
research papers

2126 doi:10.1107/S0907444904019158 Acta Cryst. (2004). D60, 2126±2132

Acta Crystallographica Section D

Biological
Crystallography

ISSN 0907-4449

Coot: model-building tools for molecular graphics

Paul Emsley* and Kevin Cowtan

York Structural Biology Laboratory, University of

York, Heslington, York YO10 5YW, England

Correspondence e-mail:

emsley@ysbl.york.ac.uk

2004 International Union of Crystallography

Printed in Denmark ± all rights reserved

CCP4mg is a project that aims to provide a general-purpose

tool for structural biologists, providing tools for X-ray

structure solution, structure comparison and analysis, and

publication-quality graphics. The map-®tting tools are avail-

able as a stand-alone package, distributed as `Coot'.

Received 26 February 2004

Accepted 4 August 2004

1. Introduction

Molecular graphics still plays an important role in the deter-

mination of protein structures using X-ray crystallographic

data, despite on-going efforts to automate model building.

Functions such as side-chain placement, loop, ligand and

fragment ®tting, structure comparison, analysis and validation

are routinely performed using molecular graphics. Lower

resolution (dmin worse than 2.5 AÊ) data in particular need

interactive ®tting.

The introduction of FRODO (Jones, 1978) and then O

(Jones et al., 1991) to the ®eld of protein crystallography was in

each case revolutionary, each in their time breaking new

ground in demonstrating what was possible with the current

hardware. These tools allowed protein crystallographers to

enjoy what is widely held to be the most thrilling part of their

work: giving birth (as it were) to a new protein structure. The

CCP4 program suite (Collaborative Computational Project,

Number 4, 1994) is an integrated collection of software for

macromolecular crystallography, with a scope ranging from

data processing to structure re®nement and validation. Until

recently, molecular graphics had not been part of the suite.

With the recent computational and graphical performance of

relatively cheap hardware, the time had arrived for CCP4 to

provide graphical functionality for knowledge-based (semi-)-

automatic building using powerful modern languages in a

¯exible extendible package. CCP4mg (Potterton et al., 2004) is

an initiative by CCP4 to provide libraries and a molecular

graphics application that is a popular system for represent-

ation, modelling, structure determination, analysis and

validation. The aim is to provide a system that is easy to use

and a platform for developers who wish to integrate macro-

molecular computation with a molecular-graphics interface.

There are several modules to such graphical functionality; the

protein model-building/map-®tting tools described here are

only a part. These tools are available as a stand-alone software

package, Coot.

A map-®tting program has to provide certain functionality,

which is not required by a molecular-display program. These

functions include symmetry coordinates, electron-density map

contouring and the ability to move the coordinates in various

ways, such as model idealization or according to side-chain

rotamer probabilities.

The map-®tting and model-building functions described

here have a functionality broadly similar to that of programs

such as O, Xtalview from X®t (McRee, 1999) or QUANTA

(Accelrys, San Diego, CA, USA). However, in the spirit of the

CCP4 program suite, it is possible for others to read and

modify the program.

Coot attempts (generally speaking) to provide more trans-

parency, ease of use, better extendability, (semi-)automated

model-building methods and convenient integration with

programs of the CCP4 suite.

2. Program functions

Coot has been substantially built around two major libraries:

mmdb (Krissinel et al., 2004), a library for the handling of

macromolecular coordinates, and Clipper (Cowtan, 2002,

2003), a library for crystallographic objects and computation

thereof. The various functions of Coot are split into `stand-

alone' classes in the sense that an attempt has been made to

minimize the dependence of the classes on anything other

than the above libraries. With portability in mind, special

effort was made not to introduce GUI dependences into the

interface to Coot's library of tools.

Coot is event-driven; functions are only run as a result of

user action (typically moving or clicking the mouse).

2.1. Symmetry

Coordinate symmetry is recomputed and redisplayed at

every recentre event. For each molecule for which the user

wishes to display symmetry, symmetry atoms are displayed

within a particular distance criterion of the display centre. By

using a set of pre-computed guide points that mark the extents

of the molecule and applying the symmetry operators and cell

shifts to these guide points, a set of operator indexes and cell

shifts are generated that may contain symmetry-related atoms

close to the screen centre (where `close' is de®ned by a user-

settable parameter). For each of these sets, all atoms in the

molecule are transformed and a check is made for each to see

if it is within the symmetry display radius of the position at the

centre of the screen. Thus, symmetry is kept current and

relevant to the current display centre.

2.2. Electron density

Because Coot is based on the Clipper libraries, it is easy to

generate maps by reading a ®le of structure factors that

contain phase information (typically an MTZ ®le). Density is

not limited to any particular part of the unit cell; the relevant

symmetry-related density is generated (and then contoured)

automatically using Clipper functionality. The electron-

density maps can be simply recontoured (provoked by script

or keyboard or mouse events) at a different level using a

predetermined increment. Every map (displayed or un-

displayed) is regenerated and contoured: this process is not

optimally fast but simpli®es the user interface.

2.3. Interface to REFMAC

On reading an MTZ ®le one can optionally assign para-

meters for running REFMAC (Murshudov et al., 1997).

REFMAC is a program of the CCP4 suite for maximum-

likelihood-based macromolecular re®nement. After a period

of interactive model building, the user can choose to use

REFMAC to re®ne the current coordinates (in combination

with MTZ parameters). Coot blocks until REFMAC has

terminated and then automatically reads the newly generated

(re®ned) coordinates and MTZ ®le, from which a map is

generated (and displayed).

2.4. Rigid-body refinement

Clipper library functions provide easy access to the map

gradients. For a selected coordinate set, the map gradients at

the atom centres are averaged. A shift is applied (to all the

selected atoms) that is some simple fraction of the average

gradient. The rotational component of the rigid-body re®ne-

ment is generated in the following manner: the rotations to be

calculated (�x, �y and �z) are (small) rotations around the

coordinate axes, the centre of rotation (V) being the centre of

the rotating atoms. Let Vpi
be the projection on to the XY

plane of the vector between the position of atom i and V, the

unit vector being cVpi
. The dot product of the gradient with cVpi

provides dVpi
.

The required angle is arctan�dVpi
=jVj�. These angles are

available for each atom and they are averaged to obtain three

perpendicular rotations: �x, �y and �z. These angle transfor-

mations are applied to the coordinates. The application of

transformations continues until the average shift length is less

than 0.0005 AÊ .

This is a reasonable approach for much of a protein's

structure, but could behave badly where there is a combina-

tion of relatively heavy and light atoms, such as sulfates or

methionines. This problem could be countered by weighting

the atom-density score by the atomic weight.

2.5. Rotamers

The rotamer library used in Coot is the backbone-

independent library of Dunbrack & Cohen (1997). It is formed

from a reasonably large sample set (850 chains), is reasonably

up to date (May 2002) and provides a more accurate estima-

tion of the population of rare rotamers.

The Coot function `Auto-®t Rotamer' takes a set of most

likely rotamers for a particular side chain and generates

coordinates for each rotamer. Each test rotamer is then rigid-

body re®ned and the ®nal position is scored according to the

®t to the density (the residue's backbone atoms are included in

the set of re®ned atoms). The best ®t rotamer is chosen and

replaces the previous coordinates.

2.6. Regularization and refinement

Molecular-graphics model building requires the ability to

regularize (`idealize') the coordinates of the model. In order to

do so, the ideal values of the geometry of the macromolecule

research papers

Acta Cryst. (2004). D60, 2126±2132 Emsley & Cowtan � Model-building tools for molecular graphics 2127

should be known. These ideal values can come in various

forms. The interface in Coot reads the mmCIF dictionaries of

REFMAC, which de®ne idea values and estimated standard

deviations for bond lengths, angles, torsions planes and chiral

centres. Coot uses the Polak±Ribiere variant of the BFGS

(Broyden±Fletcher±Goldfarb±Shanno) conjugate-gradient

multi-variable function minimizer to optimize the coordinates.

The analytical gradient derivations are described in

Appendix A.

2.6.1. Fitting to the map. As described above, the map

gradients are provided by a Clipper function. These map

gradients (at the positions of the atom centres) are simply

multiplied by a (user-changeable) scaling factor and added to

the geometric terms to de®ne the target function (this is called

`Re®nement' in Coot).

2.7. Finding ligands

A map can be masked by a set of coordinates (typically

those of the currently determined atoms of the protein

model). This approach leaves a map that has positive density

at places where there are no atoms to represent that density

(similar, in fact, to an Fo ÿ Fc map). This masked map is

searched for `clusters' of density above a particular level. The

clustering of the grid points of the asymmetric unit into

potential ligand sites is performed conveniently using a

recursive neighbour search of the map. The clusters are sorted

according to size and electron-density value. Eigenvalues and

eigenvectors are calculated for each cluster of grid points.

Similarly, the eigenvalues and eigenvectors of the search

ligands (there can of course be just one search ligand) are

computed (the parameters being the positions of the atom

centres). The eigenvalues of the ligands are compared with the

eigenvalues of each of the electron-density clusters and if they

are suf®ciently similar the ligand is placed into the cluster by

matching the centre of the test ligand and the centre of the

cluster. The ligand is oriented in each of the four different

orientations that provide coinciding eigenvectors and then

rigid-body re®ned and scored. The score is simply the sum of

the electron density at the atom centres. The score at each site

for each different ligand is compared and the best ®t (highest

score with suf®cient fraction of atoms in positive density after

the rigid-body re®nement) is chosen. This last check ensures

that oversized ligands are not ®tted into small clusters.

2.7.1. Flexible ligands. Instead of having a series of

different ligand compounds, the search ligands can be gener-

ated from a single ligand that has rotatable bonds. The ligand

dictionary provides a description of the geometry of the ligand

including torsions. These torsions are randomly sampled for a

number of trials (by default 1000) to provide coordinates that

can be checked against the potential ligand sites as described

above. An enhancement would be to allow the determination

of the number of trials to depend on the number of torsions.

2.7.2. Finding water molecules. The electron density is

clustered as described for ligands. For clusters that have a

volume below a certain upper limit (4.2 AÊ 3, which stops water

molecules being placed in multi-atom ligand sites) a starting

position is determined from the mean position of the grid

coordinates of the cluster. This position is then optimized by

re®ning the position to the local maximum as determined by

cubic interpolation of the map. A map sphericity test is then

applied; the variance of the cubic interpolated electron density

at points 0.3, 0.6 and 0.9 AÊ from the local maximum in positive

and negative offsets along the x, y and z axes are determined.

The variances are summed and must be lower than a user-

changeable cutoff (default 0.07 e2 AÊ ÿ6). The successful posi-

tions are then compared with the coordinates of the protein's

O and N atoms. If the distance is between user-changeable

criteria (default 2.4±3.4 AÊ) then the position is accepted as a

solvent O atom and (optionally) added to the protein model.

2.8. Add terminal residue

Given the selection of a terminal residue (which also could

merely be the start of a gap of unplaced residues), two residue-

type independent randomly selected '/ pairs are made from

Clipper's Ramachandran distribution of '/ pairs. These

angles are used to generate positions of C, C�, O and N main-

chain atoms for the neighbouring two residues using the

peptide geometry. This set of atoms then undergo rigid-body

re®nement to optimize the ®t to the map. The score of the ®t

and the positions of the atoms are recorded. This procedure is

then repeated a number of times (by default 100). The main-

chain atoms of the neighbouring residue's best-®t atoms are

then offered as a position of the neighbouring residue (the

atoms of the next neighbouring residue are discarded).

2.9. Skeletonization and Ca building

Coot uses a Clipper map to generate and store the skeleton.

This approach is convenient because, like electron-density

maps, the skeleton can be displayed `on the ¯y' anywhere in

the crystal (i.e. it is not limited to a precalculated region). The

Clipper skeletonization algorithm is similar to that employed

in DM from CCP4 (Cowtan, 1994). A skeleton `bond' (bone)

is drawn between neighbouring map grid points if both parts

are marked as skeleton points.

The skeleton can be further trimmed by recursive tip

removal (a tip being a grid point with one or zero neighbours).

This process removes side chains and, potentially, parts of the

termini, but provides an easy means of identifying the fold and

non-crystallographic symmetry.

Like some validation (Kleywegt, 1997) and other attempts

at automated model building (Morris et al., 2002; Old®eld &

Hubbard, 1994; Old®eld, 2001), a likelihood distribution for

the pseudo-torsion angle C�(n)ÐC�(n + 1)ÐC�(n + 2)Ð

C�(n + 3) versus the angle C�(n + 1)ÐC�(n + 2)ÐC�(n + 3)

has been generated from high-resolution structures in the

PDB (Berman et al., 2000) (Fig. 1). Once at least three C�

atoms have been placed, this is used as prior knowledge in the

placement of the next C� position in the following manner.

Skeleton points between 2.4 and 3.4 AÊ from the current C�

position (which has an associated nearby skeleton point) are

selected. These skeleton points are tested for direct connec-

tivity to the current skeleton point. Skeleton points that are

research papers

2128 Emsley & Cowtan � Model-building tools for molecular graphics Acta Cryst. (2004). D60, 2126±2132

directly connected are assigned a score of 100; those that are

unconnected are assigned a score of 0.1. For each selected

skeleton point, a test point is then generated 3.8 AÊ from the

current C� position in the direction of skeleton point. A C�

pseudo-torsion angle and angle pair are generated from the

position of the test point, the current C� position and the two

previously assigned C� positions. This pseudo-torsion angle

and angle pair are used to generate a score by looking up the

value in the internal representation of Fig. 1 using cubic

interpolation. This value is combined with the skeleton-based

score for this particular test point. This procedure is then

repeated in a `look-ahead' manner, assuming that the test

point is a member of the set of four C� positions generating

the C� pseudo-torsion/angle pair. The most likely solution for

the look-ahead is combined with the score for the current test

point. The test points are then sorted by combined score and

interactively offered as potential positions for the next C�

atom, the positions with the best score being offered ®rst.

Occasionally (usually as a result of a positional error in the

current C� position), 3.8 AÊ is the wrong distance to the next

correct C� position; thus the user is allowed to change the

length to something other than 3.8 AÊ .

The depth of the look-ahead in the current implementation

is at level 1 but could trivially be extended (in tests, a level 2

look-ahead was better but took too long to be considered

pleasantly interactive).

This algorithm has room for improvement: for example, by

considering the value of the density at the test point and along

the C� pseudo-bond, one-third and two-thirds of the way

along the bond (corresponding to positions that are close to

the peptide C and N atoms; Old®eld, 2003).

C� coordinates are converted to main-chain coordinates in a

manner similar to that previously described (Jones & Thirup,

1986; Esnouf, 1997).

APPENDIX A
Regularization and refinement derivatives

The function that we are trying to minimize is S, where

S � Sbond � Sangle � Storsion � Splane:

Let us take these four parts in turn.

A1. Bonds

Sbond �
PNbonds

i�1

�bi ÿ b0i
�2;

where b0i
is the ideal length (from the dictionary) of the ith

bond, bi is the bond vector and bi is its length.

@Si

@xm

� @Si

@bi

@bi

@xm

� �2�bi ÿ b0i
�� @bi

@xm

;

bi � ��xm ÿ xk�2 � �ym ÿ yk�2 � �zm ÿ zk�2�1=2:

Therefore

@bi

@xm

� 1

2

1

bi

� �
2�xm ÿ xk� �

�xm ÿ xk�
bi

and

@Si

@xm

� 2�bi ÿ b01
� �xm ÿ xk�

bi

:

A2. Angles

We are trying to minimize Sangle, where (for simplicity, the

weights have been omitted)

Sangle �
PNangles

i�1

��i ÿ �0i
�2:

Angle � is contributed to by atoms k, l and m:

cos � � �a � b�=�ab�;
where a is the bond of atoms k and l [(xk ÿ xl), (yk ÿ yl),

(zk ÿ zl)] and b is the bond of atoms l and m [(xm ÿ xl),

(ymÿ yl), (zmÿ zl)]. Note that the vectors point away from the

middle atom l.

Therefore,

� � a cos�P�; �1�
where

P � �a � b�=�ab�:
Using the chain rule,

research papers

Acta Cryst. (2004). D60, 2126±2132 Emsley & Cowtan � Model-building tools for molecular graphics 2129

Figure 1
C� pseudo-torsion angle versus opening angle for proteins in the PDB
used in the likelihood assignment of potential C� positions.

@�

@xk

� @�
@P

@P

@xk

: �2�

Given that we are only interested in � in the range 0! �,

@�

@P
� ÿ 1

sin �
: �3�

Again using the chain rule,

@P

@xk

� Q
@R

@xk

� R
@Q

@xk

; �4�

where

Q � a � b; �5�

R � 1=�ab�: �6�

A3. Angles: the middle atom

A middle atom is somewhat more tricky than an end atom

because the derivatives of ab and a � b are not so trivial. Let us

change the indexing so that we are actually talking about the

middle atom, l.

Differentiating (6) gives

@R

@xl

� ÿ 1

�ab�2 b
@a

@xl

ÿ 1

�ab�2 a
@b

@xl

: �7�

@a=@xl here is exactly the same as for bonds,

@a

@xl

� xl ÿ xk

a
:

Similarly,

@b

@xl

� xl ÿ xm

a
:

Therefore, substituting these equations into (7) gives

@R

@xl

� ÿ xl ÿ xk

a3b
ÿ xl ÿ xm

ab3
:

Turning to Q, recall (5); therefore

Q � ��xk ÿ xl��xm ÿ xl� � �yk ÿ yl��ym ÿ yl�
� �zk ÿ zl��zm ÿ zl�

�
and hence

@Q

@xl

� ÿ�xk ÿ xl� ÿ �xm ÿ xl�:

Substituting all the above into (4) gives

@P

@xl

� �a � b� ÿ xl ÿ xk

a3b
ÿ xl ÿ xm

ab3

� �
�ÿ�xk ÿ xl� ÿ �xm ÿ xl�

ab
:

Combining this expression and (3) into (2) we obtain

@�

@xl

� 1

sin �

@P

@xl

:

A4. Angles: an end atom (atoms k or m)

This case is simpler because there are no cross-terms in

@R=@xk and @Q=@xk.

@R

@xk

� �xk ÿ xl�
ab

:

and

@Q

@xk

� �xm ÿ xl�;

and so

@�

@xk

� ÿ 1

sin �

�xl ÿ xk�
a2

cos � � xm ÿ xl

ab

� �
: �8�

A5. Torsion angles

The torsion angle is the angle between a � b and b � c

(Fig. 2) and this can be written as

arctan �a � b̂� c�= ÿa � c� �a � b̂��b̂ � c�� �� 	
; �9�

where b̂ is a unit vector in the direction of b, b̂ � b=b.

This de®nition of the torsion angle is used rather than the

more common de®nition, which uses three cross-products,

because our version and its derivatives are faster to calculate.

Let us split the expression up into tractable portions; the

evaluation of � in the program will combine these expressions,

starting at the end (the most simple).

From the primatives,

ax � P2x
ÿ P1x

; bx � P3x
ÿ P2x

; cx � P4x
ÿ P3x

;

ay � P2y
ÿ P1y

; by � P3y
ÿ P2y

; cy � P4y
ÿ P3y

;

az � P2z
ÿ P1z

; bz � P3z
ÿ P2z

; cz � P4z
ÿ P3z

;

� � arctan�D�;
where

D � a � �b� c�=b

ÿa � c� �a � b��b � c�=b2
:

So

research papers

2130 Emsley & Cowtan � Model-building tools for molecular graphics Acta Cryst. (2004). D60, 2126±2132

Figure 2
Nomenclature used for torsion angles.

@�

@xP1

� @�

@D

@D

@xP1

; �10�

@�

@xP1

� 1

1�D2

@D

@xP1

: �11�

Let

E � a � �b� c�=b;

F � ÿa � c� �a � b��b � c�=b� �ÿ1;

F � 1=G; �12�

G � ÿa � c� �a � b��b � c�=b2;

H � ÿa � c;

J � a � b;

K � b � c;

L � 1=b2:

Differentiating (12) gives

@F

@xP1

� ÿ 1

G2

@G

@xP1

:

Substituting for the derivative in (10),

@�

@xP1

� 1

1�D2
F
@E

@xP1

� E
@F

@xP1

 !
:

We also have

G � H � JKL:

Differentiating this gives

@G

@xP1

� @H

@xP1

� JL
@K

@xP1

� KL
@J

@xP1

� JK
@L

@xP1

:

The H, J, K and L derivatives are

H � ÿa � c � ÿaxcx ÿ ayby ÿ azcz;

@H

@xP1

� cx;
@H

@xP2

� ÿcx;
@H

@xP3

� ax;
@H

@xP4

� ÿax;

@K

@xP1

� 0;
@K

@xP2

� ÿcx;
@K

@xP3

� cx � bx;

@K

@xP4

� bx;
@J

@xP1

� ÿbx;
@J

@xP2

� bx ÿ ax;

@J

@xP3

� ax;
@J

@xP4

� 0:

The @b=@x terms are just like the bond derivatives,

@L

@xP1

� @L
@b

@b

@xP1

;

i.e.

@L

@xP3

� ÿ 2

b3

xP3
ÿ xP2

b
� ÿ 2�xP3

ÿ xP2
�

b4
:

The derivative with respect to xP2
has the opposite sign.

Notice that b involves only atoms P2 and P3, so that the

derivates of L with respect to the P1 and P4 coordinates are

zero.

A6. Torsion angles: @E/@x terms

Recall that

E � a � �b� c�=b:

Let

M � a � �b� c�;
i.e.

E � M=b:

Differentiating gives

@E

@xP3

� ÿM

b2

@b

@xP3

� 1

b

@M

@xP3

;

where, as for bonds,

@b

@xP3

� xP3
ÿ xP2

b
:

However, note again that the derivative of b is zero for atoms

P1 and P4, i.e. for atoms P2 and P3

@E

@xP3

� ÿM�xP3
ÿ xP2

�
b3

� 1

b

@M

@xP3

;

but for atoms P1 and P4

@E

@xP1

� 1

b

@M

@xP1

;

M � ax�bycz ÿ bzcy� � ay�bzcx ÿ bxcz� � az�bxcy ÿ bycx�:
So here are the primitives of M � a � �b� c�

@M

@xP1

� ÿ�bycz ÿ bzcy�;

@M

@xP2

� �bycz ÿ bzcy� � �aycz ÿ azcy�;

@M

@xP3

� �azcy ÿ aycz� � �byaz ÿ bzay�;

@M

@xP4

� �aybz ÿ azby�;

@M

@yP1

� ÿ�bzcx ÿ bxcz�;

@M

@yP2

� �bzcx ÿ bxcz� � �azcx ÿ axcz�;

research papers

Acta Cryst. (2004). D60, 2126±2132 Emsley & Cowtan � Model-building tools for molecular graphics 2131

@M

@yP3

� ÿ�azcx ÿ axcz� � �bzax ÿ bxaz�;

@M

@yP4

� ÿ�bzax ÿ bxaz�;

@M

@zP1

� ÿ�bxcy ÿ bycx�;

@M

@zP2

� �bxcy ÿ bycx� � �axcy ÿ aycx�;

@M

@zP3

� ÿ�axcy ÿ aycx� � �aybx ÿ axby�;

@M

@zP4

� ÿ�aybx ÿ axby�:

A7. Combining terms

Combining, we obtain the following expression for the

derivative of torsion angle � in terms of the primitive deri-

vates,

@�

@xP1

� 1

�1� tan2 ��
@D

@xP1

;

where

@D

@xP1

� F
@E

@xP1

ÿ E

G2

@H

@xP1

� JL
@K

@xP1

� KL
@J

@xP1

� JK
@L

@xP1

 !" #
:

A8. Planes

Splane �
PNplanes

i�1

PNatomsi

j�1

e2
ij;

where eij is the distance of the ith plane restraint's jth atom

from the ith plane restraint's least-squares plane.

Recall the equation of a plane: ax + by + cz + d = 0. Firstly,

the centres of the sets of atoms, xcen, ycen, zcen, are determined.

The plane is moved so that it crosses the origin and therefore

d = 0 (it is moved back later). The problem then involves three

equations, three unknowns and an eigenvalue problem, with

the smallest eigenvalue corresponding to the best-®t plane.

The least-squares planes of the plane restraints are recal-

culated at every iteration.

The authors thank Garib Murshudov, Eleanor J. Dodson,

Jack Quine and the many Coot testers. KC is supported by The

Royal Society (grant No. 003R05674). PE is funded by

BBSRC grant No. 87/B17320.

References

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N.,
Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). Nucleic Acids
Res. 28, 235±242.

Collaborative Computational Project, Number 4 (1994). Acta Cryst.
D50, 760±766.

Cowtan, K. (1994). Jnt CCP4/ESF±EACBM Newsl. Protein Crystal-
logr. 31, 34±38.

Cowtan, K. (2002). Jnt CCP4/ESF±EACBM Newsl. Protein Crystal-
logr. 40.

Cowtan, K. (2003). Crystallogr. Rev. 9, 73±80.
Dunbrack, R. L. Jr & Cohen, F. E. (1997). Protein Sci. 6, 1661±1681.
Esnouf, R. M. (1997). Acta Cryst. D53, 665±672.
Jones, T. A. (1978). J. Appl. Cryst. 11, 268±272.
Jones, T. A., Cowan, S., Zou, J.-Y. & Kjeldgaard, M. (1991). Acta

Cryst. A47, 110±119.
Jones, T. A. & Thirup, S. (1986). EMBO J. 5, 891±822.
Kleywegt, G. J. (1997). J. Mol. Biol. 273, 371±376.
Krissinel, E. B, Winn, M. D., Ballard, C. C., Ashton, A. W., Patel, P.,

Potterton, E. A., McNicholas, S. J., Cowtan, K. D. & Emsley, P.
(2004). Acta Cryst. D60, 2250±2255.

McRee, D. E. (1999). J. Struct. Biol. 125, 156±165.
Morris, R. J., Perrakis, A. & Lamzin, V. S. (2002). Acta Cryst. D58,

968±975.
Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997). Acta Cryst

D53, 240±255.
Old®eld, T. J. (2001). Acta Cryst. D57, 82±94.
Old®eld, T. J. (2003). Acta Cryst. D59, 483±491.
Old®eld, T. J. & Hubbard, R. E. (1994). Proteins Struct. Funct. Genet.

18, 324±337.
Potterton, L., McNicholas, S., Krissinel, E., Gruber, J., Cowtan, K.,

Emsley, P., Murshudov, G. N., Cohen, S., Perrakis, A. & Noble, M.
(2004). Acta Cryst. D60, 2288±2294.

research papers

2132 Emsley & Cowtan � Model-building tools for molecular graphics Acta Cryst. (2004). D60, 2126±2132

