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A new algorithm is described that forms a single structure representative of ensembles of structures

from ®les in the format used by the Protein Data Bank. A ®rst attempt is made by averaging in the

space spanned by bond lengths, inter-bond rotations and symmetry-multiplied dihedral rotations.

This normally produces well formed regular secondary-structure elements, but the intervening less

well ordered regions are often distorted because of the invalidity of averaging large rotations about

divergent axes. For this reason, the algorithm includes a second stage that pulls the interatomic

distances towards more fully representative values. Results produced by this method have proved

better as judged by conventional quality checks than any input structure in nearly all cases tested so

far, especially for the backbone, and much better than those produced by commonly used

alternative methods.

1. Introduction

Many experimental and computational techniques in frequent use

nowadays in the protein structure community output their results in

the form of an ensemble of structures. Although the differences

between structures in the ensemble can be of interest, being inter-

preted as signs of ¯exibility, motion or indeterminacy, it is never-

theless often more convenient to study a single representative

structure. Intuitively, this is most naturally performed by averaging,

and the variances of atomic positions are often retained and conve-

niently represented by numbers calculated by analogy to the thermal

B factor so familiar to X-ray and neutron crystallographers. Indeed,

many ®les deposited in the Protein Data Bank contain an averaged

structure. Unfortunately, these average structures are usually derived

by inappropriately averaging the Cartesian coordinates of the atoms

in an Eulerian alignment of the structures in the ensemble (a

simultaneous translational and proper rotational rigid-body super-

position), resulting in poor and unrepresentative molecular geome-

tries. Here, we describe a better way to average based on the more

appropriate variables of bond lengths, inter-bond rotations1 and

symmetry-multiplied dihedral rotations, which necessarily produces

superior results because the stereochemistry can be maintained.

The name of our algorithm arose spontaneously as a result of

seeing results typi®ed by Fig. 2(b) in Diamond (1992), which formally

addresses the dif®cult (and possibly ill-posed) related question of

optimal direct Eulerian alignment of more than two incongruent

structures: when one aligns a short section of a chain, the tails that are

not aligned diverge, as do the straws radiating from the binding

around a wheatsheaf. We have addressed this effectively, if infor-

mally, with an algorithm that indirectly achieves essentially the same

aim.

Our method is complementary to and complemented by the ®ne

yet infrequently used cluster analysis of Diamond (1995), which can

provide a clear insight into the variabilities in the ensemble of

structures.
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1 Common usage is to refer to the angle subtended between two bonds
radiating from the same atom as a bond angle. We use a simpler unit-free
mathematical representation different from the chemical convention, for
which we prefer the more precise geometric term of inter-bond rotation.



2. Methods

WHEATSHEAF is written in DEC Fortran, a well known de facto

standard allowing structured data types and a wide choice of high-

quality compilers that generate ef®cient machine code and helpful

diagnostic messages. In all cases, we used deeply nested DO loops and

tried to avoid IF statements, both choices being made in the light of

long experience to minimize the risk of introducing errors.

The program ®rst reads in the ®le containing the multiple deter-

minations of the structure. Even this computationally undemanding

step is optimized for speed. The input ®le must conform exactly to the

format used by the Protein Data Bank for structures determined by

NMR spectroscopy.

After reading the input ®le, the program determines the bonding

pattern from the atom names and evaluates the squares of the bond

lengths and unnormalized odd and even terms proportional to the

sines and cosines of the inter-bond and dihedral rotations. These are

then averaged, the structure is rebuilt from the averages and the

�-carbon positions are output as the ®rst attempt at a single repre-

sentative structure. The computational time required to perform this

highly optimized stage is negligible. The order of the rotational

symmetry of the dihedrals is also determined from the atom names

and is used to multiply the corresponding rotations in the internal

representation of the structure; the symmetry-multiplied rotations

are divided by the same factor on output and the symmetry-related

atoms offset from each other by the corresponding fraction of one

whole turn. This technique has the advantage of involving no deci-

sions (i.e. break points), so it introduces no artefacts and does not

interfere with convergence and results in output structures with

perfect imposed symmetry, although the internal representation of

the structures does at ®rst sight look a bit odd. The geometrical effect

of the symmetry handling is most easily described using phenylaniline

as an example: the dihedral rotations about the dyadic C�ÐC bond

are doubled so that the two C� and C" atoms (and associated H

atoms) move into coincidence, with the obvious result that the C

atoms of the side chain no longer represent a hexagon, but something

rather more reminiscent of the pan-shaped constellation Ursa major

in the northern sky. This technique can result in collisions with other

side chains because the plane of the group moves too, but it rarely

necessitates special handling.

The initial average is quite striking in that regular secondary-

structure elements (�-helices and �-strands) are usually well formed

and clearly representative of the structures in the input ®le. The same

cannot be said of �-turns, loops and less well ordered regions,

however. These usually distort, sometimes strongly, so that one often

sees a structure in which the regular elements appear very good, but

the structure as a whole seems to have caved in or fallen apart. This

result was anticipated because we knew from the outset that whilst

rotations about closely clustered axes can meaningfully be averaged

(as applies to consistently well formed secondary-structure elements),

large rotations in three dimensions generally can not because they

neither commute nor form a vector space, the effects of which

become noticeable as the axes of the rotations being averaged

diverge from one another by more than a few degrees, as is usually

the case in loop and disordered regions. Averaging is unproblematic

in two dimensions, where only one axis of rotation is possible. This

fact is used to great effect in the program to simplify, speed up and

improve the accuracy of the calculations, because individual bond

rotations can be represented exactly in a two-dimensional symmetry-

based formalism. It also means that despite the entire algorithm

working by manipulation of rotations, there is no reference in the

program to any angles or trigonometric functions. Some square roots

do remain, however, and appear to be unavoidable. The equations

used to handle rotations ef®ciently and accurately are either copied

verbatim or deduced from Thomas (1990).

The second stage of the program is an iteration to adjust the

dihedral rotations in such a way that every interatomic distance in the

reconstructed output model is drawn towards the mean value of the

matching distances in all of the input models in a manner correctly

weighted to take into account the variance of that mean,2 compen-

sated (as formally correct) for the slight skew caused by representing

distances as their squares. In the case of side chains with a dyad it is

sometimes necessary to use an alternative formula because the arti-

®cially induced collisions from the symmetry handling can cause the

variance of the distances to exceed the mean-squared distances

themselves, in which case the normal deskewing formula breaks

down. This actually occurs extremely rarely and is the only case in the

entire program where special handling is used. The iteration is a

multi-dimensional extension of the famous method of Joseph

Raphson, almost universally misattributed to Isaac Newton (Thomas

& Smith, 1990). It relies on knowing the rates of change (i.e. ®rst

derivatives) of the square of every interatomic distance with respect

to every dihedral rotation. These are evaluated explicitly from the

analytical formula, which is, thanks to the avoidance of trigonometric

functions, remarkably simple (though this may not be clear to readers

unfamiliar with the specialized notation; see Appendix A). This

simplicity is fortunate, because the total number of these ®rst deri-

vatives is so large that there is no possibility using currently available

computers of storing either them or a useful number of intermediate

results. Because of their sheer number, their generation consumes the

major fraction of the total running time of the program despite

careful optimization and also necessitates the use of double-precision

arrays. (Rounding errors rise as the square-root of the number of

terms being summed.) The derivatives are weighted by a term

representing the precision with which their associated dihedral

rotation was ®rst determined, which has the formally correct and

desirable effect of helping the well determined regular secondary-

structure elements move as almost rigid bodies whilst the less well

determined regions of intervening structure move more freely. The

inversion of the matrix equation required to solve the generalization

of Raphson's method consumes nearly all of the remaining running

time and is performed by a modi®cation of an implementation of the

conjugate-gradient algorithm (Hestenes & Stiefel, 1952) kindly

donated by Robert Diamond many years ago. The adjustments are

performed in a hierarchical sequence that improves the running

speed because fewer atoms are involved in the rapidly moving early

stages: at ®rst only the C� atoms are considered, then the heavy

backbone atoms; the heavy side-chain atoms are then introduced and

®nally the H atoms are added. Convergence is rapid, with shifts

normally decreasing quadratically, as they should with Raphson's

method, although in some cases the structure must refold ®rst

because the initial average is inside-out or tangled in some way. The

®nal adjustment of H atoms is normally accomplished in one cycle,

which is fortunate since the computational expense of the `all

distances between all atoms' versus `all distances between all atoms in

all models' approach is hard to justify at this point, but we do it

anyway on the grounds of simplicity and reliability. (The extension to

H atoms involves nothing more than the safe and effortless technique

of increasing the range of an outer loop by one.) Even so, the total
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2 In principle, each input model can also be weighted differently, preferably
using a weight chosen by the spectroscopist, but this elementary modi®cation
has not yet been made for want of appropriate weights. In fact, the generation
of justi®able weights may pose a serious challenge to the NMR community.



running time is typically only a few minutes on currently available

workstations or personal computers. (DJT normally uses a single

3.06 GHz Pentium 4 processor with 512 Mbytes of memory and the

Intel Fortran compiler, with impressive combined performance.)

The code compiles successfully using the DEC VAX/VMS Fortran,

DEC Alpha OpenVMS Fortran, SGI Irix f77 (when limited to 96

residues because of system frame-size limitations), Portland Group

f77 (Linux) and Intel Fortran (Linux) compilers. A basic imple-

mentation (without diagnostic and intermediate outputs) is freely

available from the WHAT IF website (http://swift.cmbi.kun.nl/

WIWWWI/, option NMR) and the latest executables of the full

implementation are available from Scienti®c Software Solutions (e-

mail dr_dj_thomas@yahoo.co.uk for details).

The memory requirements of the program pose no problems on

easily affordable current computers. The computational time for

small proteins is dominated by the N3 algorithm needed to solve the

matrix equations (where N represents the size of the protein), but for

larger proteins this is overtaken by the time taken to set up the

equations, which is proportional to M � N4 (where M is the number

of models). Because of this, the WHAT IF website implementation is

currently limited to 128 models and 128 residues to prevent individual

users from crippling the service, but these will be increased as faster

processors become available.

The above completes the description of the parts of the program

necessary to calculate the representative structure, but an extra

section was added to calculate root-mean-square deviations of atomic

positions, which occupy the B-factor ®eld in the output ®le (see

Appendix A).

It is also possible to make use of the ®nal covariances of the

iteratively determined dihedral rotations, which give a very sharply

delineated indication of `hot spots' of apparent ¯exibility. Indeed,

they may ultimately be of greater practical import than the root-

mean-square deviations, which indicate only cumulative positional

indeterminacy. However, we do not currently output them for want of

an accepted ®le format for this bond-related information.

Although we regard the current version of the program as essen-

tially ®nished, we anticipate future developments to handle nucleic

acids as well as polypeptides.

3. Results

We have tested the performance of our program on published and

unpublished protein structures speci®ed by as few as seven and as

many as 101 input models and containing between 65 and 120 resi-

dues and have subjected both the input ®les and output ®les to the

WHAT CHECK quality-control tools in the WHAT IF program

(Hooft et al., 1996; Vriend, 1990). As can be seen from Table 1, in

most cases the overall quality of the representative structure is judged

to be better (more positive ®gures) than for any of the input struc-

tures. Exceptions can occur when the best structures in the ensembles

are particularly good, so that combining them with the others can

degrade them. 1fa3 is the only case in our test set for which the

overall quality ratings (OldQua and NewQua) for the representative

structure fail to beat the best structure in the ensemble, though the

difference is practically insigni®cant.

In all cases tested so far, the appearance of the Ramachandran plot

is judged to have improved signi®cantly, even when the best structure

is particularly good.

The planarity of aromatic rings is reported as unusually good: this

is, of course, because their symmetry is imposed exactly.

It should be noted, however, that some ®les include signi®cant

local structural incompatibilities, in which case the representative

structure may contain corresponding regions of poor stereochemistry

which can adversely affect the more speci®c tests of packing quality

included in WHAT CHECK, also shown in Table 1. When it occurs,

we recommend the use of Robert Diamond's cluster-analysis
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Table 1
Root-mean-square deviations (AÊ ) of aligned bundles and results from WHAT
CHECK.

In the table `average' denotes the results appertaining to our new single representative
structure, `bundle' refers to the ensemble of raw structures and `best' refers to the best
structure in that ensemble.

(a) Values for all atoms and for backbone.

All atoms Backbone

2fmr 1.815 1.199
1fa3 1.537 0.901
1d8b 1.492 0.869
1dlx 1.319 0.833
1tin 1.534 0.825
1vig 1.973 1.131

(b) NewQua.

Average Bundle Best

2fmr ÿ2.83 ÿ3.99 ÿ4.19
1fa3 ÿ0.74 ÿ0.62 ÿ0.73
1d8b 0.62 0.05 ÿ0.06
1dlx ÿ1.73 ÿ2.45 ÿ2.40
1tin ÿ4.53 ÿ5.02 ÿ4.58
1vig ÿ4.09 ÿ4.32 ÿ4.11

(c) OldQua.

Average Bundle Best

2fmr ÿ1.337 ÿ1.580 ÿ1.435
1fa3 ÿ1.174 ÿ1.127 ÿ1.081
1d8b ÿ0.658 ÿ0.826 ÿ0.825
1dlx ÿ0.872 ÿ0.962 ÿ1.021
1tin ÿ1.905 ÿ1.994 ÿ2.088
1vig ÿ1.559 ÿ1.786 ÿ1.820

(d) First-generation packing quality.

Average Bundle Best

2fmr ÿ2.092 ÿ3.513 ÿ2.339
1fa3 ÿ1.686 ÿ2.092 ÿ1.451
1d8b ÿ0.394 ÿ1.686 ÿ0.811
1dlx ÿ0.930 ÿ0.811 ÿ1.302
1tin ÿ3.513 ÿ2.649 ÿ3.970 (poor)
1vig ÿ2.649 ÿ0.930 ÿ3.301

(e) Second-generation packing quality.

Average Bundle Best

2fmr ÿ2.826 ÿ3.868 (poor) ÿ4.184 (bad)
1fa3 ÿ0.735 ÿ0.598 ÿ0.099
1d8b 0.620 ÿ0.512 ÿ0.287
1dlx ÿ1.735 ÿ2.568 ÿ2.398
1tin ÿ4.643 (bad) ÿ4.439 (bad) ÿ4.580 (bad)
1vig ÿ4.090 (bad) ÿ4.487 (bad) ÿ4.110 (bad)

(f) Appearance of Ramachandran plot.

Average Bundle Best

2fmr ÿ1.345 ÿ3.578 (poor) ÿ3.701 (poor)
1fa3 ÿ0.959 ÿ2.107 ÿ2.046
1d8b ÿ1.599 ÿ2.370 ÿ2.492
1dlx ÿ4.095 (bad) ÿ5.023 (bad) ÿ5.494 (bad)
1tin ÿ4.107 (bad) ÿ5.271 (bad) ÿ5.412 (bad)
1vig ÿ4.609 (bad) ÿ5.511 (bad) ÿ5.486 (bad)



program (Diamond, 1995) either as an additional

tool to sort the input models into more compa-

tible subsets to be input into our program or else

as an illuminating and trustworthy alternative

approach.

Fig. 1 shows the backbone trace of our repre-

sentative structure for the ®rst KH module of

FMR1 (PDB code 2fmr; Musco et al., 1997). We

choose this as an example because the large

¯oppy loop would be represented particularly

badly by the inappropriate method of averaging

Cartesian coordinates, so it demonstrates parti-

cularly clearly the superiority of our method. Fig.

2 shows MNEI (PDB code 1fa3; Spadaccini et al.,

2000), an engineered sweet-tasting protein

related to monellin, which is more typical. Fig. 3

shows residues 15±33 of the HRDC domain from

Saccharomyces cerevisiae RecQ helicase (PDB

code 1d8b; Liu et al., 1999) including the heavy

side-chain atoms.

4. Discussion

The greatest success of the algorithm is

undoubtedly with the backbone, although if it is

used to average closely similar structures, espe-

cially those arising from simulations of molecular

dynamics, the same success is also obtained for

the side chains. Under such circumstances,

distance restraints that are satis®ed in all input

models will necessarily also be satis®ed in the

output model. However, there is no such guar-

antee if the input models disagree strongly,

because of the non-linearities inherent in the

method. We are aware of an artefact that can

occur when models are averaged whose side

chains are in disarray: they can cause the back-

bone to distort, which is immediately obvious

when the input models are aligned onto the

output. With the full implementation this is also

easy to spot from the intermediate results. With

the limited WHAT IF implementation it is

possible to submit just the heavy backbone atoms

®rst to ensure that the geometry cannot be

distorted in this way and then to submit the full

structure, which enables the performance to be

checked even in the absence of the facility to

inspect superposed structures. As Professor

Gerrit Vriend has pointed out, when the purpose

is to create a good structure rather than merely

making one representative of the ensemble, it is a

relatively easy matter to build the side chains

onto the representative backbone, especially

when the original distance restraints are avail-

able.

Sutcliffe (1993) explicitly investigated the

utility of representing ensembles by single

structures and concluded that with the algorithms

available at that time it was still preferable to use

the entire ensemble when the facility existed. It

will be interesting so see whether experience with

short communications

Acta Cryst. (2005). D61, 112±116 Thomas & Pastore � WHEATSHEAF 115

Figure 1
Backbone trace of the ®rst KH module of FMR1.

Figure 2
Backbone trace of MNEI.

Figure 3
Backbone trace of residues 15±33 of the HRDC domain of S. cerevisiae RecQ helicase.



WHEATSHEAF or other more recently developed algorithms will

alter that conclusion.

APPENDIX A
Mathematical details

The most important new equations are the following derivatives of

the squared interatomic distances with respect to the odd and even

parameters, O and E, specifying the intervening dihedral rotations,

@hddi
@E � ÿ2hpqcdqri O

E2 �O2
�1�

@hddi
@O � �2hpqcdqri O

E2 �O2
: �2�

Here, pi and ri are the two limbs that rotate relative to each other

about the dihedral bond qi, di = pi + qi+ ri is the interatomic vector

and qcdq is the dimensionless rank 2 skew-symmetric operator gener-

ating positive rotations in the plane normal to qi. The two terms hddi
and hpqcdqri are just scalars (i.e. numbers) with the dimensions of

length squared. The notation and derivation of these equations follow

Thomas (1990).

The calculation of the root-mean-square deviations necessitates

the Eulerian alignment of the input structures, which is performed by

the elegant and ef®cient quaternion method of Diamond (1988)

weighted by standard atomic weights. We calculate the eigenvalues of

Diamond's 4 � 4 cumulant matrix P [his equation (22)] accurately

from the explicit analytic solution of its (quartic) characteristic

polynomial; the eigenvector (�, �, �; �) corresponding to the largest

eigenvalue is then calculated and would be (if normalized) the

quaternion required. It is used to specify an ordinary 3 � 3 proper

rotation matrix

1

�2 � �2 � �2 � �2

�2 � �2 ÿ �2 ÿ �2 2��ÿ 2�� 2��� 2��
2��� 2�� �2 � �2 ÿ �2 ÿ �2 2��ÿ 2��
2��ÿ 2�� 2��� 2�� �2 � �2 ÿ �2 ÿ �2

0@ 1A
with which the pre-centred input structures are brought into accurate

alignment. (We agree with Robert Diamond about the reliability and

accuracy of this method.) The root-mean-square deviations of the

positions of the aligned atoms are then found in the normal way and

are output in the B-factor ®eld of the output ®le. Diamond's method

assumes uniform statistics and it is possible to improve the alignment

by upweighting well aligned regions and downweighting badly

aligned regions. We intend to incorporate this improvement in later

versions of the program.

We owe an enormous debt of gratitude to Bob Diamond for many

mathematical insights over the years and for establishing results

beyond our own capabilities and thank Barry Levine, Gert Vriend,

David Neuhaus, Michael Sattler and Bernd Simon for support, help,

advice and access to unpublished ensembles, respectively. Some

testing was facilitated by the kind award of an honorary fellowship to

DJT by the University of Birmingham, which gave useful access to

SGI computers from the Medical Research Council Bioinformatics

Project housed in the Glaxo±Wellcome Biocomputing Laboratory of

the Schools of Biosciences and Medicine.
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