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A number of inconsistencies are apparent in the recent research paper by

Jaskolski et al. [(2007), Acta Cryst. D63, 611–620] concerning their recommen-

dations for the values of the magnitude and resolution-dependence of the root-

mean-square deviations (RMSDs) of bond lengths and angles from their

restrained ideal values in macromolecular refinement, as well as their

suggestions for the use of variable standard uncertainties dependent on atomic

displacement parameters (ADPs) and occupancies. Whilst many of the

comments and suggestions in the paper regarding updates for the ideal

geometry values proposed by Engh and Huber are entirely reasonable and

supported by the experimental evidence, the recommendations concerning the

optimal values of RMSDs appear to be in conflict with previous experimental

and theoretical work in this area [Tickle et al. (1998), Acta Cryst. D54, 243–252]

and indeed appear to be based on a misunderstanding of the distinction between

RMSD and standard uncertainty (SU). In contrast, it is proposed here that the

optimal values of all desired weighting parameters, in particular the weighting

parameters for the ADP differences and for the diffraction terms, be estimated

by the purely objective procedure of maximizing the experiment-based log(free

likelihood). In principle, this allows all weighting parameters that are not known

accurately a priori to be scaled globally, relative to those that are known

accurately, for an optimal refinement. The RMS Z score (RMSZ) is

recommended as a more satisfactory statistic than the RMSD to assess the

extent to which the geometry deviates from the ideal values and a theoretical

rationale for the results obtained is presented in which the optimal RMSZ is

identified as the calculated versus true Z-score correlation coefficient, the latter

being a monotonic function of the resolution cutoff of the data. Regarding the

proposal to use variable standard uncertainties, it is suggested that any

departure from the current practice of using fixed weights for geometric

restraints based on experimental values of standard uncertainties be subject to

the same experiment-based validation.

1. Introduction

The three main recommendations of Jaskolski et al. (2007) can be

summarized as follows: (i) some geometrical target values, as

originally obtained by statistical analysis of small-molecule structures

(Engh & Huber, 1991, 2001) extracted from the Cambridge Structural

Database (CSD), should be adjusted (C—N bond length and

N—C�—C angle) or the weight reduced (peptide ! torsion angle);

(ii) for many refinements at medium to high resolution the deviations

from these target values are much too low because the default overall

weighting of the X-ray diffraction data in some macromolecular

refinement software in current use has been set too low and conse-

quently should be substantially increased; and (iii) the individual

geometry weights should be varied as a function of the atomic

occupancies and atomic displacement parameters (ADPs), in order

that the deviations from ideality for the poorly defined flexible

regions are reduced whilst those for the well defined regions are

allowed to increase.

Whilst it is recognized that there is clear experimental evidence for

recommendation (i) above, the authors’ findings in respect of their
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other two main recommendations are disputed. Their suggestions in

respect of (ii) above appear to conflict with earlier experimental

results and theoretical considerations (Tickle et al., 1998a) and also

appear to be self-contradictory. A number of quotes from the paper

that are relevant to the argument follow:

This balance is often adjusted not quite correctly by giving too much

weight to stereochemical data and in effect leading to regularization

rather than optimization of the structure. This is illustrated by unusually

small reported r.m.s.d. values, sometimes several times lower than the

recommended target values.

The effect is especially pronounced at 2 Å, where nearly 30% of the

structures are reported with r.m.s. deviations from idealized bond lengths

within 0.006 Å.

Tight restraints are necessary at low resolution . . . With increasing

resolution, the weights should be progressively less tight for well defined

parts of the model. . . . As a practical guideline, we recommend to aim at

an r.m.s.d. for bonds of 0.020 Å for models at 1.5 Å or lower resolution.

At very high resolution . . . it is normal in such situations for the model

bond distances to deviate from the idealized targets by 0.02–0.03 Å.

Hence, on one hand the authors suggest that at low resolution

‘tight restraints’ are necessary (no numerical values for the target

RMSDs are suggested in this situation) becoming ‘progressively less

tight’ with increasing resolution, but then in apparent contradiction

recommend a target RMSD for bond lengths of 0.02 Å independent

of resolution cutoff, except at very high resolution (1.5 Å or higher)

where the target RMSD may exceed 0.02 Å, up to around 0.03 Å.

Although the authors do point out that ‘the overall level of the

restraint weights can be validated by the use of the free R factor’, they

fail to perform any such validation of their recommended RMSD

values. Minimization of cross-validation statistics such as Rfree is

currently the only completely objective practical method for

obtaining reliable estimates of the restraint and X-ray weights

(Brünger, 1992, 1993, 1997; Kleywegt & Brünger, 1996) that is

implemented in currently available macromolecular refinement

programs; importantly, it has also been demonstrated that this

method minimizes the mean phase error and hence minimizes the

standard uncertainty (SU) of the electron density. Lebedev et al.

(2003) have proposed an alternative method based on maximum-

likelihood estimation that uses all of the data to optimize the weights,

rather than the 5–10% normally used for cross-validation, and thus

has the potential to achieve much greater precision by reducing the

sampling errors; however, their algorithm has not yet been imple-

mented within the framework of currently available refinement

software.

However, there are sound theoretical arguments (Tickle et al.,

1998b) as to why Rfree is not the optimal statistic for this purpose and

it is proposed that the log(free likelihood) (LLfree) be used in its

place. The essence of the argument is that it can be proved that in the

case of least-squares refinement the optimal weights are those that

are based on accurate estimates of the SUs of the restraints and X-ray

observations. In the case that the SUs are not normally known

accurately a priori, such as for the ADP restraints and the X-ray

observations, it was proved that optimality is achieved when the free

least-squares residual [the counterpart of the negative log(free like-

lihood) in maximum-likelihood refinement] is minimized with respect

to the unknown weighting parameters, provided that the refinement

with respect to the structure parameters has converged. Although

these results are strictly applicable only to least-squares refinement,

they are nevertheless still relevant to maximum-likelihood refine-

ment because Murshudov et al. (1997) had previously shown that on

convergence of structure refinement of a complete and as far as

possible correct model when the phase errors are at a minimum,

likelihood-based refinement tends asymptotically towards least-

squares refinement.

It can be shown that in theory Rfree is also minimized by the

optimal choice of weights but only if some fairly drastic assumptions

are made (e.g. assuming that all diffraction data have the same

uncertainty), otherwise it is clear that Rfree is only approximately

minimized by the optimal choice of weights. No-one has ever

contemplated using Rwork as an optimization target function (or as a

component of one) and there are very good reasons for this: unlike

the least-squares or the log-likelihood functions, the absolute value

function |Fobs� Fcalc| has discontinuous gradients which preclude the

use of any standard optimization algorithm such as conjugate

gradient that relies on the gradient of the function being optimized

having an asymptotic limit of zero as a criterion for convergence; in

any case, no existing theory requires that Rwork be an optimization

target. For exactly the same reasons crystallographers should not be

contemplating the use of Rfree as a target function!

One further practical problem with the use of Rfree as a validation

statistic is that unlike LLfree it is not uniquely defined. Some

programs, e.g. REFMAC (Murshudov et al., 1997), define it in the

‘traditional’ manner based on the calculated structure amplitude Fcalc,

Rfree ¼
P

h2test set

jFobsðhÞ � FcalcðhÞj=
P

h2test set

FobsðhÞ: ð1Þ

Other programs, e.g. BUSTER (Blanc et al., 2004), use a version of (1)

that is arguably more appropriate in the context of maximum-

likelihood methodology based on the expected value of the structure

amplitude Fexpect (Pannu & Read, 1996),

R0free ¼
P

h2test set

jFobsðhÞ � FexpectðhÞj=
P

h2test set

FobsðhÞ ð2Þ

The aim of this commentary on the paper by Jaskolski et al. (2007) is

firstly to show how optimal weighting parameters and target RMSD

values can be obtained by a completely objective optimization

procedure by using the log(free likelihood) as a cross-validation

statistic for four test structures with a range of high-resolution cutoffs

and secondly to rationalize the values obtained by means of rigorous

statistics-based theoretical arguments.

2. Methods

The method used for establishing optimal overall restraint weights

and the overall X-ray weight by means of cross-validation is

described in detail in this section. The method has been tested on four

test data sets spanning high-resolution cutoffs from 2.55 to 1.33 Å: (i)

human �-secretase (hydroxyethylamine derivative inhibitor complex;

PDB code 1w51; Patel et al., 2004), (ii) maize �-glucosidase mutant

(dhurrin complex; PDB code 1e55; Czjzek et al., 2000), (iii) human

AMPK �1 (R299Q mutant and AMP complex; PDB code 2uv6; Day

et al., 2007) and (iv) human AMPK �1 (AMP complex; PDB code

2uv4; Day et al., 2007).

The macromolecular restrained maximum-likelihood refinement

program REFMAC (a locally modified version of the distributed

version 5.3.0040; Murshudov et al., 1997) was used throughout for the

test refinements. The negative logarithm of the posterior probability

function of the structure parameters, that is the function whose global

minimum is sought by restrained refinement in REFMAC, can be

written in the form
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M ¼
P

bonds

ðdcalc � didealÞ
2=�2

d þ
P

angles

ð�calc � �idealÞ
2=�2

�

þ
P

torsions

ð�calc � �idealÞ
2=�2

� þ
P

planar atoms

�2
plane=�

2
plane

þ WBiso

P

bonded IDPs

�2
Biso=�

2
Biso þWX-ray

P

reflections

� logfL½FobsðhÞ�g

þ optional terms: ð3Þ

Here, the standard uncertainties (SUs) �d and �� for the bond-length

(dcalc) and angle (�calc) terms are equated to the sample standard

deviations of the corresponding ideal bond length (dideal) or angle

(�ideal) extracted from the CSD (Engh & Huber, 1991, 2001); for the

calculated torsion angles (�calc), the corresponding ideal values �ideal

(taking the angular periodicity into account) and their SUs �� are

derived from an analysis of torsion angles in the PDB (MacArthur &

Thornton, 1996); for the plane deviations (�plane) the SUs �plane are

set to a suitable uniform arbitrary value (0.02 Å); finally, L[Fobs(h)] is

the likelihood function of the observed amplitudes. Note that

‘maximum-likelihood refinement’ is actually a misnomer in this

context since it is the posterior probability exp(�M) that is being

maximized not the likelihood L.

For this test, the SUs �Biso for the bonded atomic isotropic

displacement parameter (IDP) differences (�Biso) were set to 5 Å2

for main-chain bonded atoms and 7 Å2 for side chains and ligands;

the REFMAC source code was modified so that no restraints were

applied to IDP differences related by bond angles on the grounds that

these are already sufficiently restrained by (and in any case are not

independent of) the bonded IDP difference restraints. The form of

the �Biso term in (3) implies that the errors in the IDP differences are

normally distributed with constant uncertainty; however, it is clear

that this cannot be a realistic error model in this case. For example, an

error of 10 Å2 in a Biso of 10 Å2 would clearly be much more

significant in terms of the contributions to the structure factors than

the same error in a Biso of 100 Å2; also, deviations in Biso do not have

a symmetrical effect as would be implied by the normal error

distribution, i.e. negative deviations have a greater effect than posi-

tive ones. This implies that the uncertainty in Biso should be

proportional to some low power of Biso (e.g. between 1 and 2); this

value could in principle be determined (Tickle, unpublished work) by

the same method of optimizing LLfree as is proposed here for

determining the other unknown weighting parameters. Nevertheless,

a normal error model for the �Biso term was assumed for the purpose

of the tests because it is the only one available in the current version

of the REFMAC program. Thus, the overall weighting parameters

WBiso and WX-ray are the only two unknowns to be optimized with

respect to LLfree.

The REFMAC source code was also modified to allow input of a

resolution-independent X-ray weight related to the usual ‘matrix

weight’,

WX-ray ¼ WMatrixTrðHRestraintsÞ=TrðHX-rayÞ; ð4Þ

where Tr(H) is the trace of a Hessian matrix of second derivatives,

and also to print out a table of�log(free likelihood) values (�LLfree)

and RMS Z scores (RMSZ) for bond-length and angle restraints.

For each of the four PDB structures used for the test, WX-ray was

fixed at a suitable approximate initial value (2.5) and 50 iterations of

standard restrained refinement using default values for the control

parameters (except where previously otherwise stated) for each of a

range of values of WBiso were performed in order to ensure conver-

gence; WBiso was then fixed at its optimum value obtained at the

maximum of LLfree. Further runs of 50 iterations were then

performed, this time varying WX-ray, and the final optimum value of

WX-ray was determined at the new maximum of LLfree. The optimi-

zations of WBiso and WX-ray were each repeated using the updated

values each time in order to check for convergence of the weighting

parameter optimization. Additional runs for a 14� 14 matrix of input

value pairs of WBiso and WX-ray centred near the optimum pair were

performed for one of the test data sets (2uv4) in order to obtain an

indication of the local bivariate dependence of Rfree and �LLfree on

WBiso and WX-ray.

3. Results

Fig. 1 shows, for the refinement of 1w51 (2.55 Å resolution data), Rfree

and �LLfree plotted against WBiso. Fig. 2 shows, for the same data,

Rfree, �LLfree, RMSDbonds and RMSZbonds plotted against WX-ray.

Figs. 3 and 4 show the same plots for 2uv4 (1.33 Å resolution data).

The ‘noisy’ appearance of these plots is likely to be a consequence of

rounding errors in the calculation of geometry and structure-factor

derivatives and also in the conjugate-gradient optimization algorithm

itself. In Figs. 2 and 4 it appears that the minimum of Rfree occurs at a
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Figure 1
Plot of Rfree (tic labels and line coloured blue) and �LLfree (red) at convergence of
refinement versus overall isotropic displacement parameter (IDP) weighting
parameter WBiso for the �-secretase structure (PDB code 1w51) with WX-ray fixed at
2.5.

Figure 2
Plot of Rfree (tic labels and line coloured blue), �LLfree (red), RMSDbonds (green)
and RMSZbonds (purple) at convergence of refinement versus overall reflection
weighting parameter WX-ray for the �-secretase structure (PDB code 1w51) with
WBiso fixed at its optimum value.



somewhat lower value of WX-ray than that of �LLfree; however, this

effect is not seen consistently for all the test cases.

Table 1 shows a summary of the results for all four structures used

in this test. For each structure, the values found after repetition of the

optimizations of WBiso and WX-ray were both very close to the values

found after the initial optimization. Table 2 (see supplementary

material1) shows relative values of Rfree and �LLfree obtained for a

14 � 14 matrix of input value pairs of WBiso

and WX-ray centred near the pair giving the

minimum �LLfree for the 2uv4 data; Fig. 5

shows the same data as a contoured map of

Rfree and �LLfree, demonstrating that there

is no significant correlation between WBiso

and WX-ray. Taken together, these observa-

tions indicate that one iteration of the whole

process (i.e. two sets of refinements to locate

the optimal values of WBiso and WX-ray,

respectively) should normally be sufficient.

Also in Table 1, it can be seen that the range of values of

RMSDbonds determined by this procedure is between 0.0066 Å for the

2.55 Å 1w51 structure and 0.0114 Å for the 1.33 Å 2uv4 structure, in

line with the earlier results of Tickle et al. (1998a). These values are

also much more in line with those usually obtained using the

recommended weighting scheme in the CNS program (Brünger et al.,

1998) and are significantly lower than the target values recommended

by Jaskolski et al. (2007). This is of course not surprising since CNS

uses cross-validation (though only by minimization of Rfree with

respect to WX-ray) to determine the X-ray weight. It was also noted

that in all cases the target RMSD of 0.02 Å suggested by the latter

corresponded to significantly higher than optimal values of both Rfree

and�LLfree, thus potentially giving a lower phase accuracy and hence

poorer map quality than the optimum. The optimal values of WBiso

and WX-ray are no doubt dependent both on the resolution cutoffs and

on the overall isotropic displacement parameter (shown in Table 1;

see Tickle et al., 1998a, for details of calculation of the latter). Table 1

also shows that the optimized value of WBiso was exactly 1.0 for 1w51,

so in this case by chance the initial choices of SUs for bonded �Biso

were already optimal; however, in general this is unlikely to be true,

hence it is important to optimize WBiso before attempting to optimize

WX-ray, as is shown for the other three test cases.

The importance of optimizing WBiso was demonstrated by fixing the

IDP restraint weighting parameters at their default values for the

REFMAC program, i.e. WBiso = 1, �Biso = 1.5 and 3 Å2 for main-chain

and side-chain/ligand bonded atoms, respectively, and �Biso = 2 and

4.5 Å2 similarly for angle-related atoms: many users of the software

perhaps do not appreciate that these default values are totally arbi-

trary and certainly do not represent the optimal values for the

majority of refinements. With the IDP restraint weights thus fixed, the

WX-ray optimization runs with the 2uv4 data were repeated. The

results are shown in Fig. 6: apparent optimum values for the RMSDs

and RMSZs are obtained that are wildly different from the true

optima found previously; in this example, it can be seen that the new

minimum in LLfree occurs at WX-ray = 7.1 (previously at 1.4) with

RMSDbonds = 0.0298 (was 0.0114) and RMSZbonds = 1.25 (was 0.47).

Also, it can be seen that the minimum found for Rfree is at an even

greater value of WX-ray (around 15) with completely unrealistic

corresponding values of RMSDbonds and RMSZbonds.

One further notable observation is that if one extrapolates the

RMSZbonds plot (Figs. 2 and 4) linearly to zero WX-ray, the intercept

value of RMSZbonds is not zero as one might expect from Bayes’

theorem; rather, it always appears to attain a limiting minimum value

of about 0.2 (corresponding in the test cases used to RMSDbonds ’

0.004 Å); similarly RMSZangles attains a minimum value of about 0.25

(RMSDangles ’ 0.6�). A likely explanation is that rounding errors in

the calculation of geometry derivatives or high parameter correla-

tions prevent the conjugate-gradient optimization procedure from

converging to the true minimum; a Newton optimization procedure

using the full Hessian matrix with derivatives computed in double

precision (Tickle et al., 1998a) might help to resolve this problem.
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Table 1
Summary of refinement statistics for the four test structures.

PDB
code

Resolution
cutoff (Å)

Mean
Biso (Å2)

Final
WBiso

Final
WX-ray

Optimal
RMSDbonds (Å)

Optimal
RMSZbonds

Optimal
RMSDangles (�)

Optimal
RMSZangles

1w51 2.55 42.4 1.0 2.55 0.0066 0.29 1.01 0.44
1e55 2.00 24.7 1.8 2.50 0.0084 0.35 1.15 0.52
2uv6 2.00 22.5 1.3 1.31 0.0067 0.28 1.08 0.46
2uv4 1.33 13.6 0.17 1.40 0.0114 0.47 1.30 0.62

Figure 3
Plot of Rfree (tic labels and line coloured blue) and �LLfree (red) at convergence of
refinement versus overall IDP weighting parameter WBiso for the AMPK structure
(PDB code 2uv4) with WX-ray fixed at 2.5.

Figure 4
Plot of Rfree (tic labels and line coloured blue), �LLfree (red), RMSDbonds (green)
and RMSZbonds (purple) at convergence of refinement versus overall reflection
weighting parameter WX-ray for the AMPK structure (PDB code 2uv4) with WBiso

fixed at its optimum value.

1 Supplementary material has been deposited in the IUCr electronic archive
(Reference: GX5119). Services for accessing this material are described at the
back of the journal.



This is supported by an observation that the limiting value obtained is

dependent on the refinement software used even though the sets of

ideal values used are identical: derivatives computed at higher

precision should improve the convergence properties. It is also

possible though unlikely that internal inconsistencies in the geometric

restraints may contribute to the nonzero RMSDs; for example, the set

of restraints for the bond angles at an atom or in a ring may not

exactly obey the rules of three-dimensional geometry.

4. Discussion

The recommendations of Jaskolski et al. (2007) concerning relative

weighting of diffraction and geometric terms appear to have arisen

from a failure to make the important distinction between on the one

hand the standard uncertainty (SU, �) of an individual geometric

restraint (or its RMS value), which is related to the weight of the

restraint (weight = 1/�2), and on the other the root-mean-square

deviation (RMSD) of the values calculated from the parameters of

the refined atomic model for a set of geometric restraints from their

respective ideal values. The sole rationale for their recommendation

of a target RMSD for bond lengths of around 0.02 Å (apparently

independent of resolution cutoff, except at very high resolution, i.e.

1.5 Å or higher, where they suggest that the target RMSD may be

increased to around 0.03 Å) is that this is the RMS value of the SUs,

taken over the same set of ideal values for which the RMSDs have

been calculated. They identify RMSDs several times smaller than the

‘recommended library values’ (i.e. presumably referring to the RMS

values of the SUs) as a problem to be corrected. In reality no such

problem exists because the RMS SU and the RMSD are in general

only very loosely related quantities: the RMS SU is only the

approximate upper limit of the RMSD, the lower limit being zero.

The results presented here show that the apparently low values for

the bond-length RMSD obtained by some refinement programs,

particularly those that make optimal use of cross-validation statistics,

are actually much closer to the optimal values based on an objective

analysis of the data, although the authors’ conclusion that there is

much room for improvement of refinement software in this area is

clearly apposite.

In the fitting of parameters to a functional model by maximization

of the posterior probability (3), it is well known (Cruickshank, 1999,

2001) that the overall mean-square deviation is always a biased

(under-) estimate of the overall mean-square SU value by the factor

Ndof/Nobs, where Nobs is the total number of observations including

restraints and Ndof is the number of degrees of freedom (= Nobs �

Nvar, where Nvar is the number of fitted variable parameters). In the

limit when Ndof tends to zero (i.e. when Nobs becomes less than Nvar in

the limiting case where there is no diffraction data), so will the

RMSD, whereas of course the SUs remain constant at the values fixed

a priori, independent of resolution cutoff. Furthermore, Tickle et al.

(1998a) gave a formal proof that the mean-square deviation of any

individual component of the posterior probability function [e.g. the

bond-length restraint term in (3)] must also underestimate the mean-

square SU value of that component by a factor that depends on the

inverse of the Hessian (second derivative) matrix; however, a quan-

titative estimate of the magnitude of the effect requires calculation of

the full Hessian matrix (i.e. including all components of the posterior

probability function) and this is not yet a routine operation in

macromolecular refinement.

The RMSD is not in any case the most appropriate statistic to use

in this context, simply because as already indicated the SU values

vary significantly according to the bond type so that deviations can

only be sensibly compared or summed if divided first by the corre-

sponding SU. More formally, the prior probability is a function of the

ratio (deviation from ideal value)/SU (also known as ‘Z score’ or

‘normal score’), so the appropriate statistic to use is the root-mean-

square Z score (RMSZ). This will have asymptotic values of zero (low

resolution) and unity (high resolution) and will naturally vary

monotonically between these limits as a function of resolution. Use of

RMSZ in place of RMSD enables a meaningful comparison of

statistics for structures containing different proportions of bond and

angle types. Hooft et al. (1996) were the first to implement RMSZ for

this purpose in their WHATCHECK structure-validation software;

unfortunately, it is used there in a completely inappropriate manner

by generating warning or error messages if an RMSZ value falls

significantly below unity (WHATCHECK does claim that this is only

a problem at high resolution).
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Figure 5
Contoured maps of Rfree (blue contours) and �LLfree (red) showing bivariate
dependence on WBiso and WX-ray for the AMPK structure (PDB code 2uv4). For
Rfree, the contour levels are 0.00010, 0.00016, 0.00025, 0.00040, 0.00063, 0.0010 and
0.0016 above the global minimum value (0.2071, marked with a blue cross at
WBiso = 0.29, WX-ray = 0.95); for �LLfree the contour levels are 0.10, 0.16, 0.25, 0.40,
0.63, 1.0, 1.6, 2.5, 4.0, 6.3 and 10 above the global minimum value (7421.9, marked
with a red cross at WBiso = 0.17, WX-ray = 1.40).

Figure 6
Plot of Rfree (tic labels and line coloured blue), �LLfree (red), RMSDbonds (green)
and RMSZbonds (purple) at convergence of refinement versus overall reflection
weighting parameter WX-ray for the AMPK structure (PDB code 2uv4), with all the
IDP weighting parameters fixed at the REFMAC default values.



Another way of looking at the question of optimal RMSD or

RMSZ values is in terms of Bayes’ theorem, upon which of course

restrained refinement crucially depends for its justification

(Bricogne, 1997; Murshudov et al., 1997; Blanc et al., 2004). The

restraints define the prior probabilities of the derived geometrical

parameters (bonds, angles etc.); hence, at low resolution where the

diffraction terms cease to significantly influence the local geometry

the latter will be determined almost exclusively by the restraints and

thus the optimal RMSD or RMSZ values should tend exactly

to zero.

At low resolution, where the observation-to-parameter ratio

barely exceeds unity (the count of ‘observations’ includes both

restraints and X-ray data), the diffraction terms have little or no

influence on the geometry, so in the absence of restraints the devia-

tions of the calculated geometry values from the ideal ones would be

large and essentially random. The goal of refinement must always be

to obtain the most accurate possible model of the structure; this is a

model with the minimum mean-square error (MSE), i.e. the minimum

mean-square Z score of the calculated geometry values relative to the

true (but unknowable) geometry values. In practice, this is achieved

by maximizing both the posterior probability and the free likelihood:

the first with respect to the parameters that determine the structure

factors and the second with respect to the parameters defining

various weights that determine the relative magnitudes of the

summed contributions to the posterior probability function shown in

(3) and which are not known with sufficient accuracy a priori, such as

weights for ADP differences and X-ray terms.

Some insight can be gained by considering the relationship of

the calculable (calculated � ideal) deviations to the hypothetical

(true � ideal) deviations. If the (calculated � ideal) deviations

are completely random then there will be no correlation with the

(true � ideal) deviations. One cannot assume in general that the

(calculated � ideal) deviations have even the same signs as the (true

� ideal) deviations, let alone the same magnitudes. This is in essence

the simplistic assumption that Jaskolski et al. (2007) are making when

they equate RMSD with RMS SU. In the situation of zero correlation

of the two sets of deviations, it can be shown (see Appendix A) that

the desired minimum mean-square (calculated � true) Z score is

obtained when the (calculated � ideal) Z scores are also all exactly

zero, i.e. when RMSD and RMSZ are exactly zero.

Furthermore, it can be shown (Appendix A) in general that the

optimal (calculated � ideal) RMSZ value of a given set of restraints

should equal the correlation coefficient of the (calculated � ideal)

and (true � ideal) Z scores. Of course, the value of this correlation

coefficient can never actually be determined since it depends on the

unknowable true geometry values and so it has no practical worth;

however, the concept is useful because it helps to rationalize the

experimental results obtained above. Hence, at very high resolution

in the theoretical limit of infinite observation-to-parameter ratio, the

diffraction terms will dominate and the deviations from the ideal

values will accurately reflect the true deviations, so the correlation

coefficient will be near its maximum value of 1 and the X-ray weight

should be set so that the (calculated� ideal) RMSZ value should also

be near 1. At intermediate resolutions the correlation between the

(calculated � ideal) and (true � ideal) deviations will be less than

perfect, i.e. some fraction of the calculated values will be on the

wrong side of their corresponding ideal value relative to their true

value, and so to minimize the effect of these errors the RMSZ value

must be adjusted accordingly by an appropriate choice of weights.

The correlation coefficient measures, on average, the fraction of the

SU that equals the optimal value of the absolute (calculated � ideal)

deviation.

In practice, the main reason for collecting data to very high reso-

lution is to be able to fit more variable parameters (e.g. multipole and

anharmonic displacement parameterizations etc.) in order to describe

the structure more accurately; hence, it is likely that in practice even

at very high resolution the optimal (calculated� ideal) RMSZ values

will still be somewhat less than the theoretical asymptotic value of

unity and therefore the optimal RMSD values will correspondingly

be less than the asymptotic value given approximately by the RMS

SU. One cannot predict what the optimal RMSD value at a given

resolution will be without knowing something about the observation-

to-parameter ratio for the particular parameterization in use; of

course there may well be an optimal parameterization defined by the

maximum of the log(free likelihood).

There are some additional effects that Jaskolski et al. (2007) have

not taken into account in their analysis: the SUs of the ideal values

obtained from the CSD data are just the sample standard deviations

(Engh & Huber, 1991, 2001). As they point out, this will include real

variations arising from the chemical environment and from random

sampling errors in cases where only a limited number of samples of a

given bond or bond-angle type are available. However, there will also

be contributions arising from the experimental errors of the diffrac-

tion measurements obtained from the crystals of the small molecules

(Evans, 2007) and also from the neglect of libration corrections for

the geometry calculated from the CSD coordinates. For bond lengths

in small-molecule structures the experimental SUs are typically in the

range 0.005–0.01 Å, i.e. somewhat smaller than the range of sample

standard deviations (0.01–0.06 Å); the contribution to the uncertainty

from neglect of libration corrections is impossible to quantify, if only

because the CSD does not hold the atomic displacement parameters

needed to compute these corrections. In most cases the experimental

error will probably be a relatively small contribution, but in some

particular cases it could be significant. The overall effect will be to

further increase the random error and thus reduce the correlation of

(calculated � ideal) and (true � ideal) Z scores; hence, the theor-

etical result proved in Appendix A allows us to conclude that the

effect of this will be to lead to lower optimal RMSZs or RMSDs than

would otherwise be expected.

The third main proposal of Jaskolski et al. (2007) concerns the use

of variable restraint weights dependent on the ADP values and the

occupancies, the intention being on the one hand to reduce the large

deviations from ideality often observed in mobile regions and on the

other to allow increased deviations for the well defined regions of the

structure. In the former case the problem is that the large deviations

are in many cases caused by libration; the bond-length deviations

arise because X-ray diffraction always determines the time- and

lattice-averaged structure, for which the geometry may differ signif-

icantly from the instantaneous structure, so that in these cases larger

deviations than normal from ideal geometry are entirely to be

expected. Hence, restraining them tightly to the ideal values would be

inconsistent with the diffraction data; however, the effect is only

likely to be significant for the more flexible parts of the structure such

as loops and side chains. The formally correct procedure would be to

use the libration-corrected calculated geometry values in (3).

However, this is very difficult to deal with in practice because

correction for this systematic bias in the bond lengths can only be

reliably (and then only partially) performed in the case of the

completely correlated curvilinear atomic motion (Busing & Levy,

1964) of large pseudo-rigid groups such as secondary-structure

elements (e.g. helices) and whole domains and also, if high-resolution

data are available, for the smaller rigid planar groups in side chains of

e.g. His, Phe, Tyr and Trp. The correction for libration in the case of

extended pseudo-rigid groups is generally not found to be significant
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because the correction factor is proportional to the square of the

amplitude of libration, which for large groups of atoms tends to be

severely limited by nonbonded contacts, the lateral displacement of

an atom being equal to the product of the libration amplitude and the

distance of the atom from the centre of motion.

Hence, correction for libration of the geometry of small flexible

groups is generally not feasible even for small molecules, let alone

macromolecules, and so the next best alternative is to make an

allowance for the expected increased uncertainty of the observed

geometry values relative to their ideal values. The effect is somewhat

ameliorated because the ideal geometry values obtained from the

CSD coordinates are not corrected for libration either (it is very

unfortunate that the ADP values that would be needed to repeat

these corrections are not held in the CSD); nevertheless, because

typical values of ADPs and hence of libration amplitudes are

generally much higher for macromolecules than for small molecules,

one should not be tempted to conclude that the effects cancel! The

implication therefore is that the SUs of bond lengths and angles

should if anything be increased to reflect this greater uncertainty in

the ideal geometry values, thus requiring that the individual geometry

restraint weights in the more flexible regions be reduced and thus

contradicting the suggestion by Jaskolski et al. (2007) to increase the

geometry restraint weights relatively in the flexible regions. The

authors do point out that where the geometry is poorly determined by

the X-ray data owing to a low contribution to the scattering at high

resolution the restraint terms will dominate and the refined geometry

will tend to reproduce the ideal geometry both in value and in SU;

however, in such cases the standard geometry weights will be suffi-

cient to maintain the geometry and there is no reason to increase

their values above the defaults.

It may be feasible to deal with the effects of libration in a

completely objective manner, as has been demonstrated above for

the other weighting parameters, by parameterizing the geometry

weights as a function of the ADPs of the atoms involved and then

determining the weighting parameters experimentally, i.e. without

making arbitrary assumptions about their values, although an ad hoc

functional form for the parameterization would still have to be

postulated.

Jaskolski et al. (2007) also argue for reduced restraint weights in

the well determined regions on the grounds that high restraint

weights may bias some geometry values that truly differ from the

ideal values owing to an unusual chemical environment. The problem

with this suggestion is that clearly one does not know a priori which

are the normal geometries and which are the abnormal ones and so

the weights have to be reduced equally for all; however, the theory

presented above shows that reducing the overall level of restraint

weights in well determined regions is performed at the cost of

introducing unwanted random errors into the vast majority of normal

geometry values in these regions, since for these cases the optimal

weights are still those that are based on the standard SU values. In

any case, truly unusual geometries will stand out best as outliers if the

random errors in the majority of normal geometry values are kept to

a minimum: increasing the overall random error can only serve to

reduce the signal-to-noise ratio for the aberrant geometry. This

requires that the standard weights are used throughout.

APPENDIX A
The aim is to show that the optimal choices for the (calculated �

ideal) RMSZ (and hence RMSD) values are equal to the respective

correlation coefficients of the (calculated � ideal) and (true � ideal)

Z scores for the ‘most correct’ model of the structure, i.e. one that has

the minimum mean-square normalized error of the geometry values.

For simplicity, all the calculated, ideal and true geometry values

(e.g. bond length or angle) are first normalized, i.e. divided by the SU

of the corresponding ideal value (e.g. those obtained as the sample

standard deviations of the values extracted from the CSD). Cruick-

shank (1999, 2001) and Parisini et al. (1999) showed that the SU of the

calculated value will always be less than but close to that of the ideal

value, except for very high resolution data, where the effect of the

data is reduce the SU significantly below that of the ideal value, so we

can assume that in most cases the SUs of the calculated and ideal

geometry values will be approximately equal.

Let g be a normalized calculated geometry value and let gideal and

gtrue be the corresponding normalized ideal and true geometry values,

the former being a known constant and the latter constant but

unknowable. Then let � be the desired (calculated � ideal) RMSZ

value

� ¼ ½hðg� gidealÞ
2
i�

1=2; ð5Þ

where h . . . i implies the arithmetic mean throughout.

The maximum absolute calculated deviation |g � gideal| will occur

when � = 1; let the value of g in this situation be g0,

½hðg0 � gidealÞ
2
i�

1=2
¼ 1: ð6Þ

Therefore, � is the scale factor which scales the maximum values (in

absolute terms) of the calculated deviations down to the actual values

of the calculated deviations,

ðg� gidealÞ ¼ �ðg
0
� gidealÞ ð7Þ

or

g ¼ gideal þ �ðg
0
� gidealÞ: ð8Þ

The assumption here is that terms higher than first order in � in the

Taylor series expansion may be ignored.

The mean-square error MSE is the mean-square deviation of the

calculated geometry value from the true value,

MSE ¼ hðg� gtrueÞ
2
i

¼ h½gideal þ �ðg
0
� gidealÞ � gtrue�

2
i

¼ hðgideal � gtrueÞ
2
i þ 2�hðgideal � gtrueÞðg

0
� gidealÞi

þ �2
hðg0 � gidealÞ

2
i

¼ hðgtrue � gidealÞ
2
i � 2��þ �2; ð9Þ

where (9) is simplified by substitution first from (8) and then from (6)

and where � is the correlation coefficient of the (calculated � ideal)

and (true � ideal) Z scores given by

� ¼ hðg0 � gidealÞðgtrue � gidealÞi: ð10Þ

We wish to find the value of � that minimizes the MSE given by (9), so

differentiating this with respect to � and equating to zero we obtain

the very simple result

� ¼ �; ð11Þ

i.e. the optimal value of the RMSZ � is just the correlation coefficient

�. This means that when there is no correlation between the (calcu-

lated � ideal) and (true � ideal) Z scores in the limiting case of no

X-ray data then � = � = 0 and when there is complete correlation in

the limiting case of infinite X-ray data then � = � = 1. At intermediate

resolutions � will lie somewhere between 0 and 1 and the optimal

RMSZ (and hence the optimal RMSD) value will be determined

accordingly.
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We have recently published a paper in this journal aimed at

suggesting what values of root-mean-square deviations (r.m.s.d.s) of

bond lengths and angles should be expected in well refined protein

structures (Jaskolski et al., 2007). It seems that some of our recom-

mendations, which were in our opinion straightforward and non-

controversial, have nevertheless generated considerable discussion

(Stec, 2007; Tickle, 2007). Whereas both of these papers criticize

some of the recommendations presented by us, the conclusions

reached in them are quite contradictory, as will be pointed out below.

We humbly admit that our recommendations appear to be in conflict

with some previous experimental and theoretical work in this area,

especially that of Tickle and coworkers (Tickle et al., 1998), and that

they may indeed lack very strict ‘either experimental or theoretical

basis’ (Tickle, 2007). Our suggestions were based on quite straight-

forward analysis of the restraint libraries of Engh & Huber (1991,

2001) as well as of the structures deposited in the Protein Data Bank

(PDB; Berman et al., 2000) and Cambridge Structural Database

(Allen, 2002). We were guided by our practical experience in refining

and validating a large number of various crystal structures during

about 30 years of our activity in the field. Indeed, we often tend to

rely on experience rather than on elaborate numerical calculations.

The latter sometimes are very sophisticated and absolutely correct

mathematically, but may not be highly relevant if some of the

underlying assumptions are not exactly fulfilled. It is our feeling that

this may be the case presented in the analysis by Tickle (2007).

The results derived by Tickle are based on optimization of r.m.s.d.s

of stereochemical parameters relative to their standard target values

through maximization of the free log-likelihood (LLfree; Lunin &

Skovoroda, 1995) in the refinement of a few protein models. These

results show that the r.m.s.d.(bonds) should be as small as 0.01 Å or

less, whereas we suggested a target value of about 0.02 Å (Jaskolski et

al., 2007). However, demanding that model stereochemistry should so

precisely reproduce the library standards would require that those

standards be absolutely correct and that the variability of geometrical

parameters in various parts of protein structures be minimal. It seems

that this point was not taken into account by Tickle. The almost

universally utilized Engh & Huber (1991, 2001) library, also used by

Tickle, was based on data from the crystal structures of amino acids

and small peptides. The uncertainty in most types of bond lengths

summarized by Engh and Huber is higher than 0.02 Å. There is no

reason to expect that their variability should be smaller in larger

proteins. It seems to be illogical to demand that the stereochemistry

of protein structures should reproduce the library values with higher

precision than the accuracy of these values themselves. Moreover, as

pointed out by Stec (2007), there is ‘emerging evidence that . . .
protein stereochemistry is context-dependent’, so that some geo-

metrical parameters may have more than one preferred value

depending, for example, on the secondary structure, in analogy to the

rotamers of side chains. In such a situation, a single target, as used in

the refinement programs, will not agree with any of the truly

preferred values. This again suggests that the geometrical parameters

of protein models should not be too tightly restrained to some

predefined values.



While we are on the subject of numerology, we would like to raise

some additional points. Another well known example of the tendency

to blindly rely on numerical calculations, regardless of reality, is the

estimation of unit-cell parameters by the program HKL-2000

(Otwinowski & Minor, 1997). The values for unit-cell dimensions that

are found in the files produced by this program are in the form

123.456 Å, suggesting that the precision of the measurements is

0.001 Å. Any experimenter realises that such precision is absolutely

unrealistic and that the estimated unit-cell parameters of macro-

molecular crystals are much less accurate. Such numerical results

come from the refinement of various parameters during data merging

and only reproduce the intrinsic precision of this numerical process.

Unfortunately, such results ‘officially’ printed out by the program are

usually accepted as ‘true’ values and proliferate throughout the whole

structure-solution, refinement and deposition process. In reality, the

estimation of unit-cell dimensions also depends on the crystal-to-

detector distance and X-ray wavelength, which normally cannot be

determined with a meaningful accuracy of six digits.

Another related example of meaningless precision is provided by

the addition of trailing zeros to a variety of parameters of the protein

structures deposited in the PDB. Thus, resolution limits of 1.800–

45.000 Å, a redundancy of 11.000 and an Rmerge of 0.09700 (this

particular example was taken from the remediated file 1rb1, but

similar numbers are found in most if not all other deposits) seem to

clash with common sense. It must be stressed that these meaningless

zeros are added by the deposition software and not by the providers

of the coordinates.

The above examples seem to fall into the category of very elabo-

rate numerology (Dauter & Baker, 2007). The tendency to believe

more in very sophisticated numerical calculations rather than

common sense based on experience is not restricted to humans. Such

individuals may be compared to Rabbit, a friend of Winnie-the-Pooh,

as evidenced by the following conversation (Milne, 1928):

‘Rabbit’s clever,’ said Pooh thoughtfully.

‘Yes,’ said Piglet, ‘Rabbit has Brain.’

‘I suppose,’ said Pooh, ‘that that’s why he never understands anything.’
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