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This paper is a companion to a recent paper on fast rotation

functions [Storoni et al. (2004), Acta Cryst. D60, 432–438],

which showed how a Taylor-series expansion of the maximum-

likelihood rotation function leads to improved likelihood-

enhanced fast rotation functions. In a similar manner, it is

shown here how linear and quadratic Taylor-series expansions

and least-squares approximations of the maximum-likelihood

translation function lead to likelihood-enhanced translation

functions, which can be calculated by FFT and which are more

sensitive to the correct translation than the traditional

correlation-coefficient fast translation function. These

likelihood-enhanced translation targets for molecular-

replacement searches have been implemented in the program

Phaser using the Computational Crystallography Toolbox

(cctbx).
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1. Introduction

Macromolecular structure solution by molecular replacement

is usually a two-step process. Firstly, a rotation function is used

to find the orientation of the search model. Secondly, the

position of the (oriented) search model is found using a form

of translation function (Rossmann, 1972; Machin, 1985). Less

commonly, full 6n-dimensional searches are carried out using

either systematic (Sheriff et al., 1999) or stochastic (Kissinger

et al., 1999; Glykos & Kokkinidis, 2000) algorithms.

Many translation-search functions have been described in

the literature. They fall into two general categories: those that

are evaluated at each sampled translation point in real space

in a brute-force search and those that are calculated by FFT

and therefore generate values for all points on the Fourier grid

in real space simultaneously. The FFT methods have the

advantage of being several orders of magnitude faster than the

brute-force searches. In the brute-force category are R-factor

searches (Dodson, 1988), correlation searches on amplitude or

intensity (Fujinaga & Read, 1987) and full maximum-

likelihood searches (Bricogne, 1992, 1997; Read, 2001). In the

FFT category are the overlap function (Crowther & Blow,

1967) and variations (Tickle, 1985, 1992), which measure the

overlap between the observed and calculated Patterson

functions, and the fast correlation coefficient on intensity

(Navaza & Vernoslova, 1995). When there is prior phase

information, either from experimental phases or a partial

model, FFT-based phased translation functions can be used

(Colman et al., 1976; Read & Schierbeek, 1988; Navaza, 2001).

The correlation coefficient on intensity (CORR) is

currently the most successful fast translation function and is

widely used in molecular-replacement software [e.g. AMoRe

(Navaza, 1994), MolRep (Vagin & Teplyakov, 1997) and CNS

(Brünger et al., 1998)]. If x is the translation of the oriented

search model, then CORR is given by
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where h is the Miller index of a reflection, Mh is its multiplicity,

Iobs
h is the intensity of the observed data, Iobs

h is its mean value,

I�
h ðxÞ is the square of the amplitude of the sum of the phased

fixed (i.e. known) and moving (i.e. search) structure-factor

contributions and I�
h ðxÞ is its mean value.

CORR is not as reliable in identifying the correct transla-

tion as the maximum-likelihood translation function, which is

the same as the Rice function used for structure refinement

(Read, 2001). The expression presented previously is re-

arranged here in order to make the approximations that will

be developed more intuitive. To maximize numerical stability,

we compute the log of the likelihood, which has its maximum

for the same values of the parameters as the likelihood. If the

reflections are assumed to be independent, the total log like-

lihood for a translation x in the Rice approximation is given by

the sum of the reflection log likelihoods. The likelihood for a

single reflection is given by
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for acentric reflections, where I0 is the modified Bessel func-

tion of order zero, and by
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for centric reflections. These likelihoods are defined in terms

of the probability of measuring an amplitude jFobs
h j [= ðI

obs
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1=2].

The contribution of acentric reflections to the log-likelihood

is therefore given by
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and for centric reflections by

LLh½I
�
h ðxÞ� ¼

1

2
ln

2

�"�T

� �
�

Iobs
h þ I�

h ðxÞ

2"�T

þ ln cosh
½Iobs

h I�
h ðxÞ�

1=2

"�T

� �� �
: ð2bÞ

In these equations,
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The subscripts jf refer to any fixed (i.e. non-translating)

molecules that have an unknown origin relative to the moving

molecule. Each Fjf
thus represents a structure-factor compo-

nent with unknown relative phase compared with other

components (for example, from fixing the orientation but not

the position of a molecule) and may represent the sum of a

number of molecular transforms with known relative phase. In

contrast, F fix
h is a fixed contribution with known phase relative

to the contributions of symmetry-related copies of the moving

molecule. �N is the bare variance of the Wilson (1949)

distribution, in which nothing is known apart from the unit-

cell content. �T is a variance that takes into account the

acquisition of extra information from the contributions of the

fixed and moving molecules. �N0 accounts for the part of the

extra information that arises from the Fjf
contributions with

unknown relative phase. The factor " accounts for the statis-

tical effect of symmetry on the expected intensity and is equal

to the number of symmetry operations that, when applied to h,

leave it unchanged. The D factors are the fractions of the

calculated structure-factor components that are correlated

with the true values (Luzzati, 1952). To account for the effect

of errors in measuring the observed amplitudes, an observa-

tional variance contribution is added to �N, as performed for

experimental phasing (Green, 1979; de La Fortelle &

Bricogne, 1997) and structure refinement (Murshudov et al.,

1997).

The maximum-likelihood translation function is time-

consuming to compute and this problem is one that can affect

success in finding the correct solution. In difficult molecular-

replacement solutions, the correct orientation may be a long

way down the sorted list of potential orientations in the results

from the rotation function, and it may only be possible to

identify the correct orientation by the high translation-

function score that it generates. If the translation function is

too time-consuming to compute then, in practice, the number

of potential orientations that can be tested may be limited and

the correct orientation may be missed by the search. Thus,

developing an approximation to the full-likelihood translation

function that retains its superior ability to discriminate correct

from incorrect solutions, but that may be calculated by FFT, is

important to the practical success of a maximum-likelihood

molecular-replacement program. We follow the strategy used

in AMoRe (Navaza, 1994), in which fast methods are used to

generate a list of plausible solutions that is then rescored by a

better but computationally more expensive target. In our case,

we rescore potential solutions using the translation likelihood

target (Read, 2001).

We showed recently (Storoni et al., 2004) that likelihood-

enhanced fast rotation functions are an excellent compromise

between the high quality but slow full-likelihood rotation-

function target and the lower quality but much faster tradi-

tional Crowther FFT-based search methods, as they provide

better discrimination between correct and incorrect orienta-

tions than the Crowther function but at the same speed. Here,

we use series approximations to the full maximum-likelihood
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Rice translation function to derive several likelihood-

enhanced FFT translation functions. These are of higher

quality and as fast or faster than CORR.

2. Series approximations of maximum-likelihood
translation function

The fast correlation coefficient algorithm (Navaza & Verno-

slova, 1995) provides an efficient method to compute trans-

lation targets expressed through linear and quadratic terms in

I�
h ðxÞ. We have examined two methods to construct such series

approximations of the maximum-likelihood translation func-

tion. Firstly, we have used Taylor-series expansions to the first

and second order. Secondly, we have fitted least-squares linear

and quadratic approximations to the likelihood function.

2.1. Taylor-series expansions

To compute Taylor-series expansions, we require the deri-

vatives of the function with respect to the expansion variable.

Starting from (2), the first derivative of LLh½I
�
h ðxÞ� with

respect to I�
h ðxÞ is given by
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and the second derivative is given by
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where for acentric reflections
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The first-order Taylor series expansion of the Rice function,

centred at I�
h ðxÞ = �h, is therefore given by

LL1
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¼ C1
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where C1
h is a constant not dependent on x.

Similarly, the second-order Taylor series expansion of the

Rice function, centred at I�
h ðxÞ = �h, is given by
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where C2
h is a constant not dependent on x.

The expansions provide good estimates of the values of the

likelihood function over only a restricted range of values of

I�
h ðxÞ close to the point of expansion. Optimal results thus

require a good choice of the region to be approximated. We

have chosen to centre the Taylor-series expansions on the

expected value of I�
h ðxÞ, so that they are most accurate over

the range of values likely to be sampled during the translation

search. The expected value takes account of the fixed contri-

bution, if any, and the amplitudes of the molecular transforms

of symmetry copies k of the moving molecule. This leads to

�h ¼ hI
�
h ðxÞi ¼ D2

fixjF
fix
h j

2
þD2

move

P
k

jFkðhÞj
2: ð7Þ

We have tested the effect of computing the expected value of

I�
h ðxÞ using less of the available information, i.e. by taking

account only of the scattering power of the moving molecule

but ignoring the amplitudes of the molecular-transform

contributions. As expected, this approximation works less well

(results not shown). In addition, we have tested the use of

Taylor expansions centred on zero, which degrades the results

significantly (results not shown).

2.2. Least-squares approximations

Least-squares approximations are computed by fitting

either a line or a parabola to values of the likelihood function

sampled over the range likely to be spanned by I�
h ðxÞ,

weighted by the probability of encountering each value of

F�
h = ½I�

h ðxÞ�
1=2. The probability distribution for F�

h is

computed by analogy with the Sim-like rotation likelihood

function (Read, 2001),

pðF�
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for centric reflections, where

�S ¼ hI
�
h ðxÞi � jFbigj

2

and Fbig is the largest term in the sum contributing to hI�
h ðxÞi.

The linear least-squares approximation is defined by

determining the coefficients BL
h and CL

h that minimize the

residual R
pðF�

h ÞfLLh½I
�
h ðxÞ� � ½C

L
h þ BL

h I�
h ðxÞ�g

2 dF�
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Similarly, the quadratic least-squares approximation is defined

by determining the coefficients AQ
h , BQ

h and CQ
h that minimize

the residualR
pðF�

h ÞfLLh½I
�
h ðxÞ� � ½C

Q
h þ BQ

h I�
h ðxÞ þ AQ

h I�
h ðxÞ

2
�g

2 dF�
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In practice, we find that it is sufficient to compute the residual

with a sum over as few as five points spanning the range of F�
h ;

Phaser uses seven points for stability.

3. Likelihood-enhanced translation functions

For calculating the optimal position of a search model given a

particular orientation, the translation-independent constants

could be ignored as they only change the mean of the search-

function scores. However, we have chosen to retain them so
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that the scores for different orientations can be compared. The

first-order Taylor-series expansion of the Rice function,

combining (5) and (7), then gives what we call the likelihood-

enhanced translation function 1 (LETF1),

LETF1ðxÞ ¼
P

h

C1
h þ LL0hðhI

�
h iÞI

�
h ðxÞ: ð10Þ

The second-order Taylor-series expansion of the Rice like-

lihood target, combining (6) and (7), gives the likelihood-

enhanced translation function 2, or LETF2,

LETF2ðxÞ ¼
P

h
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h þ ½LL0hðhI

�
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h iLL00hðhI
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þ 1
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�
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�
h ðxÞ
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The linear least-squares approximation of the Rice likelihood

target, using coefficients determined by minimizing (8), gives

the linear likelihood-enhanced translation function, or

LETFL,

LETFLðxÞ ¼
P

h

CL
h þ BL

h I�
h ðxÞ: ð12Þ

Finally, the quadratic least-squares approximation of the Rice

likelihood target, using coefficients determined by minimizing

(9), gives the quadratic likelihood-enhanced translation

function, or LETFQ,

LETFQðxÞ ¼
P

h

CQ
h þ BQ

h I�
h ðxÞ þ AQ

h I�
h ðxÞ

2
ð13Þ

Information from fixed parts of the model is introduced into

the coefficients of the fast translation targets in two ways.

Phased structure-factor contributions are incorporated

directly through I�
h ðxÞ and through the contribution to the

variance term �fix
P in �T. Those parts of the structure for which

the orientation but not the position are known also contribute

to the variance through �N0 in �T.

4. Implementation

The target functions CORR, LEFT1, LETF2, LETFL and

LETFQ described above were implemented in the program

Phaser using the Computational Crystallography Toolbox

(Grosse-Kunstleve et al., 2002). For convenience, the calcula-

tions are performed in terms of E values, normalized by

dividing the structure factors by ("�N)1/2. At the same time the

variances, such as "�T in (2), are divided by "�N.

The fast translation function of Navaza & Vernoslova

(1995) was factored into functions that compute
P

h AhI�
h ðxÞ

2

and
P

h BhI�
h ðxÞ given the Miller indices h, the coefficients Ah

and Bh, the observed data ðIobs
h Þ

1=2, the fixed components Ffix
h

of the calculated structure factor and the molecular transform

(in P1) of the moving molecule before translation. With these

functions, all of the LETF functions can be computed. For

computing
P

h BhI�
h ðxÞ, the run time scales with the second

power of the number of symmetry operations. For computingP
h AhI�

h ðxÞ
2, the run time scales with the fourth power of the

number of symmetry operations. For centred cells, the

summations can be carried out using only the symmetry

operations corresponding to the null centring (the ‘primitive’

subset) to minimize the run time (e.g. for F-centred cells, this

decreases the run time by a factor of 44 = 256 for the

summations involving the square of the calculated intensities).

The same computational saving can also be achieved by

transforming the reflection data and coordinates to a primitive

setting. This slightly more involved approach has the addi-

tional advantage of reducing the memory requirements (e.g.

by a factor of 4 for F-centred cells).

The coefficients of the FFT to compute
P

h BhI�
h ðxÞ involve

terms to twice the data resolution and those to computeP
h AhI�

h ðxÞ
2 involve terms to four times the data resolution

(Navaza & Vernoslova, 1995). It follows from Langs (2002)

that the fast translation functions may be evaluated using a

grid coarser than the Shannon sampling corresponding to the

terms involved. In principle, to preserve all the details, the grid

spacing should be at least as fine as the Shannon sampling:

dmin/4 for doubled resolution and dmin/8 for quadrupled

resolution. Numerical tests show that a grid spacing of dmin/4 is

optimal for the first-order approximations (LETF1 and

LETFL). The results for the second-order approximations

(LETF2 and LETFQ) do not improve much when the grid is

made finer than dmin/5 and they are usually acceptable with a

grid of dmin/4.

Note that in our implementation of CORR, the components

of I�
h ðxÞ are weighted by Luzzati (1952) D values reflecting the

expected coordinate errors of the models. This improves the

results over those obtained without weights.

5. Test cases

Results from three tests are shown below. These examples

were chosen to illustrate the performance of the fast transla-

tion function targets in a variety of circumstances, not because

the use of the new targets is essential to solving these struc-

tures. Earlier work (Read, 2001) has already demonstrated

that the likelihood targets are more sensitive to the correct

solution than traditional targets such as CORR. In Phaser, the

top translations from the fast translation search are rescored

with the full translation likelihood target; the better the fast

search predicts the top peaks, the shorter the list for rescoring

can be. We use scatter plots and the correlation coefficient

between the fast and slow (LLG) scores to evaluate how well

the fast scores approximate the slow score and thus predict the

order of the rescored peaks. The test cases below were chosen

to assess the fast translation scores in cases where an accurate

model accounts for either a small proportion or a large

proportion of the total structure factor and also in cases where

the model is less accurate.

No low-resolution cutoffs were applied to the available data

in any of the tests.

5.1. b-Lactamase and b-lactamase inhibitor protein complex

The structure of the complex between �-lactamase (BETA)

and �-lactamase inhibitor protein (BLIP) has served as a test

structure for maximum-likelihood molecular replacement

(Read, 2003; Storoni et al., 2004) because the original structure
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determination using traditional molecular-replacement tech-

niques was difficult, even though good models for BETA and

BLIP were available (Strynadka et al., 1996). The difficulty

arose in the search for the BLIP component, especially in

determining its orientation, as the BETA component is easily

found by traditional (and maximum-likelihood) methods.

BLIP was difficult to find by traditional methods for two main

reasons. Firstly, the BLIP component of the structure

comprises only 38% of the total scattering (the BETA

component accounts for the other 62%). Secondly, the data

are anisotropic and so there is systematic variation in the

structure-factor amplitudes not accounted for by the mole-

cular model, which increases the noise of the search. We have

previously shown that full maximum-likelihood molecular

replacement (Read, 2003) and the likelihood-enhanced fast

rotation functions (Storoni et al., 2004) allow the BLIP

component to be found easily. Maximum likelihood over-

comes the problems of low scattering and anisotropic data

(manuscript in preparation) through better modelling of the

structure-factor probabilities and by allowing the information

from BETA to be included in the search for BLIP.

5.1.1. Searching for BLIP alone with restricted resolution.

The correct orientation for BLIP can be found with a like-

lihood-based fast rotation search, even when the information

about the BETA component is not exploited (Storoni et al.,

2004). Once its orientation is known, the translation can be

determined easily with any of the fast translation-function

scores. To make the translation search more challenging, we

have reduced the signal by truncating the resolution of the

data to 6 Å. This test illustrates the case where the model

predicts only a relatively small component of the structure

factor, even if the model is reasonably accurate. As Fig. 1(a)

shows, only a small range of values of I�
h ðxÞ is spanned for a

typical reflection as the model is translated. Over this range

the Rice likelihood function is reasonably close to linear. The

results in Table 1 demonstrate that all the LETF scores

provide a much better prediction of the LLG score than does

the CORR score. As one might expect, the higher order

approximations provide a better fit to LLG and the least-

squares approximations are slightly better than the Taylor-

series approximations. The scatter plots in Fig. 2 and the

results in Table 2 show that the correct translation receives the

top score in all LETF scores, but not with CORR. None-

theless, the correct translation is near the top of the list even

for CORR and would be recovered in this case if the peaks

were rescored with the LLG score.

5.1.2. Searching for BLIP, fixing known BETA contribution.

In the previous case, the contribution of BLIP accounts for

only a small part of the uncertainty in the prediction of the

observed structure-factor amplitude, so only a relatively small

portion of the Rice-function curve is sampled as the molecule
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Figure 1
Plots of Rice log-likelihood function and its approximations (vertical
axis) for a single acentric reflection from the BLIP test case, as a function
of I�

h ðxÞ. The data are normalized, so that I�
h ðxÞ has been divided by �N.

The log-likelihood function (LLh) is shown in black, the linear (LETF1)
and quadratic (LETF2) Taylor-series approximations are shown in blue
and the linear (LETFL) and quadratic (LETFQ) least-squares approx-
imations are shown in red. A dashed line shows the probability
distribution of I�

h ðxÞ, superimposed using an arbitrary scale and origin.
(a) BLIP alone. (b) BLIP with BETA fixed.

Table 1
Correlation coefficients between peaks of fast translation maps and LLG
values from rescoring in three sets of test calculations.

Translate BLIP
alone, 6 Å

Fix BETA,
translate BLIP, 3 Å

Translate 1d0d
model of TOXD

CORR 0.752 0.714 0.803
LETF1 0.931 0.920 0.949
LETFL 0.936 0.922 0.950
LETF2 0.969 0.946 0.971
LETFQ 0.981 0.987 0.984

Table 2
Peak-to-noise discrimination in translation searches.

Results are expressed as Z scores, i.e. r.m.s. deviations above the mean score.

Translate
BLIP alone, 6 Å

Fix BETA, translate
BLIP, 3 Å

Translate 1d0d
model of TOXD

Correct
Top
incorrect Correct

Top
incorrect Correct

Top
incorrect

CORR 4.49 4.96 24.26 5.12 6.13 5.24
LETF1 5.31 4.85 31.00 7.86 5.98 5.20
LETFL 5.30 4.81 30.55 7.54 5.93 5.15
LETF2 5.45 5.00 27.43 5.98 5.41 4.73
LETFQ 5.45 4.90 30.03 7.18 5.57 4.82
LLG 5.96 4.94 31.25 7.33 5.86 4.97



is translated. To test the case where the translated model

accounts for a much greater part of the uncertainty, we carried

out tests in which the known contribution of BETA was fixed

during the translation search for BLIP using all data to 3 Å

resolution. In this case, as shown in Fig. 1(b), a wider range of

values of I�
h ðxÞ will be sampled and the Rice likelihood

function deviates more from a straight line. The results in

Table 1 show that, as one might expect, the first-order

approximations work somewhat more poorly than in the case

with BLIP alone, but the correlation with the LLG score is still

very high for all LETF scores. The results in Table 2 show that

with the correct orientation this translation problem is trivial

for all search targets.

5.2. TOXD

In a further test, we used the test data for �-dendrotoxin

(TOXD) distributed with the CCP4 suite (Collaborative

Computational Project, Number 4, 1994). This structure was

originally solved by isomorphous replacement (Skarzynski,

1992), but it shares 36% sequence identity with bovine

pancreatic trypsin inhibitor. As a model, we have used the

structure of bovine pancreatic trypsin inhibitor from PDB

entry 1d0d (St Charles et al., 2000). The results in Table 1

demonstrate that the LETF scores are equally good approx-

imations of LLG, whether the model is closely or more

distantly related to the target structure.

6. Conclusions

The results demonstrate that all four likelihood-based fast

translation functions investigated here (LETF1, LETF2,

LETFL and LETFQ) are superior to CORR in approximating

the full-likelihood target, LLG, and thus in predicting the top

solutions. The first-order approximations (LETF1 and
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Figure 2
Scatter plots showing correlation between peaks in the fast translation function maps and the LLG values from rescoring. The BLIP component of the
BETA–BLIP complex was translated using data restricted to 6 Å resolution and not taking into account the contribution of the BETA component. A
triangle indicates the score for the best translation. (a) CORR score. (b) LETF1 score. (c) LETF2 score. (d) LETFQ score.



LETFL) have the significant advantage that they only require

one FFT, with a map sampled at dmin/4. The second-order

approximations (LETF2 and LETFQ) require only two FFTs

compared with the three needed for CORR.

In practice, we prefer the use of the LETF1 fast translation

function, which is the program default in Phaser. We have not

found a molecular-replacement problem in which the second-

order targets succeed in finding the correct solution when

LETF1 fails. This is probably because molecular-replacement

problems become more difficult as the fragment to be found

becomes smaller or the model becomes less accurate. In both

situations, the proportion of the observed structure-factor

amplitude explained by the model decreases and, as illustrated

in Fig. 1, the relevant portion of the Rice likelihood-function

curve becomes more linear. In addition, the second-order

approximations require a second FFT, leading to greater

memory requirements. Finally, the calculation of the first

derivative needed for LETF1 is simpler and perhaps more

reliable than the least-squares fitting required for LETFL.

The translation function is also used in dual-space

substructure searches (Grosse-Kunstleve & Adams, 2003),

where peaks in the Patterson function are selected. These

represent heavy-atom pairs and the heavy-atom pairs are then

translated through the unit cell to find the position of the pair.

This pair is the basis of a bootstrap procedure to find the rest

of the heavy atoms in a substructure. The likelihood-enhanced

translation functions described here could also be used for

these substructure searches.

The program Phaser has been released as part of the

PHENIX (Adams et al., 2002) software suite and will be

released as part of the CCP4 (Collaborative Computational

Project, Number 4, 1994) suite. It is also available from the

authors (see http://www-structmed.cimr.cam.ac.uk/phaser for

details).
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the Wellcome Trust (RJR).
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