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The objective of any modern data-processing program is to

produce from a set of diffraction images a set of indices (hkls)

with their associated intensities (and estimates of their

uncertainties), together with an accurate estimate of the

crystal unit-cell parameters. This procedure should not only be

reliable, but should involve an absolute minimum of user

intervention. The process can be conveniently divided into

three stages. The first (autoindexing) determines the unit-cell

parameters and the orientation of the crystal. The unit-cell

parameters may indicate the likely Laue group of the crystal.

The second step is to refine the initial estimate of the unit-cell

parameters and also the crystal mosaicity using a procedure

known as post-refinement. The third step is to integrate the

images, which consists of predicting the positions of the Bragg

reflections on each image and obtaining an estimate of the

intensity of each reflection and its uncertainty. This is carried

out while simultaneously refining various detector and crystal

parameters. Basic features of the algorithms employed for

each of these three separate steps are described, principally

with reference to the program MOSFLM.
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1. Introduction

The collection of macromolecular diffraction data has under-

gone dramatic advances during the last 15 years with the

advent of two-dimensional area detectors such as image plates

and CCDs, crystal cryocooling and the availability of intense,

monochromatic and highly collimated X-ray beams from

synchrotron sources. These technical developments have been

accompanied by significant advances in the software used to

process the resulting diffraction images. In particular, auto-

indexing procedures have improved the ease of data proces-

sing to the point that in many cases it can be carried out

automatically without any user intervention. However, the

procedure used to collect the diffraction images, the screenless

rotation method, has remained essentially unchanged since it

was first suggested for macromolecular crystals by Xuong et al.

(1968) and by Arndt and coworkers and popularized by the

availability of the Arndt–Wonacott oscillation camera (Arndt

et al., 1973; Arndt & Wonacott, 1977). In this procedure, each

diffraction image is collected while rotating the crystal by a

small angle (typically between 0.2 and 2�) about a fixed axis

(often referred to as the ’ axis). The only development of the

method has been the use of very small rotation angles per

image (the so-called fine ’-slicing technique) to provide

improved signal to noise for weakly diffracting samples. Since

virtually all macromolecular diffraction data are collected in

this way (with the exception of data collected using the Laue

technique), this paper will be restricted to the fundamentals of

processing images collected using this approach, commonly



known as the rotation or oscillation method (the terms are

used interchangeably).

The starting point for data integration will therefore be a

series of such diffraction images and the desired outcome is a

data set consisting of the Miller indices (hkl) of all reflections

recorded on these images together with an estimate of the

diffracted intensities I(hkl) and their standard uncertainties

�I(hkl). This requires the prediction of which reflections occur

on each image and also the precise position of each reflection

on each image (note that typically most reflections will be

present on several adjacent images and therefore only

partially recorded on any individual image; see Fig. 1). For

each predicted reflection, the background-subtracted

diffracted intensity must be estimated. Although straightfor-

ward in principle, defects and limitations in both the sample

(the crystal) and the detector can make this difficult in prac-

tice. Complicating factors include crystal splitting, anisotropic

and/or very weak diffraction, high mosaicity, diffuse scattering,

the presence of ice rings or spots, unresolved or overloaded

spots, noise arising from cosmic rays or zingers, backstop

shadows, detector blemishes, radiation damage and spatial

distortion. Although these experimental factors will be

important in determining the final quality of a data set, they

will not be discussed here.

It is convenient to subdivide the process of integrating the

diffraction images into three stages. The first is the determi-

nation of the crystal parameters, in particular the crystal lattice

(unit cell) and its orientation relative to a laboratory axial

system (usually based on the X-ray beam direction and the

rotation axis). This is usually referred to as autoindexing.

Knowledge of these parameters then allows an initial estimate

of the crystal mosaicity. The second step is the determination

of accurate unit-cell parameters, using a procedure known as

post-refinement. This requires the integration of one or more

segments of data with a few images in each segment. The final

step is the integration of the entire set of diffraction images,

while simultaneously refining parameters associated with both

the crystal and the detector. The underlying principles of these

three steps are described below.

2. Autoindexing

The introduction of autoindexing was one of the most signif-

icant advances in simplifying the task of data processing. Prior

to this, the unit cell was normally determined by precession

methods and the crystal orientation was determined from a

series of still (zero oscillation angle) images recorded from a

crystal whose approximate orientation was known from the

crystal morphology. This process was both laborious and time-

consuming.

A number of different autoindexing procedures have been

described (Kim, 1989; Higashi, 1990; Kabsch, 1993), but the

discussion here will be restricted to the method based on one-

dimensional fast Fourier transforms and originally imple-

mented in the DPS program package (Steller et al., 1997), but

which is now used in MOSFLM (Leslie, 1992) and d*TREK

(Pflugrath, 1999). A similar method but using a three-

dimensional Fourier transform is implemented in DENZO

and HKL2000 (Otwinowski & Minor, 2001). The spot posi-

tions in an oscillation image are a distorted projection of the

reciprocal lattice of the crystal. Using the Ewald sphere

construction (Fig. 2), it is straightforward to derive the scat-

tering vector (reciprocal-lattice vector) of a reflection from the
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Figure 1
A typical macromolecular diffraction pattern for a strongly diffracting crystal. The original image is shown on the left, with the predicted reflections
shown superposed on the right. Each reflection is shown as a box, colour-coded blue and yellow for fully recorded and partially recorded reflections,
respectively, and green for reflections with a width greater than 5�.



measured spot coordinates (Xd, Yd) relative to the direct-

beam position,

s ¼

D=r� 1

Xd=r

Yd=r

0
@

1
A;

where r = (X2
d + Y2

d + D2)1/2 and D is the crystal-to-detector

distance. Note that s is in dimensionless reciprocal-lattice units

and the corresponding Ewald sphere radius is unity.

This equation holds when the centre of the reciprocal-

lattice point (which has a finite size associated with the finite

reflecting range; see x4.2) lies exactly on the Ewald sphere.

Different reflections will have different ’ values and so it is

necessary to place all the scattering vectors in a common

reference frame by correcting for this.

However, when using a single image, there is no reliable

way of knowing the ’ values for different reflections. For

example, if the oscillation image was recorded with a starting ’
of 0.0� and an final ’ of 1.0�, the true ’ value for any individual

reflection could lie anywhere between �"/2 and 1.0 + "/2,

where " is the reflection width in ’ (which will be different for

different reflections). Therefore, in practice the ’ values for all

reflections on a given image are assigned to the midpoint of

the rotation for that image (0.5� in the example above). This

will introduce small errors into the derived scattering vectors.

If more than one image is being used in the autoindexing, then

the correction for the ’ values of the different images is clearly

important.

The general principle behind Fourier-based autoindexing

can be understood as follows. Fig. 2 shows the Ewald sphere

construction for a crystal oriented so that a principal zone axis,

in this case the a axis, lies along the X-ray beam direction. The

planes of reciprocal-lattice points (h = 1, h = 2, h = 3 etc.)

normal to this zone axis intersect the Ewald sphere in a series

of concentric circles centred on the direct-beam position. In

the diffraction image, a series of concentric lunes will be seen.

As described above, all the spots on the detector can be

mapped back to give the corresponding scattering vectors.

When these scattering vectors are projected onto the zone

axis, all the spots lying within the same lune will give rise to a

projected vector of the same length. Thus, the projected

scattering vectors for all the spots on the image will fall into

clusters, where the separation between each cluster corre-

sponds to the vector between adjacent reciprocal-lattice

planes (h = 1, h = 2, h = 3 etc.). Because of the regularity of

these clusters, the Fourier transform of the projected scat-

tering vectors will form a series of regularly spaced large

maxima (Fig. 3), where the distance between adjacent maxima

corresponds to the real cell spacing along the principal zone

axis direction (the a axis in this example). If, however, the

scattering vectors are projected along a direction at an angle

of (say) 10� to the true zone axis direction, spots in the same

lune will project to give vectors of different lengths, so the

Fourier transform of the projected scattering vectors will not
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Figure 3
A one-dimensional Fourier transform of projected scattering vectors.
With the crystal orientation as shown in Fig. 2, the scattering vectors
projected onto the X axis will consist of regularly spaced clusters
corresponding to reciprocal-lattice planes h = 1, h = 2, h = 3 etc. The
Fourier transform will consist of several large discrete maxima, where the
spacing between adjacent maxima corresponds to the real cell spacing, in
this case the a axis.

Figure 2
The Ewald sphere construction. The X-ray beam is along the X axis and
the Z axis is the rotation axis. The origin of the reciprocal lattice lies at the
point that the X-ray beam exits the Ewald sphere (Q) and the crystal is
located at the centre of the sphere (O). The crystal is oriented so that the
a axis lies along the X axis. The reciprocal-lattice plane h = 1 is shown.
Each diffraction spot on the detector can be mapped back to the
equivalent scattering vector in reciprocal space. One such scattering
vector is shown as a bold line from the reciprocal-lattice origin (Q) to the
surface of the Ewald sphere.



have a clear set of maxima. Thus, the height of the maxima in

the Fourier transform can be used to identify directions that

correspond to real-space zone axes, such as the a, b or c axes of

the unit cell or low-order vectors such as a + b, a + c, b + c etc.

Although for ease of representation it was assumed in this

example that the zone axis lies along the X-ray beam direc-

tion, this is not a requirement. In addition, an oscillation image

can be used for the indexing rather than a still (zero oscillation

angle) image, even though this will lead to larger errors in the

derived scattering vectors owing to the assumption that all

reflections have the same ’ value.

In practice, the direction of the projection axis is varied in

small angular steps (e.g. 2�) for the complete hemisphere of

directions centred on the X-ray beam and in each case the

Fourier transform of the projected scattering vectors is

calculated. Three directions are then chosen from this list that

have large maxima in the Fourier transform and reasonably

large inter-axial angles and the directions optimized by a fine

angular search. These will define three principal zone axes and

their repeats, thus defining a unit cell with which it should be

possible to index all spots in the diffraction image. In general,

the resulting unit cell will be a triclinic one that will not reflect

the true symmetry of the lattice. The final stage is therefore to

find the reduced cell from the chosen cell and then evaluate a

goodness of fit (penalty score) to the 44 possible lattice types

(Burzlaff et al., 1992). The user is presented with a list of

possible solutions, each with a corresponding penalty. Typi-

cally, there will be a number of solutions with a low penalty

and then further solutions with much higher penalties; usually

the solution with the highest Bravais lattice symmetry in the

group with low penalty scores will be correct. The unit-cell

parameters are then refined (using the observed spot posi-

tions) imposing any constraints appropriate for the lattice

symmetry of the chosen solution. The direct-beam parameters

and (optionally) the crystal-to-detector distance are refined at

the same time.

It is important to realise that there is no information

available at this stage on the true crystal symmetry, which can

only be determined from the diffraction intensities. The spot

positions only give information about the lattice symmetry,

which can be higher than the true crystal symmetry. This is

particularly important when considering the strategy for data

collection.

Success of the autoindexing depends critically on knowl-

edge of experimental parameters such as the wavelength of

the radiation, the crystal-to-detector distance and most

importantly the direct-beam coordinates (however, see Sauter

et al., 2004 for recent improvements in this respect). Accurate

knowledge of the direct-beam position is particularly impor-

tant when processing data from crystals with one or more large

unit-cell edges, as it may not be possible to detect mis-indexing

by a single index from the integration statistics (although this

will be clear when the data is merged). Ideally a few hundred

spots should be used for indexing, although in favourable

cases as few as 50 can be sufficient. In cases where two lattices

are present, it may be possible to index the stronger lattice

simply by applying an intensity cutoff when selecting spots to

be used in indexing; otherwise, spots from one of the lattices

can be selected manually. Crystals with very high mosaicity

can present difficulties if this gives rise to the overlap of spots

in adjacent lunes. Because the ’ values of individual reflec-

tions are not known, this will give rise to serious errors in the

derived scattering vectors and a failure of the algorithm.

Experience has shown that the indexing is more robust when

two images are used (preferably separated by 90� in ’) and

results derived from a single image can be misleading in some

cases, particularly for low symmetries such as monoclinic. The

absence of a clear separation in penalty score between solu-

tions with low penalty and those with higher penalties may

indicate that the true cell is triclinic, but can also arise if there

are errors in the experimental parameters, such as the direct-

beam position.

3. Estimating the mosaic spread

The final error in predicted spot positions after cell refinement

is a good indicator of the success or failure of the auto-

indexing, but the definitive test is to compare the predicted

pattern of spots with the observed diffraction image. At this

stage not all spots will be predicted, because the mosaicity of

the crystal is not known (and assumed to be zero), but there

should be general agreement in the position of the lunes and

the separation of adjacent spots. Assuming that the prediction

is correct, the mosaic spread can be estimated by measuring

the total intensity of all predicted spots for increasing values of

the mosaicity (typically from 0 to 2� in steps of 0.2�). The total

intensity should reach a maximum at the correct value of the

mosaic spread, as larger values of the mosaic spread will

simply predict reflections that are not present. In practice, the

total intensity does not reach a constant value at the correct

mosaic spread owing to diffuse scatter in the diffraction image,

but it does increase much more slowly as the mosaic spread is

increased further. This allows a reasonable starting estimate to

be determined, which is subsequently refined by post-

refinement.

4. Parameter refinement

Once an orientation matrix and unit-cell parameters have

been derived from the autoindexing, these parameters (and

others) are refined further using different algorithms. The

parameters to be refined can be conveniently grouped into

three classes.

(i) Crystal parameters: unit-cell parameters, crystal orien-

tation and mosaic spread (isotropic or anisotropic).

(ii) Detector parameters: the detector position and orien-

tation and (if appropriate) distortion parameters (e.g. the

radial and tangential offsets for the MAR Research image-

plate scanner).

(iii) Beam parameters: the orientation of the primary beam

and beam divergence (isotropic or anisotropic).

There are two complementary sources of information that

can be used in the refinement: the spot coordinates measured

on the detector and the spot coordinates in ’. The latter can be
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estimated empirically if the oscillation angle is much smaller

than the reflection width or can be estimated from the way in

which the intensity for partially recorded reflections is

distributed over the two (or more) images on which the

reflection is recorded if the oscillation angle is comparable to,

or greater than, the reflection width.

4.1. Refinement using spot coordinates measured on the
detector

The parameters are refined by least-squares minimization of

a positional residual,

�1 ¼
P

i

!ixðX
calc
i � Xobs

i Þ
2
þ !iyðY

calc
i � Yobs

i Þ
2;

where X and Y are the spot coordinates on the detector and

!ix and !iy are appropriate weights.

The parameters refined using spot positions are as follows.

(i) Crystal-to-detector distance.

(ii) Direct-beam position.

(iii) A relative scale factor applied to the detector Y co-

ordinates (YSCALE).

(iv) Small rotations of the detector about a vertical and

horizontal axis (TILT and TWIST).

(v) Small rotation of the detector about the X-ray beam

direction.

(vi) Radial (ROFF) and tangential (TOFF) offsets for

image-plate detectors with a spiral readout (e.g. MAR

Research).

(vii) Unit-cell parameters (optionally).

Note that it is not possible to refine changes in crystal orien-

tation around the rotation axis using this residual, as this

parameter has no effect on the spot positions. Other para-

meters, such as unit-cell parameters and crystal-to-detector

distance, may also be highly correlated (depending on the

maximum Bragg angle).

These parameters are normally refined independently for

each image (or group of images) even though, with two

possible exceptions, they might be expected to remain

constant during data collection. The two parameters that

could change are the crystal-to-detector distance (which can

vary if the crystal is not centred exactly on the rotation axis,

although this variation is unlikely to be more than 0.1 mm),

and the direct-beam position (which can vary for image-plate

detectors with multiple image plates, although the same plate

should always have the same beam position). The YSCALE

parameter would be expected to be exactly 1.0 for all modern

detectors (where the pixel size is the same in the X and Y

directions) and should be constant. The justification for

refining these parameters is that this can compensate for

errors in the unit-cell parameters. This is important when the

initial unit-cell parameters obtained from autoindexing are

being refined (see x4.2) and also when integrating the entire

data set, as in both cases the accurate prediction of spot

positions is crucial. There is now good evidence for a small but

significant increase in unit-cell volume during data collection

as the result of radiation damage (Murray & Garman, 2002;

Ravelli et al., 2002). While in principle it is possible to refine

the unit-cell parameters continuously to allow for this, in

practice this is not reliable unless the symmetry is higher than

orthorhombic. This is because for any given X-ray dose only

data from a limited region of reciprocal space (a few images)

are available to carry out the refinement and therefore not all

unit-cell parameters will be well defined. Experience has

shown that refinement of YSCALE and the crystal-to-detector

distance compensates very well for genuine changes in unit-

cell parameters and a smoothly changing decrease in the

crystal-to-detector distance with increasing ’ is a good indi-

cator of a change in unit-cell parameters arising from radiation

damage.

Some parameters (TILT, TWIST, ROFF, TOFF) are poorly

defined for weak images (those with no strong spots in the

outer regions of the detector) and can show large and random

variations from one image to the next. In such cases, these

parameters should be set to the average value and not refined

during integration.

4.2. Refinement using u coordinates, post-refinement

In an ideal diffraction experiment with a strictly parallel

monochromatic X-ray beam and a perfect crystal, the Ewald

sphere is an infinitely thin spherical shell and the reciprocal-

lattice points are infinitely small, so that each Bragg reflection

occurs only at a precisely defined ’ value (when the

reciprocal-lattice point intersects the Ewald sphere). In reality,

the divergence and wavelength dispersion of the X-ray beam

result in an Ewald sphere with a finite thickness, while crystal

mosaicity (and intrinsic variation in unit-cell parameters

between different mosaic blocks) mean that each reciprocal-

lattice point has a finite size. The combination of these effects

means that each reflection has a finite reflecting range (or
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Figure 4
Schematic representation of the effect of the finite size of reciprocal-
lattice points on the diffraction images. The black ellipse represents a
reciprocal-lattice point of finite size that results from the combination of
crystal mosaicity, beam divergence, wavelength dispersion and variability
in unit-cell parameters. The arcs represent the positions of the Ewald
sphere at the beginning and end of one or more images. When the
oscillation angle is large compared with the angular width of the
reciprocal-lattice point (left), the entire reciprocal-lattice point lies
between the two arcs and all the intensity is recorded on a single image (a
fully recorded reflection). If the oscillation angle per image is halved
(centre), the total intensity is distributed over two images (partially
recorded reflections). If the oscillation angle is significantly less than the
reflecting range, the intensity is distributed over several images (right),
resulting in fine ’-slicing. Figure after Elspeth Garman.



width) in ’. In most cases, the reflecting range is determined

primarily by the mosaic spread of the crystal (particularly for

cryocooled crystals that often have a mosaic spread greater

than 0.3�) and by geometric factors that give rise to the

Lorentz correction. This correction arises because for

reciprocal-lattice points of any given size the ’ rotation

required for them to pass entirely through the Ewald sphere is

proportional to their distance from the rotation axis. The

practical result of this finite reflecting range is that reflections

may be recorded only on a single image (fully recorded) or on

two or more images (partially recorded) depending on the

mosaic spread and the rotation angle per image (Fig. 4).

Post-refinement (Winkler et al., 1979; Rossmann et al., 1979)

uses the observed distribution of intensity of partially

recorded reflections over adjacent images, together with a

model of the rocking curve, to determine the exact ’ value at

which a given reciprocal-lattice point lies exactly on the Ewald

sphere. It is called post-refinement because it can only be

carried out after the images have been integrated. An absolute

minimum of two images (adjacent in ’) is required to provide

the necessary data.

The residual minimized in post-refinement is

�2 ¼
P

i

wi½ðR
calc
i � Robs

i Þ=di�
2;

where Rcalc
i and Robs

i are the calculated and observed distances

of the reciprocal-lattice point d�i from the centre of the Ewald

sphere (OP and OP0 in Fig. 5), respectively, and again wi is a

weighting term. This represents the angle subtended by the

points P, P0 at the reciprocal-lattice origin (denoted � in Fig. 5).

Rcalc
i is determined from the current values for the unit-cell

parameters and crystal orientation. Robs
i is obtained from the ’

centroid if fine ’-slices have been used. For coarse ’-slices, the

position in ’ of partially recorded reflections is estimated from

the degree of partiality of the reflection [i.e. the way in which

the total intensity is distributed between the two (or more)

abutting images]. This latter approach requires a model for the

rocking curve and permits refinement of either crystal

mosaicity or beam divergence. Note that this residual can be

used to refine crystal unit-cell parameters, orientation and

mosaic spread, but cannot be used to refine the detector

parameters.

Consider a reflection that spans two adjacent images. The

position of the reciprocal-lattice point (which is rotating

clockwise during data collection) is shown at the end of the

first of the two images in Fig. 5. The reciprocal-lattice point

can be modelled as a sphere with a radius given by

" ¼ ð�d�=2Þ cos �;

where � is the combined mosaic spread and beam divergence,

d* is the reciprocal-lattice spacing and � is the Bragg angle.

The distance of the reciprocal-lattice point from the Ewald

sphere, �r, is related to the fraction P of the total intensity for

this reflection that is recorded on the first image by a rocking

curve model such as

P ¼ 1
2 ½1þ sinð��r=2"Þ�;

where

P ¼ I1=ðI1 þ I2Þ

and I1 and I2 are the intensities recorded on the two images.

Knowing P from the measured intensities, �r can be calcu-

lated and Robs can be determined. Rocking-curve models

other than the simple sine function have also been used (e.g.

Rossmann et al., 1979). Because " depends on the combined

mosaic spread and beam divergence, this parameter can also

be refined. (For fine ’-slices the combined mosaic spread and

beam divergence is estimated from the observed reflection

width in ’.)

Typically, a few degrees of data in two segments widely

separated in ’ (ideally 90�) are required and refinement will

provide unit-cell parameters that are accurate to within a few

parts in 10 000 (for data that extend to at least 2.8 Å resolu-

tion). The crystal orientation will be correct to within a few

hundredths of a degree for a mosaic spread less than 1.0� and

is better determined for smaller values of the mosaic spread.

For cubic symmetry a single segment of data is sufficient and

this is also the case for trigonal, tetragonal or hexagonal

crystals providing the unique axis lies close to the plane of the

detector in the chosen segment. For monoclinic or triclinic

crystals three (or four) segments of data (e.g. at � = 0, 45 and

90�) may be required to obtain accurate estimates of all unit-

cell parameters.

In most cases post-refinement is not effective in refining the

unit-cell parameters if the data only extend to low resolution

(lower than 3.5 Å) and in such cases refinement using the spot

positions will give more reliable results.
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Figure 5
The model for post-refinement in MOSFLM. The large circle represents a
cross-section of the Ewald sphere. A reciprocal-lattice point is shown as a
shaded circle centred on P0, representing its position at the end of the first
of two images on which this reflection is recorded. The reciprocal-lattice
point rotates clockwise during data collection, so the intensity recorded
on the first image will be proportional to that part of the shaded circle
that lies outside the Ewald sphere. P represents the calculated position of
this reciprocal-lattice point using the current crystal parameters. The
angle subtended by the points P, P0 at the origin of the reciprocal lattice is
minimized during post-refinement of the crystal parameters.



4.3. Refinement strategy

The refinement strategy can depend on how the data have

been collected. If fine ’-slices have been used, accurate ’
centroids and coordinates (X, Y) are available for most strong

reflections (excluding those very close to the rotation axis) and

both residuals (�1, �2) can be minimized simultaneously using

a suitable selection of reflections (strong and evenly distrib-

uted over the detector and in ’). Problems arising owing to

correlations of different parameters can be avoided either by

fixing some parameters or by the use of eigenvalue filtering.

These problems can be particularly serious for low-resolution

data, where there is a strong correlation between crystal-to-

detector distance and the unit-cell parameters, or for an offset

detector where there is a high correlation between the

detector swing angle and the (horizontal) direct-beam co-

ordinate. If only a narrow ’ range of reflections is used in the

refinement, then some unit-cell parameters will be poorly

defined and may be correlated with the crystal setting angles

and there will also be a strong correlation between the

detector orientation around the X-ray beam and the crystal

setting angle around the beam. In such circumstances the

refined parameters may assume physically unrealistic values,

but this will not necessarily reduce the accuracy of the

prediction of reflection positions and widths.

When the data is collected with coarse ’-slices, accurate ’
centroids can only be determined for partially recorded

reflections. In MOSFLM the two residuals are currently

minimized independently. Only the detector parameters are

refined when minimizing the positional residual and only cell,

orientation and mosaic spread parameters are refined by post-

refinement. This approach does have the advantage that the

accuracy of the refined unit-cell parameters does not depend

on the accuracy of the crystal-to-detector distance or direct-

beam position, providing these are known sufficiently well to

allow correct indexing of the reflections. The unit-cell para-

meters are refined prior to integrating the images using two or

more segments of data as described above and then fixed

during integration. The effect of any inaccuracies in the

refined cell, or changes in the cell owing to radiation damage,

will be minimized by refinement of the crystal-to-detector

distance and YSCALE.

5. Reflection integration

Once accurate values for the crystal unit-cell parameters and

orientation have been obtained, the images can be integrated.

Stated in the simplest way, this procedure involves predicting

the position in the digitized image of each Bragg reflection

present on that image and then estimating its intensity (after

subtracting the X-ray background) and an error estimate of

the intensity. In practice, this apparently simple task is quite

complex.

5.1. Predicting reflection positions

A knowledge of the crystal cell and orientation will allow

the prediction of spot positions on a virtual detector; that is, a

detector whose position and orientation are exactly known.

These positions must then be mapped onto the digitized image

and this mapping must take into account any spatial distor-

tions introduced by the detector, either using a pre-

determined calibration table or by refining the distortion

parameters for each image. Accuracy in the prediction of spot

positions is crucial, as any errors will introduce systematic

errors in the integrated intensities, particularly for profile

fitting. Ideally, unit-cell parameters should be known to an

accuracy of better than 0.1%.

Typically, the detector parameters, crystal orientation and

mosaic spread will be refined during the integration, but the

unit-cell parameters will be fixed. The crystal orientation quite

often changes during data collection, even with cryocooled

crystals. This may be a consequence of the rapid acceleration/

deceleration of the crystal at the start and end of each image,

especially on high-intensity synchrotron beamlines with

exposure times of less than 1 s. In addition, if the processing

software assumes that the rotation axis is exactly orthogonal

to the X-ray beam direction and this is not actually true, then

the crystal orientation will appear to change smoothly with

rotation angle with a period of 360�. Providing the changes in

crystal orientation are gradual and are less than one-tenth of

the mosaic spread between adjacent images, this will have no

noticeable effect on data quality. Refining the mosaic spread

during integration will allow for either anisotropy in the

mosaic spread or an increase in mosaic spread arising from

radiation damage.

5.2. Two-dimensional and three-dimensional integration,
coarse and fine u-slicing

There are two distinct procedures for integrating spot

intensities, known as two-dimensional and three-dimensional

integration, that are available in different software packages;

for example, MOSFLM (Leslie, 1992) and HKL (Otwinowski

& Minor, 1997) use two-dimensional methods, while d*TREK

(Pflugrath, 1999) and XDS (Kabsch, 1988) use the three-

dimensional approach. These procedures differ in the way that

the intensities of partially recorded reflections are derived.

When using two-dimensional integration, the intensities of the

different components of a partially recorded reflection (on

different but adjacent images) are evaluated independently by

two-dimensional profile fitting and only summed to give the

total intensity when the data are merged and scaled. By

contrast, when using three-dimensional integration the

different components are assembled by the integration soft-

ware and a three-dimensional profile is used to evaluate the

total intensity.

Coarse and fine ’-slicing refer to different ways of collecting

the images. Coarse ’-slicing describes the situation when the

rotation angle per image is comparable to or greater than the

mosaic spread (plus the beam divergence), so that the images

will contain both fully recorded and partially recorded

reflections. Fine ’-slicing corresponds to using a rotation angle

per image that is significantly less than the mosaic spread, so

that all reflections are partially recorded.
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Data collected using fine ’-slicing can be processed using

either two-dimensional or three-dimensional integration

software. In principle, three-dimensional integration should

give improved data quality, although in practice the difference

between using two-dimensional and three-dimensional inte-

gration is marginal. Although three-dimensional integration

programs are designed to process fine ’-sliced data, they can

also be used to integrate coarse-sliced data effectively.

For weakly diffracting samples, a noticeable improvement

in data quality can be obtained by collecting the images with

moderately fine ’-slicing (rotation angle per image approxi-

mately one-third of the mosaic spread) compared with coarse

’-slicing. This is because the background included in each spot

is minimized by using finer ’-slices, giving an improved signal

to noise for weak reflections. However, the use of very fine

’-slices is counterproductive, because of the intrinsic noise

associated with each image (detector-readout noise) and

because of systematic errors arising from difficulties in exactly

synchronizing shutter movements with the spindle rotation.

These issues have been discussed by Pflugrath (1999).

5.3. Defining the peak/background mask

Because it is physically impossible to measure the X-ray

background actually under the diffraction spot (which is

strictly what is required to obtain the background-subtracted

intensity), the background is measured in a region around the

spot either in two dimensions (X, Y; the detector coordinates)

for coarse ’-slices or in three dimensions (X, Y and ’) for fine

’-slices. A background plane is fitted to these background

pixels and this plane is then used to estimate the background

under the spot. To do this it is necessary to define a pixel mask

which, when centred on the predicted position of the spot, will

define which pixels are to be considered as part of the spot

(the peak pixels) and which are to be used to determine the

background (Fig. 6).

The mask can be defined manually after visual inspection of

the spot shapes, but MOSFLM will automatically optimize the

peak/background definition. It is clearly important that pixels

are not misclassified, as this can lead to systematic errors in the

integrated intensity. The presence of strong diffuse scattering,

which is quite commonly observed with data collected at a

synchrotron, can lead to difficulties in differentiating between

peak and background pixels. Unfortunately there is no simple

way of dealing with this problem, although corrections can be

applied when the data is scaled and merged (Evans, 2006).

5.4. Summation integration and profile fitting

Having determined the background plane, the simplest way

to obtain an estimate of the integrated intensity is to sum the

pixel values of all pixels in the peak area of the mask and then

subtract the sum of the background values for the same pixels

calculated from the background plane. This is known as

summation integration and if the background level is very low

compared with the intensity of the spot and the spots are well

resolved, this will give as accurate an estimate of the intensity

as it is possible to obtain. (In such cases the accuracy is

determined by counting statistics, so for a total count of N

photons the standard deviation is N1/2.)

For weaker reflections, it is possible to obtain a more

accurate estimate of the integrated intensity by using a

procedure known as profile fitting (Diamond, 1969; Ford,

1974; Rossmann, 1979; Leslie, 1999). In this procedure, it is

assumed that the shape or profile (in two or three dimensions)

of the spots is known. The background plane is determined in

the same way as for summation integration, but the intensity is

derived by determining the scale factor which, when applied to

the known spot profile, gives the best fit to the observed spot

profile. This scale factor is then proportional to the profile-

fitted intensity for the reflection. In practice, the fitting is

performed by least-squares methods to minimize the residual

R ¼
P

peak pixels

wiðXi � KPiÞ
2;

where Xi is the background-subtracted intensity at pixel i, Pi is

the value of the standard profile at the corresponding pixel, wi

is a weight derived from the expected variance of Xi and K is

the scale factor to be determined

The improvement obtained by profile fitting rather than

summation integration depends on the spot intensity relative

to background and the spot shape, but typically it can provide

a reduction in variance by a factor of 2.0 (1.4 in the standard

deviation) for weak reflections. It can be shown that for weak

reflections the use of profile fitting effectively weights down

the peripheral peak pixels where the signal to noise is lowest

(Leslie, 1999). This can also be an advantage when adjacent

spots are not completely resolved. All modern software

packages employ profile fitting, although the implementation

differs in detail.

The procedure assumes that the true reflection profile is

known. In practice, this is determined from the observed

reflection profiles of a number of reflections in the immediate

vicinity of the reflection being integrated. An appropriate

weighted sum of the individual profiles is used to form the true

or standard profile. The reflection shape will vary with position
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Figure 6
The peak/background mask definition used by MOSFLM. The overall
size of the mask (in pixels) is defined by NX and NY and the background
region is defined by a background rim in X and Y (NRX and NRY pixels)
and a corner cutoff (NC pixels).



on the detector (owing to changes in the obliquity of incidence

and other factors) and it is important to allow for this.

MOSFLM determines a standard profile for several pre-

defined areas on the detector, using all reflections that lie on

typically 5–10 adjacent images, to ensure that a significant

number of reflections contribute to each profile. The inclusion

of several images also means that the different components of

partially recorded reflections will be included for the majority

of the reflections. For the integration step, the best profile for

each reflection is calculated as a weighted mean of the closest

standard profiles. In HKL (Otwinowski & Minor, 1997), all

spots that lie within a defined distance of the reflection being

integrated on the current image are included in forming the

profile. It should be noted that when using two-dimensional

integration methods, it is not strictly correct to use a standard

profile derived from fully recorded reflections to evaluate the

intensity of partially recorded reflections, as the latter may

have a different spot shape, but in practice this does not seem

to have a noticeable effect on data quality. In the three-

dimensional profile fitting employed by XDS, the profiles of

individual spots are mapped back to a new coordinate frame

based on the scattering vector for each spot (Kabsch, 1988).

This elegant procedure eliminates the wide variation in the

widths of different reflections in the ’ direction, simplifying

the tasks of both forming the standard profiles and fitting

these to individual reflections. The same approach has been

adopted in d*TREK (Pflugrath, 1999).

Profile fitting is a powerful technique for reducing the

random error in weak diffraction data, but an error in deter-

mining the standard profiles or in fitting these to individual

reflections will lead to systematic errors in all measured

intensities (discussed in detail in Leslie, 1987). Modern soft-

ware packages go to some lengths to minimize the magnitude

of the systematic errors introduced by the use of non-ideal

standard profiles. The most commonly observed problem

affects the intensities of the strongest reflections when the spot

size is very small (e.g. five pixels in width or smaller). In such

cases the merging statistics can be better for the summation

integration intensities than for the profile-fitted intensities.

This is because the systematic errors arising from errors in the

standard profile or in fitting this profile to an individual

reflection are proportional to the reflection intensity (Leslie,

1987) and are the major determinant of the error in the

profile-fitted intensity for strong reflections. In addition, the

errors owing to artificial broadening of the standard profile or

positional errors when fitting this profile to an individual

reflection are proportionately greater for very small spots. As

most integration programs output both the profile-fitted and

summation integration estimates, the merging statistics can be

compared and the appropriate estimate used when scaling and

merging the data. Profile fitting will also introduce systematic

errors if the spot shape is highly variable across the detector

and this variation is smoothed out when forming the standard

profiles. This can happen if the crystal is slightly split or if the

crystal is physically bent as is sometimes the case for very thin

crystals. In such cases it may be worthwhile to separately

merge the summation integration and the profile-fitted esti-

mates and compare the statistics for the downstream stages

(phasing or refinement) using the two data sets.

5.5. Standard deviation estimates

It is important to obtain reasonable estimates of the stan-

dard deviations of the integrated intensities, since these are

used as weights when merging multiple observations and in

subsequent steps of the structure determination (e.g. identifi-

cation of heavy-atom sites, heavy-atom parameter refinement

and model refinement). For summation integration and profile

fitting of partially recorded reflections, a standard deviation

can be obtained based on Poisson statistics, while for profile-

fitted fully recorded reflections the goodness of fit of the

scaled standard profile to the true reflection profile can be

used (see Leslie, 1999, for a full derivation). In a total of N

recorded X-ray photons, Poisson statistics states that the

standard deviation is simply N1/2. To be able to apply Poisson

statistics, it is necessary to convert the numbers in the digitized

diffraction image to the equivalent number of X-ray photons

(this conversion factor is referred to as the gain of the detector

in documentation for the MOSFLM program). The gain is

generally constant for a given make of detector and can be

estimated by examining the variation in the counts within a

small region of a diffraction image that does not include any

diffraction spots, but corresponds only to the X-ray back-

ground. However, this estimate is only valid if all pixels are

strictly independent of each other, an assumption that is not

valid for commonly used image-plate and CCD detectors. In

addition, variations in the sensitivity of different regions of the

detector mean that it is an approximation to assume a single

value for the gain. In spite of these difficulties, standard

deviations based on Poisson statistics give reasonable esti-

mates of the errors for weak and medium-intensity reflections,

as judged by the agreement of the intensities of symmetry-

related reflections. However, the situation is different for

stronger reflections, where the difference between symmetry-

related intensities is generally far greater than the estimated

standard deviations. This is largely because the Poisson-based

standard deviations only allow for random errors of

measurement, while for strong reflections the systematic

errors arising from absorption, beam instability, detector non-

linearity or errors in non-uniformity corrections are far

greater than the random errors. In MOSFLM, an additional

contribution to the standard deviation is added to that based

on Poisson statistics to try to model the systematic errors

(Leslie, 1999). In spite of this, it is still generally necessary to

modify the initial standard deviation estimates when the data

are merged using the observed agreement between multiple

observations (see Evans, 2006).
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