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Not all proteins form well defined three-dimensional struc-

tures in their native states. Some amino-acid sequences appear

to strongly favour the disordered state, whereas some can

apparently transition between disordered and ordered states

under the influence of changes in the biological environment,

thereby playing an important role in processes such as

signalling. Although important biologically, for the structural

biologist disordered regions of proteins can be disastrous even

preventing successful structure determination. The accurate

prediction of disorder is therefore important, not least for

directing the design of expression constructs so as to maximize

the chances of successful structure determination. Such design

criteria have become integral to the construct-design strate-

gies of laboratories within the Structural Proteomics In

Europe (SPINE) consortium. This paper assesses the current

state of the art in disorder prediction in terms of prediction

reliability and considers how best to use these methods to

guide construct design. Finally, it presents a brief discussion as

to how methods of prediction might be improved in the future.
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1. Introduction

The three-dimensional structure of a protein is primarily

determined by its amino-acid sequence. However, the local

and global environment in which the protein finds itself can

also exert a large effect and protein-folding machinery may be

required in order to drive the protein towards its target

conformation. Under extreme conditions most proteins lose

any specific three-dimensional structure and it has also

become apparent that even under physiological conditions

many protein sequences are partially or even totally dis-

ordered (Dunker et al., 2000). Furthermore, the transition

between ordered and disordered states can sometimes be

effected by changing the protein’s environment, even under

physiological conditions. Computational studies of whole

genomes have suggested varying numbers for the percentage

of protein sequences that contain significant regions of

disorder: one study predicted that 52–67% of eukaryotic

proteins contain disordered regions longer than 40 amino

acids (Vucetic et al., 2003), while another predicted that 33%

of eukaryotic proteins contain regions of disorder of longer

than 30 residues (Ward et al., 2004). Strikingly, the percentage

of disordered regions in prokaryotic proteins is predicted to be

substantially lower (Vucetic et al., 2003). This may reflect the

existence of entire families of eukaryotic proteins that are

absent in prokaryotes, e.g. synaptic proteins in the nervous

system.

When a protein is heated with concentrated urea it usually

undergoes an order-to-disorder transition; when a protein is
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successfully refolded it undergoes a disorder-to-order transi-

tion. Such transitions may also occur in situ, either resulting

from a change in the environment or in response to an inter-

action with a specific binding partner. This latter case appears

to be particularly significant biologically since it allows for

extremely specific but reversible binding between protein

partners (Oldfield, Cheng, Cortese, Romero et al., 2005;

Tompa, 2005; Wright & Dyson, 1999). Examples of such

interactions include enzyme–substrate, receptor–ligand,

protein–protein, protein–RNA and protein–DNA inter-

actions. Amongst other uses, such controlled transitions

appear to play a crucial role in cell signalling pathways.

It was hypothesized that if amino-acid sequence primarily

determines the structure of a protein, then it also primarily

determines which regions are unstructured. In support of this,

early studies revealed that disordered regions often contain

significant stretches of low-complexity sequence and that

certain amino acids (charged, polar and flexible ones) are

significantly more likely to be found in disordered regions

(Garner et al., 1998). For example, Glu, Asp and Lys are

charged and Ser enhances solubility and provides flexibility,

while low-complexity Pro-rich and/or Gly-rich sequences

rarely form stable structures. Conversely, aromatic amino

acids (Trp, Tyr and Phe) are primarily associated with ordered

regions (Kissinger et al., 1995) since they have a strong

interaction capability which helps to develop structure (Burley

& Petsko, 1985). The aliphatic amino acids (Leu, Ile and Val)

are also similarly associated with ordered regions.

The importance of disorder in the study of molecular

recognition has already been described. However, there is also

a more practical and urgent need for accurate detection of

disordered regions as a general tool in structural biology. Both

X-ray crystallography and NMR spectroscopy rely on

ensembles of almost identical structures to amplify the

experimental signal. At best, spectroscopic methods can

supply some information on the conformations of disordered

sequences (Bernado et al., 2005), while X-ray crystallography

is inapplicable for such sequences (Oldfield, Chen, Cortese,

Brown et al., 2005). Furthermore, disordered regions can

prevent structure determination entirely by affecting solubility

and/or crystallizability.

The proliferation of disorder-prediction algorithms in

recent years (for examples, see Table 1) is reflected in the

inclusion of disorder prediction in both the CASP5 and

CASP6 (http://predictioncenter.org/casp6/Casp6.html) trials.

It may be noted that in CASP5, one of the submitted fully

disordered proteins, Target 145 (Melamud & Moult, 2003),

was in fact the cytoplasmic domain of the Drosophila adhesion

protein gliotactin (Zeev-Ben-Mordehai et al., 2003), one of the

targets included in SPINE workpackage 10 (Human Proteins

of Biomedical Relevance; Banci et al., 2006). In CASP5, six

methods were tested, whereas in 2004, for the CASP6 trial, 20

methods were evaluated. While PONDR (Li et al., 1999;

Romero et al., 1997, 2001) remains perhaps the best known of

these methods, we estimate that upwards of 40 algorithms

have been developed. Two of the newer methods, developed

since the CASP6 trial and very different in philosophy and

applicability, have been developed by SPINE partners.

FoldIndex (Prilusky et al., 2005), developed at the Weizmann

Institute, implements the algorithm described by Uversky et

al. (2000) to make a calculation based on average net charge

and average hydrophibicity of the sequence, thereby giving a

single prediction of whether that sequence (or subsequence) is

ordered or disordered. In contrast, RONN (Yang et al., 2005),

developed jointly by the Universities of Oxford and Exeter,

uses a neural network technique to predict whether any given

residue is likely to be ordered or disordered in the context of

the surrounding amino-acid sequence. Both methods are

freely accessible via their respective URLs.

This paper reviews the approaches to the disorder-

prediction problem encapsulated in FoldIndex and RONN

and considers in general terms the difficulties in objectively

assessing the performance of such algorithms. Ways in which

disorder can be combined with other bioinformatics analyses

to guide the design of expression constructs are then consid-

ered. The discussion finishes by considering possibilities for

improving the algorithms by recognizing differences between

types of protein disorder.

2. Methods

2.1. Collecting data for disordered sequences

Central to any disorder-prediction approach is the collation

of a database of sequences which are known to be either

ordered or disordered. Ordered sequences can be easily
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Table 1
Selected disorder-prediction programs and their URLs.

Method URL Reference

DisEMBL (465) http://dis.embl.de/ Linding, Jensen et al. (2003)
DisEMBL (coils) http://dis.embl.de/ Linding, Jensen et al. (2003)
DisEMBL (hot) http://dis.embl.de/ Linding, Jensen et al. (2003)
DISOPRED2 http://bioinf.cs.ucl.ac.uk/disopred/disopred.html Ward et al. (2004)
FoldIndex http://bip.weizmann.ac.il/fldbin/findex Prilusky et al. (2005)
GlobPlot http://globplot.embl.de/ Linding, Russell et al. (2003)
IST-ZORAN/VSL-1 http://www.ist.temple.edu/disprot/predictorVSL1.php Obradovic et al. (2005)
IUPRED http://iupred.enzim.hu/ Dosztanyi et al. (2005a,b)
PONDR http://www.pondr.com/ Romero et al. (1997, 2001), Li et al. (1999)
PreLink http://genomics.eu.org/spip/PreLink Coeytaux & Poupon (2005)
RONN http://www.strubi.ox.ac.uk/RONN Yang et al. (2005)



extracted from the crystallographic and NMR structures

found in the Protein Data Bank (PDB; Sussman et al., 1998;

Berman et al., 2000). Proteins for which the structure has not

yet been determined may also be known to be largely ordered

from use of such techniques as heteronuclear single-quantum

correlation (HSQC) spectroscopy, although it is not possible

to know which residues are ordered and which are disordered.

In contrast, it is difficult to gather data for disordered

sequences. To confirm the presence of disorder it is necessary

to have a soluble protein and in many cases this is not possible

for reasons compounded by the presence of the disordered

regions themselves. It is impossible to determine the structure

of a completely disordered protein by crystallographic

methods, so spectroscopic methods, including NMR, must be

used for such proteins (Wright & Dyson, 1999). For partially

ordered proteins it may be possible to determine a partial

structure and thereby to infer that the missing regions are

disordered, e.g. in the case of the human prion protein (Zahn

et al., 2000). Since these partial structures are usually depos-

ited, the PDB is also the largest repository of disordered

sequences associated with partially ordered structures.

Uversky et al. (2000) tabulated fully disordered sequences

characterized by spectroscopic methods, while Yang et al.

(2005) trawled the 29 April 2004 release of the PDB, looking

for disordered sequences using the Macromolecular Structure

Database (MSD; Boutselakis et al., 2003) at the European

Bioinformatics Institute. Although only a small fraction of

known proteins have had their structures determined and this

method has some bias since only partly structured proteins can

be included, this represents by far the largest resource of

disordered sequences. For this paper, the analysis has been

repeated and updated to reflect the state of the PDB as of 18

October 2005 (Table 2; detailed data are available from the

RONN website, http://www.strubi.ox.ac.uk/RONN). The data

are expected to contain some errors, e.g. crystallographic

structure determinations where terminal regions of the

protein may be incorrectly classified as disordered. Such

regions may be missing (i) because they are genuinely dis-

ordered, (ii) because they are attached to the rest of the

molecule by a flexible linker and thus have no fixed orienta-

tion with respect to the rest of the molecule or (iii) because the

region may be absent from the crystallized entity owing to

unexpected proteolysis. Another resource of experimentally

measured disorder sequences was created so as to assess the

reliability of FoldIndex (Prilusky et al., 2005) and can be

accessed at http://www.weizmann.ac.il/sb/faculty_pages/

Sussman/papers/suppl/Prilusky_2005.

2.2. Different approaches to the prediction problem

It is well established that the amino-acid composition of

disordered sequences is different from that of ordered

sequences (Garner et al., 1998) owing to the different physical

properties of amino-acid side chains. Thus, most disorder-

prediction methods focus on the properties of the individual

amino acids, either based on experimentally measured para-

meters or calculated based on a statistical analysis of

sequences known to be ordered or disordered (Wright &

Dyson, 1999; Dyson & Wright, 2004) such as the Database of

Protein Disorder (http://www.disprot.org/). Many different

methods of parameterization have been tried and embodied in

rule-based neural network methods such as PONDR, Glob-

Plot, DisEMBL and DISOPRED2 (see Table 1). However,

this approach is most simply encapsulated in FoldIndex

(Prilusky et al., 2005), which codes the rules derived by

Uversky et al. (2000). The program was originally designed to

give a single overall prediction of ‘ordered’ or ‘disordered’ for

any given sequence, but has since been adapted to give per-

residue disorder propensity since this is useful for construct

design. Although the physical properties of amino acids are

clearly fundamental in the determination of disorder, the

neural network used in RONN (Yang et al., 2005) deliberately

avoids explicit parameterization of amino acids in this way.

Instead it uses non-gapped sequence alignment to measure

‘distances’ between windows of sequence for the unknown

protein and windowed sequences for proteins of known

folding state derived from the PDB analysis. Thus, in one

sense, FoldIndex and RONN represent two extreme ways of

approaching the disorder-prediction problem and, while both

methods have their strengths and weaknesses, they perform

well in comparison to other disorder-prediction methods. Fig. 1

compares both methods with the other most widely used

disorder predictors using the data from the 29 April 2004

release of the PDB. Unsurprisingly, given the discussion

above, FoldIndex performs particularly well for fully ordered
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Table 2
Disorder information extracted from the PDB.

The table summarizes the parts of sequences of proteins which are assumed to be present in the crystallized/analysed entity but for which no structure was built.
The analysis for 18 October 2005 was limited to structures determined by X-ray crystallography.

PDB, 29 April 2004 PDB, 18 October 2005

Entries in PDB 25931 34347
Entries containing only short disordered regions 5754 (5–20 residues) 6105 (5–18 residues)
No. of disordered regions in these entries after filtering† 1925 2866
Entries containing at least one long disordered region 1573 (>20 residues) 1841 (>18 residues)
No. of long disordered regions in these entries after filtering† 530 687
No. of long ordered regions in these entries after filtering† 891 1358

† Filtering removed entries for heteromultimeric complexes and highly redundant sequences. Redundancy was addressed using CD-HIT (Li et al., 2001, 2002) to remove sequences
which were more than 70% identical to other sequences in the set.



or fully disordered sequences, while RONN is more successful

in identifying partially disordered sequences.

2.3. Measuring accuracies of prediction

At first glance, it seems trivial to assess the value of an

algorithm for predicting whether a given amino acid (or

amino-acid sequence) is ordered or disordered. However, it is

not possible to devise a universally useful measure since the

usefulness of any algorithm depends critically on the signifi-

cance and consequences of correct and incorrect predictions,

which in turn depend on the application to which the algo-

rithm is being put. Many measures of such binary classifiers

have been defined in computer science and an accessible

discussion relating to text categorization has been

posted on the web (http://www.islanddata.com/downloads/

irt_whitepaper_perfmeasure.pdf). A second problem is that

descriptions of algorithms often quote cross-validation results

rather than the outcomes of true blind tests, which give more

realistic results. Finally, since test sets tend to contain rela-

tively few disordered amino acids and in the ‘real world’ of

experimental construct design they are even less frequent,

good measures of algorithm performance must not be overly

affected by these differences in relative class frequency. What

the experimental scientist engaged in construct design really

wants is a realistic idea of how much better an algorithm is

than simply guessing. Measures such as the ‘probability excess’

(Yang et al., 2005) and the related scoring function used in the

CASP trials attempt to provide such a measure and suggest

that the best algorithms available today are, very roughly, 50%

better than guessing for blind tests on partially ordered

structures. Fig. 1 presents probability excess assessment of the

common methods including RONN and FoldIndex. However,

if the question is simply ‘does a given sequence form an

ordered structure or not?’ then current methods, especially

global predictors such as FoldIndex, can provide answers with

a much higher degree of certainty.

One final complication with measuring algorithm perfor-

mance is that disordered sequences themselves do not

constitute a homogeneous class: some are of low complexity,

for example containing runs of 20 or more consecutive

glutamate residues, some are long sequences that appear to be

reasonably complex and some are short regions in otherwise

ordered sequences which clearly have a strong preference for

disorder. These observations are considered in more detail

below. Different algorithms are better tuned to different sorts

of disorder, so that relative performance of algorithms varies

depending upon the context of disorder prediction. For

example, using disorder prediction to detect linker regions

between domains is essentially a requirement for detecting

short(ish) regions of disorder and methods which employ long

prediction windows, such as the current version of RONN,

may thus exhibit reduced sensitivity.

3. Results and discussion

3.1. Analysis of SPINE structures

To assess the robustness of prediction methods, an initial set

of SPINE structures deposited with the PDB was used as a

realistic (but not strictly ‘blind’) test set. At the time of

analysis, 139 deposited SPINE structures had been fully

annotated by the MSD, of which 15 corresponded to protein–

protein complexes, which were excluded from further analysis;

four others were excluded for other reasons. For the remaining

120 structures, 47 contained no disorder and 73 were partially

disordered, giving a total of 25 230 ordered residues and 1476

disordered residues. Consistent with ‘real-world’ usage, the

data set was not filtered in any way to remove similar

sequences nor sequences that might have been used in training

sets. Furthermore, this set contained disproportionately more

structures from eukaryotic sources (45% of structures) than

the PDB as a whole (Table 3). Thus, this data set would be

expected to be difficult for prediction algorithms, especially

FoldIndex, which was not designed for nor trained against

partially ordered structures. The prediction results for RONN
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Figure 1
Assessment of prediction performance for nine different disorder-
prediction methods. (a) The results of blind tests for a balanced mixture
of fully ordered and fully disordered sequences. (b) The results of blind
tests for partially ordered sequences extracted from the PDB. See x2.3 for
a discussion of terms. Reproduced from Yang et al. (2005) by permission
of Oxford University Press.



(Table 3) show that the performance is in line with previously

published results for blind trials (Yang et al., 2005), even

though the proportion of disordered residues in this trial is

substantially lower (5.5% compared with 10.9%). However,

the performance is noticeably better with prokaryotic

proteins, suggesting that training is biased toward these

proteins and that there exists a significant difference between

the proteins from the prokaryotic and eukaryotic domains of

life. Somewhat surprisingly, the eukaryotic set contains

proportionately less disorder than the prokaryotic set,

although genomic studies using disorder-prediction tools

suggest that disorder is more prevalent in eukaryotes. This

apparent anomaly may reflect the difficulty in working with

eukaryotic proteins: either target selection is more conserva-

tive or only very well ordered eukaryotic proteins lead to

successful structure determinations. In sharp contrast, for the

small set of viral proteins the predictions of both RONN and

FoldIndex are virtually useless. While the scale of this trial

makes it difficult to attach much significance to this observa-

tion, it is tempting to suggest that the determinants of disorder

in viral proteins, particularly structural proteins, may be

somewhat different from those of other proteins. As antici-

pated above, FoldIndex finds all the predictions more difficult

(Table 3), although predictions for prokaryotic proteins are

still useful.

3.2. Use of disorder prediction in construct design

Within the SPINE remit of developing methods for struc-

tural proteomics, the single most important use of disorder

prediction is as an aid to construct design. Many biomedically

important proteins contain regions of disorder and these

regions are often implicated in difficulties with structure

determination, e.g. because they can encourage aggregation

and reduce solubility or inhibit growth of crystals. However,

since many structures in the PDB are partly disordered, the

PDB is the largest source of disorder data and the basis for

most analyses. In many cases where disorder is suspected, the

best strategy for crystal production is to work with multiple

constructs in parallel (see, for example, Banci et al., 2006), and

disorder prediction has become an essential tool in the

construct design process.

Disorder prediction is just one of an array of tools that can

inform construct design. Others include comparison with

domain definitions based either on sequence or structure,

detection of signal peptides and nuclear localization

sequences, detection of hydrophobic and low complexity

regions, alignments with structures already deposited in the

PDB and any known functional data or mutational data

relating to the protein of interest. A significant goal of

bioinformatics is to present all this information in a simple,

preferably visual, way that can be conveniently accessed and

assessed by the researcher (see Albeck et al., 2006).

The output of most disorder predictors is a graph of per-

residue disorder probabilities, with 50% probability being

taken as the decision threshold. However, this is somewhat

unrealistic and mainly driven by convenience since, for

example, whether a residue is ordered or not also depends on

the total sequence length, whether the complete structural

domain is in the expression construct and, of course, the

eventual protein environment. Nevertheless, these graphs are

useful and our experience, primarily based on RONN and

FoldIndex, suggests that more careful analysis of the output is

justified. Firstly, regions predicted to have very low disorder

probability tend to correspond to hydrophobic regions and

transmembrane sequences and these regions can make

constructs as difficult to work with as disordered regions.

Secondly, although a single prediction threshold of 50% is

used, it may be better to define the precise residue of transi-

tion as that which is half way between the plateaux of prob-

abilities for ordered residues on one side and disordered

residues on the other. Thirdly, for methods that rely on

prediction windows the user should be aware of the smoothing

effects they introduce. Although a short disordered linker

between domains may not be long enough to force the indi-

vidual prediction for any residue above 50%, a lower peak

may still be clearly visible in the plot.

One final consideration is that the goal of construct design is

to be able to express part (or all) of the protein of interest in a

stable well behaved soluble form. This can require consider-

able accuracy in deciding start and end points. Cutting more

than one or two residues into an ordered domain risks

disrupting the folding of the entire domain, whereas being too

conservative and leaving a long disordered tail on the

expression construct risks an adverse effect on solubility,

homogeneity and crystallizability. Results for exhaustive

expression screening of all possible N- and C-terminal trun-

cations (Hart & Tarendeau, 2006) suggest that the acceptable

window can be quite narrow, perhaps no more than five amino

acids. While many disorder predictors can give results largely

in agreement with observed disorder, reaching this level of

accuracy demands further improvements in the algorithms.

3.3. Different sorts of disorder?

It is likely that proteins do not have disordered regions by

accident. As the study of disorder has progressed it has

become clear that not all disorder is equivalent and it seems

likely that if there are different sorts of disorder then they

must fulfill different purposes. Low-complexity sequences

bearing many charged amino acids have long been recognized

as disordered and some of them may play a role in anchoring
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Table 3
Disorder predictions for deposited SPINE structures.

Proteins are partitioned according to the domain of life to which they belong.
The probability excess represents the relative improvement compared with
simple guessing.

Probability excess (%)

Structures RONN FoldIndex

Prokaryotic 59 58.4 28.5
Eukaryotic 54 49.9 14.2
Virus 7 7.4 �2.9
All 120 48.4 17.0



proteins to charged surfaces such as membranes. Other low-

complexity sequences bearing proline and glycine repeats also

exist which may act as spacers or ‘stalks’. Some long regions of

disorder have more complex sequences, similar to structured

regions, and may even include ‘structure-favouring’ amino

acids such as Trp, Tyr and Phe. One possibility is that these

regions may transition to an ordered state when binding to

cognate partners, and the ‘structure-favouring’ amino acids

may then play a key role in complex formation. Short regions

of disorder are frequently found in proteins that are largely

ordered; here one possibility is that they somehow reflect the

evolutionary history of the parent gene and another is that

they add a point where variety is desirable on a protein

surface. The distribution of amino acids in these flexible loops

is quite characteristic, with Gly predominating. Finally, one of

the most common motifs among disordered regions is entirely

man-made: purification His tags are the most easily detectable

of all groups of disordered sequences.

The natural question that arises from the discussion above is

whether these different types of disordered sequences cluster

together in any way that might be useful for disorder-

prediction algorithms. This in turn depends on whether

different types of disorder can be classified from sequence

alone. Three approaches suggest themselves: (i) do disordered

regions divide into subgroups which can be characterized

separately, (ii) do disordered regions of different lengths,

especially very short regions, have characteristic sequences

and (iii) is the transition between order and disorder char-

acteristic? Based on an initial analysis of the disorder data

extracted from the PDB (results presented in Table 2) the

answer to the first two questions is not clear-cut. Except for

obviously disordered sequences, producing clusters of

sequences that divide ordered and disordered sequences

requires very fine-grained clustering into many small clusters.

This is in line with the Oxford group’s experience with RONN

that increasing the number of prototype sequences improved

performance markedly. Detecting characteristic sequences for

order-to-disorder and disorder-to-order transitions was,

however, immediately more successful (Fig. 2). Although

attempted before on a small scale (Radivojac et al., 2003), this

large-scale analysis showed that not only were certain amino

acids more likely to be found on either side of the transition,

but also that these frequencies are markedly higher than those

observed for the middle of long regions of order or disorder.

Furthermore, the distributions of amino acids for order-to-

disorder transitions virtually mirror those of disorder-to-order

transitions, suggesting that these effects are bidirectional in

the primary sequence. We are attempting to exploit such

findings in new disorder-prediction algorithms.

3.4. Conclusions

For structural proteomics (and therefore for SPINE) the

single most important application of disorder prediction is

construct design for proteins of biomedical importance. This is

an extremely demanding application in that many of these

proteins are partially ordered (the most difficult disorder to

predict) and that the boundaries between order and disorder

regions need to be defined very accurately in order to be

useful for defining stable soluble crystallizable constructs.
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Figure 2
Amino-acid frequencies either side of order-state transition boundaries
based on the analysis of the PDB (Table 2). Frequencies based (a) on
1709 order-to-disorder transitions and (b) on 1918 disorder-to-order
transitions. A window of five amino acids on either side of the transition
boundary was considered and amino-acid frequencies were analyzed with
WEBLOGO (Crooks et al., 2004). The height of each stack of single-letter
amino-acid codes is proportional to the information content of (i.e.
significance of the amino acid at) each residue position, while the height
of each individual amino-acid code within a stack is proportional to its
relative frequency at the position (see Crooks et al., 2004 for more
details). The colouring reflects the classes of amino acids (i.e. charged,
aromatic etc.). The order-state transition boundary is indicated by the
central gap in each figure.



Many simple-to-use methods for the prediction of protein

disorder are now available on the internet. Whilst different

methods have different strengths and therefore different

programs may be better suited to particular applications, the

best tools appear to be about 50% better than guesswork.

FoldIndex calculates the physical properties of all amino acids

in a sequence to determine an overall probability of order or

disorder. Many methods parameterize the physical properties

of amino acids to train learning algorithms such as neural

networks, while RONN uses a neural network in conjunction

with non-gapped sequence alignment against prototype

sequences to avoid having to define relevant physical prop-

erties explicitly.

As these methods have developed and more disordered

sequences have been analyzed, it has become apparent that

disorder displays many subtleties. The distribution of amino

acids throughout disordered regions depends both on the

length of the disordered region and on the proximity to an

ordered region. This holds promise for a new generation of

disorder predictors which will be more reliable and, in parti-

cular, better at defining the precise ends of disordered regions.

Work on such improved algorithms is now under way.
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