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A likelihood function based on the multivariate probability

distribution of all observed structure-factor amplitudes from a

single isomorphous replacement with anomalous scattering

experiment has been derived and implemented for use in sub-

structure refinement and phasing as well as macromolecular

model refinement. Efficient calculation of a multidimensional

integration required for function evaluation has been achieved

by approximations based on the function’s properties. The use

of the function in both phasing and protein model building

with iterative refinement was essential for successful auto-

mated model building in the test cases presented.
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1. Introduction

Despite the dramatic increase in the number of macro-

molecular structures in the Protein Data Bank (PDB; Berman

et al., 2000) phased by molecular replacement, about 20% of

recently determined crystal structures have still been solved

by experimental phasing methods (Long et al., 2008) phased

by molecular replacement. Experimental phase information

can also serve as an additional source of information in model

building and refinement, especially at lower resolutions when

the observation-to-parameter ratio is very low (DeLaBarre &

Brunger, 2006). Recent developments in heavy-atom soaking

(Boggon & Shapiro, 2000; Wernimont et al., 2000; Dauter et al.,

2000, 2001; Szczepanowski et al., 2005; Beck et al., 2008) have

increased the success rate and extended the application of

both single-wavelength anomalous diffraction (SAD) and

single isomorphous replacement with anomalous scattering

(SIRAS). These techniques are often applied to large mole-

cular complexes or flexible molecules, which typically provide

fragile crystals and weak diffraction data with a small signal-

to-noise ratio. Improved statistical techniques that exploit all

information simultaneously are needed to optimally extract

information from such data. Furthermore, the enhanced

exploitation of SIRAS data from a native and a soaked crystal

may lead to solutions which elude SAD data collected from a

soaked crystal alone.

The SIRAS experiment involves data collected from a

native crystal and Friedel mates from a derivative crystal

containing a ‘heavy atom’ [for a review of SIRAS and

experimental phasing, see Taylor (2003) and references

therein],

jF1j ¼ jF
N
o j

jF2j ¼ jF
Dþ
o j

jF3j ¼ jF
D�
o j; ð1Þ

with the corresponding model structure factors
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[for simplicity, both the D (derivative) superscript and the

complex-conjugate sign will be omitted]. Currently, the best

approach for SIRAS substructure phasing and refinement

neglects the correlation between the isomorphic and anom-

alous sources of information. Indeed, the (univariate) like-

lihood-based SIRAS function used in SHARP (de La Fortelle

& Bricogne, 1997) and BP3 (Pannu et al., 2003) assumes the

independence of a Gaussian term involving anomalous

differences (North, 1965; Matthews, 1966) and a Rice function

modelling the isomorphic data for acentric reflections,
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where the ‘true’ native amplitude |F | and phase � are inte-

grated out, Pprior describes the prior knowledge about F (if

any), Fo
D is the average of |Fo

+|, |Fo
�| and |Fc| is the average of

|Fc
+|, |Fc

�|, the calculated structure factors determined from the

‘true’ native structure factor and the calculated heavy-atom

structure factors. �obs is the Bijvoet difference of the observed

Friedel pairs |Fo
+| and |Fo

�|, VN, VD and Va are variances and

�calc = |Fc
+| � |Fc

�| is the calculated Bijvoet difference.

Previously, we have shown that substructure phasing and

refinement using a multivariate likelihood function that

directly considers the correlation between Friedel pairs in a

SAD experiment provides better results than the same

Gaussian-based term using anomalous differences (Pannu &

Read, 2004; Ness et al., 2004). Thus, a multivariate function

which directly accounts for all correlations between structure

factors in a SIRAS experiment should allow the extraction of

more information from low signal-to-noise data.

Currently, a function that simultaneously and directly

exploits native and derivative data from a SIRAS experiment

has not been implemented in macromolecular refinement. The

best available approach for considering phase information

from a SIRAS experiment in model refinement is with the

‘MLHL’ target function, a univariate likelihood function

which incorporates experimental phase information via

Hendrickson–Lattman coefficients (Pannu et al., 1998). How-

ever, this indirect use of experimental phases suffers from

shortcomings such as the assumption of independence of

experimental phase information from the model, an inability

for simultaneous refinement of (a perhaps updated) sub-

structure and protein models and a dependency on the accu-

racy and reliability of the phasing program used to generate

the Hendrickson–Lattman coefficients (Skubák et al., 2004). A

multivariate single anomalous diffraction (SAD) function has

been shown to overcome these shortcomings and to extend the

resolution and phase-quality limits needed for successful

automated model building with iterative refinement against

the SAD data set (Skubák et al., 2005). In this paper, a

multivariate likelihood function for macromolecular refine-

ment against SIRAS experimental data is presented.

2. Method

The probability distribution of three structure-factor ampli-

tudes for a reflection [as specified by (1)] given N � 3 model

structure factors is derived in Appendix A. In our current

implementation, three models specified by (2) are used,

leading to the following probability distribution:

PðjF1j; jF2j; jF3j; jF4j; �4; jF5j; �5; jF6j; �6Þ

¼
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C6 is the covariance matrix of the complex Gaussian distri-

bution P(F1, . . . , F6), with the real and imaginary components

of its inverse denoted as ajk and bjk, respectively. Similarly, C3

is the covariance matrix of the Gaussian distribution P(F4, F5,

F6), with the real and imaginary components of its inverse

denoted as cij and dij, respectively.

We define the SIRAS function as the sum over all reflec-

tions of the minus logarithm of the derived probability

distribution (4). Evaluation of the function requires a three-

dimensional integration over the unknown observed phases,

one of which is solved analytically (Appendix A). Since we

were not able to find a usable analytical solution to the

remaining two integrals, a two-dimensional numerical inte-

gration was used for evaluation of the remaining two integrals.

However, a SIRAS function employing an integral evaluated

by the Gaussian method, as a two-dimensional extension from

an accurate implementation of the one-dimensional SAD

numerical integration, required up to 1000 � 1000 nodes to

achieve an acceptable precision and stable refinement. Clearly,

more advanced approximations were needed to speed up the
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SIRAS function evaluation and to achieve a speed compar-

able with the currently used functions. The solution adopted is

based on analysis of the specific properties of the integral.

In Appendix C, we show that the three-dimensional SIRAS

integral I(�1, �2, �3) (before analytical integration) is depen-

dent on nine real-valued parameters (denoted as ennead """):

six w parameters (analogous to vector amplitudes) and three ’
parameters (analogous to vector angles). If the values of the w

parameters are small, the surface of the function I(�1, �2, �3)

(for a given """) is flat and a small number of sampling points

over the whole integration range is sufficient for reasonable

precision of the numerical integration of I. However, higher

values of the w parameters generally give rise to a sharp and

high peak and very dense integration sampling would be

required to sample over the whole integration area. Therefore,

the position of the peak of the integrand in three-dimensional

space (�1, �2, �3) is important for numerical integration of I.

The statement in Appendix D provides a partial localization

of the position of the maximum of I: the maximum is close to a

certain plane for the majority of reflections in a typical SIRAS

experiment. The statement defines the plane and provides the

maximal distance of the maximum from the plane. This

information can be used to limit the large number of sampling

points needed for the numerical integration for large w

parameters. A transformation of the coordinate system �1, �2,

�3 can be performed such that one of the new coordinate axes

is perpendicular to the plane. Sampling of this variable over a

short range covering the peak within the maximal distance

given by the statement then provides an efficient method for

the numerical integration. The transformation and the com-

plete algorithm for the SIRAS function evaluation are speci-

fied in Appendix E.

The SIRAS function was implemented according to this

algorithm in the refinement program REFMAC5 (Murshudov

et al., 1997). Validation of the implementation of the function

evaluation in terms of precision and actual number of nodes

used has been performed on several SIRAS data sets, showing

that a relative precision of the order of 10�5 is achieved by the

use of an average of 100–150 Gaussian integration nodes per

reflection.

The SIRAS function has been implemented in REFMAC5

(v.5.6) for substructure refinement and phasing and also for

protein refinement with the direct use of SIRAS phase

information. The performance of the ‘multivariate’ phasing

function has been compared with the currently used univariate

function as implemented in the program BP3 (v.1.01), denoted

below by ‘univariate’. The function for protein model refine-

ment has been compared against the ‘Rice’ likelihood function

lacking prior phase information (Bricogne & Irwin, 1996;

Murshudov et al., 1997; Pannu & Read, 1996) denoted below

as Rice, and the likelihood function encoding prior phase

information with Hendrickson–Lattman coefficients, denoted

below as MLHL, both implemented in REFMAC5 (v.5.6) in

the context of automated model building with iterative

refinement by ARP/wARP (v.7.0; Perrakis et al., 1999).

For the three SIRAS test cases described below, the

CRANK suite (v.1.2.1; Ness et al., 2004) from CCP4 (v.6.10;

Collaborative Computational Project, Number 4, 1994) was

used for automatic structure solution starting with the SIRAS

data and the protein sequence. CRANK uses the programs

SHELXD (Sheldrick, 2008) or CRUNCH2 (de Graaff et al.,

2001) for substructure detection, SHELXE (Sheldrick, 2008)

for hand determination, BP3 or REFMAC5 for substructure

refinement and phasing, SOLOMON (Abrahams & Leslie,

1996) for density modification and ARP/wARP for automated

model building with iterative refinement by REFMAC5.

EMMA from the CCTBX toolbox (Grosse-Kunstleve et al.,

2002) was used to transform all substructure sites to the same

origin as the final published model. This simplified the calcu-

lation of map correlations with the final map in SFTOOLS

(Bart Hazes, unpublished work). Unless otherwise stated, the

default CRANK parameters were used in all runs.

The Hendrickson–Lattman coefficients required for the

MLHL function were derived using the phasing program in

a given pipeline (either BP3 or REFMAC5). MLHL with

Hendrickson–Lattman coefficients from the density-modifi-

cation programs SOLOMON and DM (Cowtan, 1999) was

also tested, but produced poorer results. When the SIRAS

function was used for protein refinement, the refined sub-

structures from BP3 or REFMAC5 were input into ARP/

wARP. For all likelihood functions and test cases, 200 cycles

(four times the default) of automated model building with

iterative structure refinement were performed to allow con-

vergence of the model-building process. The native data were

used for model building and refinement in all the test cases

(except for the SIRAS function, which used all observations).

The resulting models were compared with the final refined

structure by a compare-protein script (S. Ness & P. Skubak,

unpublished work) from the CRANK suite, which provides the

number of ‘correctly built’ residues. A residue is regarded as

correctly built if its C� atom lies within 1 Å of a C� position

from the final model (Badger, 2003).

All the data sets used for the tests described below were

acquired from the PDB. Since the PDB stores reflection data

in mmCIF format, conversion to MTZ format was required.

The conversion was performed in several steps: firstly, the

downloaded mmCIF file was manually analyzed to separate,

by hand, the multiple data sets (native, derivative plus and

derivative minus) into multiple mmCIF files. The separated

mmCIF files were converted using either the CIF2MTZ

utility from the CCP4 suite or SF-CONVERT (http://

sw-tools.pdb.org/apps/SF-CONVERT) depending on how the

anomalous data were represented in the mmCIF file. Finally,

the separated MTZ data sets were merged into a single MTZ

file using SFTOOLS from CCP4.

3. Results

3.1. DNA-packaging protein Gp17

The initial phases for bacteriophage T4 gp17 ATPase

domain mutant complexed with ATP (PDB code 2o0h; Sun et

al., 2007) were determined from a native data set and a sele-

nomethionine derivative containing eight Se atoms collected
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at the selenium absorption edge. Although the theoretical

value of the anomalous scattering coefficient f 00 for an Se atom

at its peak is close to 4, a value of 12 was used for the structure

determination by the authors (Sun, personal communication).

Because of this large discrepancy, we investigated the effects

of f 00 on the phasing by running a series of phasing jobs

starting from the same substructure and varying f 00 for both

functions. As Table 1 documents, the multivariate function

provides almost equally good results in the whole f 00 range

from 3 to 16, while the univariate-function results deteriorate

with an f 00 lower than 6. Since the value of 12 suggested by the

original authors provided close to optimal results for both

functions, it was used in all the pipelines (Tables 2 and 3).

The structure contains a single monomer with 357 residues

in the asymmetric unit, a majority of which were correctly built

by CRANK using the multivariate SIRAS function for both

phasing and protein refinement. Only small fragments of the

structure were built using any other combination of the

functions for phasing and protein refinement (Table 3). Fig. 1

demonstrates the differences in the performance of different

refinement target functions in a refinement-only pass from a

model built after five ARP/wARP rebuilding cycles.

Density modification was an essential step in the structure-

solution process, probably owing to the phase extension of the

phases from the 3.29 Å selenium derivative to the 1.88 Å

native data. CRANK options for automated optimization of

the solvent content and a higher number of SOLOMON

cycles were used in all runs to enable effective phase exten-

sion.

3.2. SMU.776

A single Hg atom provided sufficient signal to automatically

build a majority of the 385 residues of a putative SAM-

dependent methyltransferase (SMU.776; PDB code 2b78;

J. Nan, K. T. Wang & X.-D. Su, unpublished work) from the

experimental phases, helped by the relatively good resolution

of both the native (1.8 Å) and derivative (1.94 Å) data. The

use of the multivariate function in either phasing or protein

model refinement was essential to obtain the almost

completely traceable density maps (Fig. 2; Table 3). However,

there is little discrimination between the performance of the

functions after phasing; a significant difference only appeared

after density modification using the different probability

distributions from phasing.

The model could not be built without the use of experi-

mental phase information in either an indirect (MLHL func-

tion) or direct way (SIRAS function). The indirect use of the

phase information was sufficient to build a model of similar

quality to that built using the SIRAS function provided that

the starting map was obtained using the multivariate function

in substructure phasing (Table 3).

3.3. SMU.440

Similarly to SMU.776, the structure of the SMU.440 protein

(PDB code 2b79; J. Nan, X. Y. Zhang, X. Y. Liu & X.-D. Su,

unpublished work) from Streptococcus mutans was deter-

mined by the Joint Center of Structural Genomics (JSCG:

http://www.jcsg.org). The maps after phasing and density

modification were of significantly higher quality than in the

previous two test cases and approximately half of the structure

was built immediately in the first ARP/wARP cycle. However,

tracing of the remaining residues was more difficult owing to

poor electron density in some regions. The use of prior phase

information during model building improved the problematic

map regions and better models were subsequently built. The

derivative data were of slightly better quality than the native

data (the former were obtained to approximately 2.38 Å

resolution and the latter to 2.35 Å with a similar signal-to-

research papers

1054 Skubák et al. � Multivariate likelihood SIRAS function Acta Cryst. (2009). D65, 1051–1061

Table 1
The effect of the f 0 0 used for phasing on the resulting map correlation
after phasing for the 2o0h data set.

f 0 0

Map correlation 3 4 6 8 10 12 14 16

Univariate 0.333 0.355 0.379 0.392 0.396 0.397 0.395 0.385
Multivariate 0.405 0.412 0.414 0.413 0.409 0.412 0.414 0.413

Table 2
The map correlations after phasing and density modification (DM).

2o0h 2b78 2b79

Map correlation after Phasing DM Phasing DM Phasing DM

Univariate 0.397 0.366 0.368 0.488 0.457 0.718
Multivariate 0.412 0.429 0.374 0.535 0.486 0.739

Table 3
The number of residues built using various target functions in phasing
and model building.

Correctly built residues

Phasing function Refinement function 2o0h 2b78 2b79

Univariate Rice 24 51 139
Univariate MLHL 34 96 197
Univariate Multivariate SIRAS 53 345 235
Multivariate Rice 68 106 190
Multivariate MLHL 128 341 201
Multivariate Multivariate SIRAS 310 353 238

Figure 1
The phase error for the Gp17 structure after a refinement-only pass. A
model built in the first five ARP/wARP rebuilding cycles of a pipeline
with multivariate phasing and refinement was inputted for refinement
with Rice, MLHL and SIRAS targets.



noise ratio), possibly improving the SIRAS function refine-

ment compared with the native data-based refinement of the

Rice and MLHL functions. The Rfree� R difference during the

first model-building cycles (Fig. 3) suggested that a great deal

of the improvement could be attributed to decreased over-

fitting by the direct use of experimental phase information.

Although the maps after phasing and density modification

differed slightly in their quality depending on the function

used in phasing, these differences did not play a significant

role in the building of the model.

4. Discussion and conclusions

The previous automated structure-solution results can be used

as an additional validation of the implementation of the

SIRAS function in REFMAC5. More importantly, they show

that the use of the function can provide significant improve-

ments over the currently used functions in difficult cases. The

improvements of phasing by the multivariate function over

phasing by the univariate function lead to significant differ-

ences in the Gp17 and SMU.776 models built and a signifi-

cantly smaller sensitivity of the multivariate function to f 00

values has been observed. However, it is not clear how much

these results are influenced by other differences in the

programs used for the comparison. An implementation of the

multivariate and univariate SIRAS function in the same

program could provide better discrimination.

The SIRAS function model refinement does not suffer from

this problem since all the functions tested have been imple-

mented in the same program. In the three test cases above the

use of experimental SIRAS phase information was essential to

build the structures, with the direct incorporation of the

information in the multivariate SIRAS function providing

better results than the indirect MLHL function.

For all three test cases we could not automatically build any

of the structures using SAD data from the ‘derivative’ data

sets alone. Thus, collecting ‘native’ unsoaked data and opti-

mally using this additional information could be the difference

between a successful and unsuccessful structure solution.

Model building with the SIRAS function was approximately

1.5–1.7 times slower compared with the Rice target in the tests

above, which is satisfactory given the computational com-

plexity differences between the two targets. The speed could

be further improved by decreasing the current high precision

of the function evaluations. Furthermore, the evaluation of the

function for a given set of reflections is an ‘embarrassingly

parallel’ problem; thus the speed of a parallelized SIRAS

function evaluation on a currently standard quad-core

processor could be close to that of the SAD function

evaluation.

The results of the SIRAS function implementation are also

promising with respect to the direct use of prior phase infor-
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Figure 2
Density maps (contoured at 1.5�) of an SMU.776 region at the end of
ARP/wARP building superimposed on the final deposited model using
(a) univariate and (b) multivariate targets in phasing and model building.

Figure 3
The Rfree � R difference in the first five ARP/wARP macrocycles of the
2b79 pipelines with the univariate phasing function. Since the number of
residues built was similar (approximately 50%) for all target functions in
the first cycles of the model building (and the same holds for the numbers
of model parameters and restraints), the comparison of the difference for
different target functions can be used as an estimator of relative
overfitting. The final value of the ratio in each refinement block is
reported in order to compare values close to the convergence of
refinement.



mation in the MAD experiment: according to a preliminary

analysis, a modified partial localization of the maximum could

also be applied to the four-dimensional two-wavelength MAD

integration problem. Since the MAD experiment is a popular

method for solving the phase problem in protein X-ray crys-

tallography, a proper implementation of the MAD function

with the direct use of prior phase information and modelling

all the correlations is a challenge for the future.

APPENDIX A
Derivation of the required distribution

Since the conditional probability distribution of the three

observed structure-factor amplitudes given three model

structure factors can be derived in analogy to the derivation of

the SAD function, the derivation of the SIRAS function will

be somewhat compressed here (for more details, see Skubák et

al., 2004). Using the central limit theorem, the starting point

for the derivation will be the multivariate complex Gaussian

probability distribution of structure factors (see, for example,

Pannu et al., 2003). F1, F2, F3 will represent the ‘observed’

structure factors from a SIRAS experiment and F4, F5, . . . , FN

will represent the ‘model’ structure factors. The amplitude of a

structure factor Fi will be denoted by |Fi| and its phase by �i.

PðF1;F2; . . . FNÞ ¼
1

�N detðCNÞ
exp �

PN
i¼1

PN
j¼1

F�i zijFj

 !
: ð6Þ

CN is the Hermitian covariance matrix of the N-dimensional

Gaussian probability distribution and zij denotes the ijth

element of the inverse matrix of CN. After separately summing

over the diagonal and off-diagonal terms, transformation to

polar coordinates and simplification, we obtain

PðjF1j; �1; jF2j; �2; . . . ; jFNj; �NÞ

¼

QN
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��
: ð7Þ

In the above equation, aij and bij represent the real and

imaginary components of the inverse covariance matrix. The

unknown phase angles �1, �2, �3 need to be integrated out.
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The inner integral can be solved analytically:
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where I0(x) is the zero-order modified Bessel function of the

first kind.

From the definition of conditional probability, the required

probability distribution can be obtained as follows,

PðjF1j; jF2j;jF3j; jF4j; �4; . . . ; jFNj; �NÞ

¼
PðjF1j; jF2j; jF3j; jF4j; �4; . . . ; jFNj; �NÞ

PðjF4j; �4; . . . ; jFNj; �NÞ
: ð10Þ

P(|F1|, |F2|, |F3|, |F4|, �4, . . . , |FN|, �N) is given by (8) and (9)

and P(|F4|, �4, . . . , |FN|, �N) can be obtained by (7), denoting

the corresponding covariance matrix by CN�3 and the ijth

element of its inverse by cij + idij. Thus, the required distri-

bution is

PðjF1j; jF2j; jF3j; jF4j; �4; . . . ; jFNj; �NÞ

¼
2jF1j . . . jF3j detðCN�3Þ

�2 detðCNÞ
exp

�
�
P3

i¼1

jFij
2aii

�
PN
i¼4

�
jFij

2
ðaii � ciiÞ þ

PN
j¼iþ1

f2jFijjFjj½ðaij � cijÞ cosð�j � �iÞ

� ðbij � dijÞ sinð�j � �iÞ�g

��

�
R2�
0

R2�
0

exp

�
�
P3

j¼2

PN
i¼jþ1

f2jFjjjFij½aji cosð�i � �jÞ

� bji sinð�i � �jÞ�g

�
I0½2jF1j�ð�2; �3Þ� d�2 d�3; ð11Þ

where

�ð�2; �3; . . . ; �NÞ ¼

�PN
i¼2

�
jFij

2
ða2

1i þ b2
1iÞ

þ
PN

j¼iþ1

2jFijjFjj½ða1ia1j þ b1ib1jÞ cosð�j � �iÞ

þ ða1jb1i � a1ib1jÞ sinð�j � �iÞ�

��1=2

: ð12Þ

APPENDIX B
The covariance matrix

In order to take into account all the correlations between the

three observations and three models, a 6 � 6 covariance

matrix must be constructed:
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C6 ¼

�Nþ2ð�N
o Þ

2 D2�N D2�N D1�P D3�P D3�P

D2�N �N2þ2ð�þo Þ
2 �0N2 D3�P D1�P2 D1�

0
P2

D2�N �N2 �N2þ2ð��o Þ
2 D3�P D1�

0
P2 D1�P2

D1�P D3�P D3�P �P D2�P D2�P

D3�P D1�P2 D1�
0
P2 D2�P �P2 �0P2

D3�P D1�
0
P2 D1�P2 D2�P �0P2 �P2

2
666666664

3
777777775
;

ð13Þ

with the model part covariance matrix C3 being the right

bottom 3 � 3 submatrix of (13),

C3 ¼

�P D2�P D2�P

D2�P �P2 �0P2

D2�P �0P2 �P2

0
@

1
A; ð14Þ

where D is a refinable Luzzati (1952) error parameter which

absorbs the errors in both model phases and amplitudes: the

D1 parameter accounts for the errors between the observed

and calculated phases and amplitudes, the D2 error parameter

accounts for the errors between the native and derivative

structure factors caused by non-isomorphism and D3 accounts

for the combination of these errors. In general, the covariance

term �0N2 is complex; however, the imaginary term is small

compared with the real term for a large number of reflections

and is thus omitted. Furthermore, the real part of this term is a

function of the difference between ‘observed’ phases which

are unknown and is approximated by the difference between

the model phases. The following covariance-matrix terms

arise,

�N ¼ hjF
N
o j

2
i

�P ¼ hjF
N
c j

2
i

�N2 ¼
hjFþo j

2
þ jF�o j

2
i

2

�0N2 ¼ hjF
þ
o jjF

�
o j cosð�þc � �

�
c Þi

�P2 ¼
hjFþc j

2
þ jF�c j

2
i

2

�0P2 ¼ hjF
þ
c jjF

�
c j cosð�þc � �

�
c Þi: ð15Þ

APPENDIX C
Properties of the three-dimensional SIRAS integral

Let us consider the integral and its properties before the

analytical integration is performed. From (8), after dis-

regarding the anomalous terms (see Appendix B), the integral

is as follows:

I �
R2�
0

R2�
0

R2�
0

exp

�P3

i¼1

PN
j¼iþ1

2jFijjFjjaij cosð�i � �jÞ

�
d�1 d�2 d�3:

ð16Þ

For simplicity, let us define the wij term as

wij � 2jFijjFjjaij; ð17Þ

then after expanding the integrand by using the trigonometric

relations and rearranging the terms we obtain

I ¼
R2�
0

R2�
0

R2�
0

exp

�P3

i¼1

PN
j¼iþ1

wij cosð�i � �jÞ

�
d�1 d�2 d�3

¼
R2�
0

R2�
0

R2�
0

exp

�
� w12 cosð�1 � �2Þ � w13 cosð�1 � �3Þ

� w23 cosð�2 � �3Þ �
PN
i¼4

½w1i cosð�i � �1Þ

þ w2i cosð�i � �2Þ þ w3i cosð�i � �3Þ�

�
d�1 d�2 d�3

¼
R2�
0

R2�
0

R2�
0

exp

�
� w12 cosð�1 � �2Þ � w13 cosð�1 � �3Þ

� w23 cosð�2 � �3Þ � cosð�1Þ
PN
i¼4

w1i cosð�iÞ

� sinð�1Þ
PN
i¼4

w1i sinð�iÞ � cosð�2Þ
PN
i¼4

w2i cosð�iÞ

� sinð�2Þ
PN
i¼4

w2i sinð�iÞ � cosð�3Þ
PN
i¼4

w3i cosð�iÞ

� sinð�3Þ
PN
i¼4

w3i sinð�iÞ

�
d�1 d�2 d�3: ð18Þ

If we now define vectors Wi, i = 1, 2, 3, by

Wi ¼ ðW
c
i ;Ws

i Þ �
PN
j¼4

wij cosð�jÞ;
PN
j¼4

wij sinð�jÞ

" #
ð19Þ

and denote their modulus and polar angle by Wi and ’i,

respectively, then

I ¼
R2�
0

R2�
0

R2�
0

exp

�
� w12 cosð�1 � �2Þ � w13 cosð�1 � �3Þ

� w23 cosð�2 � �3Þ � cosð�1ÞW
c
1 � sinð�1ÞW

s
1 � cosð�2ÞW

c
2

� sinð�2ÞW
s
2 � cosð�3ÞW

c
3 � sinð�3ÞW

s
3

�
d�1 d�2 d�3 ð20Þ

and we obtain the simplified form of the integral with the

integrand consisting of only six terms:

I ¼
R2�
0

R2�
0

R2�
0

exp

�
� w12 cosð�1 � �2Þ � w13 cosð�1 � �3Þ

� w23 cosð�2 � �3Þ �W1 cosð�1 � ’1Þ �W2 cosð�2 � ’2Þ

�W3 cosð�3 � ’3Þ

�
d�1 d�2 d�3: ð21Þ

Thus, the integral depends on nine real-number parameters:

the w parameters W1, W2, W3, w12, w13, w23 and phases ’1, ’2,

’3, so we can look at it as a function of nine real variables

I = I(W1, W2, W3, w12, w13, w23, ’1, ’2, ’3) (in the following, the

set of nine variables will be denoted as an ennead). We can

now reduce the range of the definition of this function.

Let the ennead """ � (W1, W2, W3, w12, w13, w23, ’1, ’2, ’3) be

I-equivalent to ennead (W01, W02, W03, w012, w013, w023, ’01, ’02, ’03) if

I(W1, W2, W3, w12, w13, w23, ’1, ’2, ’3) is the same as I(W01, W02,

W03, w012, w013, w023, ’01, ’02, ’03).
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Furthermore, define wab as w-least in """ if |wab| � |w12|, |wab|

� |w13| and |wab| � |w23|.

The following statement holds.

Statement. For any ennead """ � (W1, W2, W3, w12, w13, w23, ’1,

’2, ’3) an ennead """0 � (W01, W02, W03, w012, w013, w023, ’01, ’02, 0)

exists which is I-equivalent with """ and for which all W1
0, W2

0, W3
0

are nonpositive and all w012, w013, w023 up to the w-least in """0 are

nonpositive.

Proof. We will construct """0 in two steps. At first, let us

construct """00 � (W001, W002, W003, w0012, w0013, w0023, ’001, ’002, ’003)

I-equivalent with """ for which all w0012, w0013, w0023 up to the w-least

in """00 are nonpositive. Four distinct cases can occur:

(i) All w12, w13, w23 are nonpositive. Then, trivially, """00 = """.
(ii) Exactly one of w12, w13, w23 is positive. If w-least in """ is

positive, """00 = """. Let us assume that the only positive parameter

is not w-least in """. Because of the formal symmetry of I with

regards to indices 1, 2, 3, we can freely choose w12 to be

positive and w13 to be (nonpositive) w-least in """ without the

loss of generality (the proof would be symbolically the same

for any other permutation of positive and w-least variables).

We perform the following linear transformation of the integral

from (�1, �2, �3) to (�01, �02, �03),

�01 ¼ �1 � �

�02 ¼ �2

�03 ¼ �3 ð22Þ

I ¼
R2�
0

R2�
0

R�
��

exp

�
� w12 cosð�01 þ �� �

0
2Þ

� w13 cosð�01 þ �� �
0
3Þ � w23 cosð�02 � �

0
3Þ

�W1 cosð�01 þ �� ’1Þ �W2 cosð�02 � ’2Þ

�W3 cosð�03 � ’3Þ

�
d�01d�02d�03

¼
R2�
0

R2�
0

R2�
0

exp

�
w12 cosð�01 � �

0
2Þ þ w13 cosð�01 � �

0
3Þ

� w23 cosð�02 � �
0
3Þ �W1 cosð�01 þ �� ’1Þ

�W2 cosð�02 � ’2Þ �W3 cosð�03 � ’3Þ

�
d�01 d�02 d�03: ð23Þ

If we now set w0012 � �w12, w0013 � �w13, ’001 � ’1 � � then

I ¼
R2�
0

R2�
0

R2�
0

exp

�
� w0012 cosð�01 � �

0
2Þ � w0013 cosð�01 � �

0
3Þ

� w23 cosð�02 � �
0
3Þ �W1 cosð�01 � ’

00
1Þ �W2 cosð�02 � ’2Þ

�W3 cosð�03 � ’3Þ

�
d�01 d�02 d�03: ð24Þ

Thus, """00 = (W001, W002, W003, w12
00 , w13

00 , w23
00 , ’001, ’002, ’003) = (W1, W2, W3,

�w12, �w13, w23, ’1 � �, ’2, ’3) is I-equivalent with """, w0013 is

the w-least in """00 and both w0012, w0023 are nonpositive.

(iii) Exactly two of w12, w13, w23 are positive. Again, we can

freely choose w12 and w13 to be positive and the proof would

be symbolically the same for any other choice. The linear

transformation (22) shows that """00 = (W1, W2, W3, �w12, �w13,

w23, ’1 � �, ’2, ’3) is I-equivalent with """ and all w0012, w0013, w0023

are nonpositive.

(iv) All w12, w13, w23 are positive. If we choose w23 to be

w-least in """, then again the transformation (22) ensures that """00

= (W1, W2, W3, �w12, �w13, w23, ’1 � �, ’2, ’3) is I-equivalent

with """, w23
00 is w-least in """0 and w0012, w0013 are nonpositive.

Now """ will be constructed from """00. The transformation

�01 ¼ �1 � ’
00
3

�02 ¼ �2 � ’
00
3

�03 ¼ �3 � ’
00
3 ð25Þ

turns I("""00) into

I ¼
R2�
0

R2�
0

R2�
0

exp

�
� w0012 cosð�01 � �

0
2Þ � w0013 cosð�01 � �

0
3Þ

� w0023 cosð�02 � �
0
3Þ �W 001 cosð�01 � ’

00
1 þ ’

00
3Þ

�W 002 cosð�02 � ’
00
2 þ ’

00
3ÞW

00
3 cosð�03Þ

�
d�01 d�02 d�03: ð26Þ

We define """0 = (W01, W02, W03, w012, w013, w023, ’01, ’02, ’03) by

W 0i �
W 00i if W 00i � 0

�W 00i if W 00i > 0

�
ð27Þ

’0i �
’00i � ’

00
3 if W 00i � 0

’00i þ �� ’
00
3 if W 00i > 0

�
ð28Þ

wij
0 � wij

00 ð29Þ

Now the I-equivalency of """0 with """00 is shown for the case of all

W001, W002, W003 being nonpositive and the following property of

the cos() function

W 00i cosð�0i � ’
00
i Þ ¼ �W 00i cosð�0i � ’

00
i � �Þ ð30Þ

shows that """0 is also I-equivalent with """00 for any positive W00i .

Since """00 is I-equivalent with """ and I-equivalency is transitive

by definition, we obtain that """0 is I-equivalent with """. Clearly,

all W01, W02, W03, w012, w013, w023 up to w-least in """0 are nonpositive.

Since the proof is constructive, it provides a way of trans-

forming any integral I(""") coming from real data to I("""0),

reducing the definition range of I. Because ’03 is fixed (zero),

we could reduce the ennead """0 into an octad. However, this

would break the formal symmetry of I, causing several

formulae to become slightly more complicated. Therefore, the

ennead form will be used throughout. For simplicity, the

primes will be omitted and """ will be used instead of """0.

APPENDIX D
Integrand maximum localization

The following statement provides partial localization of the

maximum position if certain conditions hold for """.

Statement. Let us have the function F(�a, �b, �c) �

exp[�wabcos(�a� �b)� waccos(�a� �c)� wbccos(�b� �c)�

Wdcos(�d � ’d) � Wecos(�e � ’e) � Wfcos(�f � ’f)], where
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{a, b, c} = {d, e, f} = {1, 2, 3}, |wab| = max|wij| > 0, |wbc| = min|wij|,

|Wd| = max|Wi| and all Wd, We, Wf, wab, wac are nonpositive. If

wab �
P
i6¼d

Wi½1� cosð’i � ’dÞ� ð31Þ

then the maximum of F is at most

arccos 1�

P
i 6¼d

Wi½1� cosð’i � ’dÞ� � 2 maxf0;wbcg

wab

8<
:

9=
; ð32Þ

distant from the plane �a = �b in the three-dimensional

Cartesian coordinate system with axes �a, �b, �c.

Proof. Since the exponential function (exp) is an increasing

function, it is sufficient to prove the statement for the function

F 0(�a, �b, �c) � �wabcos(�a � �b) � waccos(�a � �c) �

wbccos(�b � �c) � Wdcos(�d � ’d) � Wecos(�e � ’e) �

Wfcos(�f � ’f). Let us discuss the case when wbc � 0 first. We

need to show that

j�max
a � �max

b j � arccos 1�

P
i6¼d

Wi½1� cosð’i � ’dÞ�

wab

8<
:

9=
;: ð33Þ

Clearly,

F 0ð�max
a ; �max

b ; �max
c Þ

� �wab cosð�max
a � �max

b Þ � wac � wbc �
P

i

Wi ð34Þ

Take the function value at point (’d, ’d, ’d):

F 0ð’d; ’d; ’dÞ ¼ � wab � wac � wbc �Wd

�
P
i 6¼d

Wi cosð’i � ’dÞ: ð35Þ

Since F 0(’d, ’d, ’d) � F(�a
max, �b

max, �c
max) from (34) and (35)

we obtain

�wab�wac � wbc �Wd �
P
i6¼d

Wi cosð’i � ’dÞ

� �wab cosð�max
a � �max

b Þ � wac � wbc �
P

i

Wi ð36Þ

leading to

1�

P
i6¼d

Wi½1� cosð’i � ’dÞ�

wab

� cosð�max
a � �

max
b Þ: ð37Þ

From the assumptions, 0� 1� {
P

i6¼dWi[1� cos(’i� ’d)]}/wab

� 1; therefore, the arccosine of this expression is always well

defined and (33) holds.

Let wbc > 0. Then

F 0ð�max
a ; �max

b ; �max
c Þ � �wab cosð�max

a � �
max
b Þ � wac þ wbc

�
P

i

Wi; ð38Þ

which together with (35) means that

�wab � wac � wbc �Wd �
P
i6¼d

Wi cosð’i � ’dÞ

� �wab cosð�max
a � �max

b Þ � wac þ wbc �
P

i

Wi; ð39Þ

1�

P
i6¼d

Wi½1� cosð’i � ’dÞ� � 2wbc

wab

� cosð�max
a � �

max
b Þ: ð40Þ

The assumptions assure that 0 � 1 � {
P

i6¼dWi[1 � cos(’i �

’d)] � 2wbc}/wab � 1, thus

j�max
a � �

max
b j � arccos 1�

P
i6¼d

Wi½1� cosð’i � ’dÞ� � 2wbc

wab

8<
:

9=
;:
ð41Þ

In Appendix C, we have shown that the validity of all the

assumptions of the sentence except of the crucial assumption

(31), which is equivalent to

jwabj � j
P
i 6¼d

Wi½1� cosð’i � ’dÞ�j> 0: ð42Þ

The larger the difference, the better the localization of the

maximum. Now the question arises: what are the typical values

of this difference in the case of protein SIRAS data? Typically,

the structure-factor contributions of heavy atoms are much

smaller than the contributions from protein atoms, F1 ’ F2 ’

F3 and �4 ’ �5 ’ �6. From F1 ’ F2 ’ F3 and definition (17),

wij ’ kaij; ð43Þ

where k is constant for all wij in this broad approximation.

Furthermore, from �4 ’ �5 ’ �6 and definition (19),

Wi ’
P6

j¼4

wij ’ k
P6

j¼4

aij: ð44Þ

Let us now take the definition of the covariance matrix for the

SIRAS function C6 from (13) which must be positive definite.

Using the analytical solution of the inverse of the covariance

matrix, it can be shown that

a3 ¼ K½�ð1�D2
1Þ�H1 þ ð1�D2

1Þ�H2

þ ð1�D2
2Þð�N �D2

1�PÞ�; ð45Þ

a24 þ a25 þ a26 ¼ a34 þ a35 þ a36 ¼ KD1ð1�D2Þð1�D2
1Þ�H1;

ð46Þ

where

�H1 ¼ �N2 ��N20 ð47Þ

�H2 ¼ �N2 ��N ð48Þ

K ¼ �H1�P½�H1 � 2ð�H2 þ�P �D2
2�PÞ�

� ð�N �D2
1�PÞ= det �: ð49Þ

Usually, 0 < Di < 1, which means that
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D1ð1�D2Þð1�D2
1Þ�H1 < ð1�D2

1Þ�H1: ð50Þ

Furthermore, the real part of the atomic scattering factor f + f 0

of a heavy atom is typically much larger than its imaginary part

f 00 and subsequently �H2’
P

fi + fi
0 	�H1’ 2fi

00. Since it can

be proven that (�N � D1
2�P) > 0 from the positive definite-

ness of �, we obtain

ð1�D2
1Þ�H2 þ ð1�D2

2Þð�N �D2
1�PÞ 	 ð1�D2

1Þ�H1 ð51Þ

and because of (50) also

ð1�D2
1Þ�H2 þ ð1�D2

2Þð�N �D2
1�PÞ

	 D1ð1�D2Þð1�D2
1Þ�H1; ð52Þ

meaning that |a23|	 a24 + a25 + a26|, |a23|	 a34 + a35 + a36| and

subsequently |w23|	 |W2|, |w23|	 |W3| according to (43) and

(44). This means that in a typical case |wab| 	 |
P

i6¼dWi[1 �

cos(’i � ’d)]| and therefore the assumption (31) of the

previous sentence should be fulfilled for typical SIRAS

reflections. Indeed, the statistics from several SIRAS data sets

shows that (31) is valid for the vast majority (over 99%) of

reflections.

APPENDIX E
The SIRAS integral evaluation algorithm

Let us assume that the a and b indices from the Appendix D

statement are equal to 2 and 3, respectively, i.e. the maximum

lies close to the plane �2 = �2 (we have shown that the typical

values of these indices are 2 and 3 later in Appendix D). Let us

rotate the coordinate system (�1, �2, �3) to (�01, �02, �03) so that

the plane �2 = �3 is equivalent to the plane given by coordinate

axes �01, �02. The following transformation can be used,

�01 � �1

�02 �
1
2 ð�2 þ �3Þ

�03 �
1
2 ð��2 þ �3Þ; ð53Þ

transforming the integral I(�1, �2, �3) to

I ¼
R2�
0

R2�
0

R2�
0

exp

�
� w12 cosð�01 � �

0
2 þ �

0
3Þ

� w13 cosð�01 � �
0
2 � �

0
3Þ � w23 cosð2�03Þ

�W1 cosð�01 � ’1Þ �W2 cosð�02 � �
0
3 � ’2Þ

�W3 cosð�02 þ �
0
3 � ’3Þ

�
d�01 d�02 d�03:

ð54Þ

The maximum is now close to the plane given by axes �01, �02
and sampling of the variable �02 over a short range around 0 in

the numerical integration is sufficient to cover the peak. The

largest required range can be estimated from the maximal

distance of the maximum to the plane given by expression

(32).

Based on the previous results and discussions, the following

algorithm was implemented in REFMAC5 for the SIRAS

function integral (and its first and second derivatives) calcu-

lation.

(i) The ennead """ is calculated using definitions (17) and (19)

and, if required, transformations (22) and (25) are applied so

that all the w parameters up to the w-least in """ are nonpositive.

(ii) The upper limit of the maximum peak height (let us

denote it by �) is calculated as the sum of the absolute values

of all w parameters. If this value is larger than a given

threshold and |wab| is larger than a given threshold, the

reflection is classified into class A, otherwise into class B. The

reflections in class A can be expected to give rise to larger

peaks while the function I(�1, �2, �3) is considered to be flat

for class B reflections.

(iii) If the reflection belongs to class A, then the validity of

assumption (31) is verified. If the assumption holds, the

reflection is classified into class A1 and otherwise into class

A2.

(iv) If the reflection belongs either to class B or to class A2

then the required sampling of both integration variables is

estimated according to the value of � (the higher �, the denser

the sampling) and numerical integration is performed

according to (4), without the transformation (53) of the

function and over the whole integration area.

(v) If the reflection belongs to class A1, the transformation

(53) is performed. The variable �03 is only sampled over a short

range around 0. If the maximal peak-to-plane distance (32) is

shorter than a given threshold, the approximation �2’ �3 may

be used, leading to a better estimation of � and hence a better

sampling estimate.
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