship in nature. A combination of both may produce the

best results. In practice, this pruning cannot be too aggressive

or the population will never be able to evolve. It will essen-

tially be driven to extinction before it can get started! A good

strategy is to add a pruning step every dozen generations or so.

4. Random numbers and probability distributions

It is essential to use a random-number generator suited to the

problem. This issue arises because the standard random-

number generators included in C and Fortran are very fast but

not necessarily well suited to DE. Better random-number

generators are available in many code libraries. Two types of

random-number generators are useful in different contexts:

equally distributed and Gaussian distributed. Equally

distributed suf®ces for many problems, but in many cases a

Gaussian distribution in a variable is more desirable and may

lead to faster convergence by forming a few outliers that may

prove to be closer to the ®nal value when the starting point is

far from the ®nal answer. The random-number generator

could make use of prior probability information if it is known.

For instance, with phase distributions, a range of phases that

match the phase probability distribution would be used.

Generating correct distributions is key to making the problem

well conditioned.

5. Scoring

The ®tness function is key to making a GA work. In some

cases the scoring may be straightforward, comprising a simple

evaluation of the current parameters of an equation. In other

cases, the function could be quite complex and essentially

form a program within the program. For instance, in one

implementation of DE the best parameters for a checkers-

playing program are evaluated via a pairwise tournament that

is held between all of the members of the population and the

®tness score is the number of times an individual wins

(Chisholm, 1999). In nature, ®tness is very involved and for

humans includes an incredibly complex range of social inter-

actions and tool-making abilities that are eventually included

in an individual's ability to reproduce. In nature, the envir-

onment an individual ®nds itself in is highly variable and is

impactful in assessing the ®tness of an individual, whereas in

the computer the environment is the same for every indivi-

dual.

6. Crossover

Crossovers are a very powerful component of GA optimizers

which distinguish GA methods from other optimization

techniques involving random ¯uctuations such as Monte Carlo

research papers

Acta Cryst. (2004). D60, 2276±2279 McRee � Differential evolution 2277

or simulated annealing. In some GA algorithms, only cross-

over is used with mutations held to 0. In this case, all of the

variation needed to solve the problem should exist in the

initial population. The crossover functions used can vary from

a simple swapping of variables to swapping of contiguous

groups in an attempt to imitate gene linkage in biological

recombination processes. In DE, a simple swapping of values

between individuals is normally used. The effect of crossovers

is to allow for `hill-hopping' in complex functions that have a

number of local maxima. A simple illustration of this shown in

Fig. 1. The overall rate of crossovers are controlled by rolling a

random number and comparing it with the crossover

frequency, CR, which can be set to a value between 0 (no

crossovers) and 1 (always crossover) (Price, 1999).

7. Programming example

This example is for optimizing a molecular fragment into an

electron-density map. The search has six parameters, three

translations in x, y and z and three rotations about the axes of

x, y and z. The goal of the optimization is to ®nd the values of

these parameters that give the highest correlation with the

electron density. The scoring function is the sum of the density

found at the atom centers weighted by the atomic weight of

the atom. If the resolution is low, densities above 2� are

truncated to prevent overweighting overlapped densities (i.e.

the center of a ring such as in a phenylalanine residue).

Negative densities are heavily penalized by multiplying them

by a factor of ®ve. The map density is interpolated by means of

a spline function that has been shown to return values within

0.1% of the true value (Lampinen & Zelinka, 1999). A more

accurate method for scoring would be to correlate the

observed and calculated density. However, constructing the

calculated density is a lengthy procedure involving looping

over all the atoms over a sphere of density points and would

slow the function considerably. Since this function is meant to

be interactive in real time, the approximation has been found

to be a better compromise between speed and accuracy.

To set the parameters for mutation-step size, the program

®rst calculates the scoring function for the starting solution. If

it is high, meaning that the model is a fair match to the density,

then the mutation-step size is set to be smaller under the

premise that the user only needs to optimize an already good

solution, otherwise the mutation-step size is broadened so that

a larger volume is searched for the solution. The translational

variance target is set to 0.25 AÊ and the rotation target to 0.75�.

research papers

2278 McRee � Differential evolution Acta Cryst. (2004). D60, 2276±2279

Figure 1
A hypothetical example of a problem with several local maxima. In this
problem, a two-stranded ribbon schematic (a) is being ®t to a medium-
resolution density map (b), an example of a two-dimensional search over
the variables x and y. (c) shows the function landscape corresponding to
the correlation between the model and the map over all values of the
variables x and y. The function has three maxima: the middle correct one
and two side maxima where only one strand of the two overlaps at about
half the height of the center one. To illustrate how crossovers between
two vectors in a GA can jump between local maxima or `hill-hop',
imagine that we start a GA run with four vectors, a0, b0, c0 and d0, each
with two genes x and y, assigned random values over the entire search
space as shown in (c). If we make a daughter of c by crossing over
between c and d such that we take the y value from c0 and the x value
from d0, then the daughter that is produced will be very near the correct
maxima and will replace the parent, `winning' over the other vectors.

Table 1
Statistics showing the progress of a typical rigid-body re®nement of the
protein 7-Fe ferrodoxin into a 13 AÊ map.

The model consists of 1793 atoms in 108 residues and 165 waters. The DE
parameters were six variables (tx, ty, tz, 'x, 'y, 'z), a population size of 120 (20
times the number of variables), a mutation factor F of 0.60 and a crossover
frequency CR of 0.80. Every ®fth generation is listed. The table lists the best
and worst scores from the scoring function (see text) and the variance in the
six variables as the re®nement progresses. �'x, �'y and �'z are given in
degrees and �tx, �ty and �tz are in aÊngstroms. The score is the average amount
of density at the atom centers of the moving fragment as described in the text.
The variances are generated initially at random with an arbitrary target width
of 1 AÊ and 0.25�. As the algorithm searches the ®rst 15 generations, the
variances give larger and larger step sizes as the solution is sought until a good
solution is found in the 15th generation. The variances then decrease as
subsequent generations optimize the solution. Figures showing the model and
density corresponding to the start and ®nish are shown in Fig. 2. The entire run
took 2 s on an AMD Athlon XP-M 1600+ 14 GHz processor running MI®t
under Windows XP. Final values were tx = ÿ2.09, ty = 4.87, tz = 8.08 AÊ ,
'x = ÿ0.06, 'y = 0.72, 'z = ÿ0.05�.

Generation
Best
score

Worst
score �'x �'y �'z �tx �ty �tz

1 ÿ1.33 ÿ2.78 0.90 0.57 0.76 0.25 0.20 0.23
5 0.27 ÿ2.29 1.67 1.22 1.36 0.28 0.26 0.25
10 2.08 ÿ1.48 1.95 1.61 1.63 0.27 0.27 0.26
15 2.42 ÿ0.92 1.63 2.04 1.51 0.27 0.27 0.28
20 2.48 0.91 1.23 1.43 1.30 0.22 0.21 0.25
25 2.58 1.43 0.90 1.25 1.04 0.18 0.15 0.20
30 2.58 1.98 0.67 0.83 0.76 0.16 0.13 0.15
35 2.61 2.22 0.56 0.63 0.52 0.11 0.10 0.12
40 2.61 2.38 0.41 0.54 0.49 0.08 0.08 0.09

The crossover frequency CR (Price, 1999) is set to 0.8 and the

mutation factor F (Price, 1999) is set to 0.60. The population is

set to 120 vectors. Each vector has six members, three trans-

lations and three rotations, and the function is run for 40

generations. These numbers were found by trial and error to

be enough generations and a large enough population to lead

to good convergence. In each generation, a trial daughter is

constructed from each of the parent genes by crossover and

mutation. If the daughter has a better score than the parent

then the parent is replaced; otherwise, the parent is kept. After

the 40 generations the best solution is applied to the model,

the screen is updated and the score reported to the user. The

results of a typical run are shown in Fig. 2 and Table 1. All this

takes a fraction of a second for most fragments of a few

residues and about a minute for an entire molecule of about

200 residues. The equivalent brute-force algorithm is 24-fold

slower than the DE algorithm with only seven steps in each

variable, which requires scoring 76 or 117 649 trials, whereas

the DE algorithm scores 686 trials. The ®nal solution is also

sampled on a ®ner scale for the DE algorithm since the last

few generations take very small step sizes as virtually all of the

population has converged to the same values. In comparing

with a least-squares procedure it must be remembered that the

genetic algorithm takes longer. However, many of the

problems solved easily by DE would not be possible with least

squares, which is only able to converge to the nearest local

minimum of a target function. In cases where the starting

position of the model does not overlap suf®ciently with the

density, no solution would be found. Thus, one of the chief

advantages of the method is that it has a larger radius of

convergence while remaining faster than a brute-force search

over all possibilities.

References

Chisholm, K. (1999). New Ideas in Optimization, edited by D. Corne,
M. Dorigo & F. Glover, pp. 147±158. London: McGraw±Hill.

Kissinger, C. R., Gehlhaar, D. K. & Fogel, D. B. (1999). Acta Cryst.
D55, 484±491.

Lampinen, J. & Zelinka, I. (1999). New Ideas in Optimization, edited
by D. Corne, M. Dorigo & F. Glover, pp. 127±146. London:
McGraw±Hill.

Price, K. V. (1999). New Ideas in Optimization, edited by D. Corne, M.
Dorigo & F. Glover, pp. 79±108. London: McGraw±Hill.

Storm, R. (1999). New Ideas in Optimization, edited by D. Corne, M.
Dorigo & F. Glover, pp. 109±125. London: McGraw±Hill.

research papers

Acta Cryst. (2004). D60, 2276±2279 McRee � Differential evolution 2279

Figure 2
Maps corresponding to the start (a) and ®nish (b) of the real-space rigid-body re®nement by the differential evolution run shown in Table 1.

